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There are lots of successes for the community to share. Why? Probably because the time is ripe.
Fourier techniques were liberated by the appearance of windowed Fourier methods that operate
locally on a time-frequency approach. In another direction, Burt-Adelson's pyramidal algorithms, the
quadrature mirror filters, and filter banks and subband coding are available. The mathematics
underlying those algorithms existed earlier, but new computing techniques enabled researchers to try
out new ideas rapidly. The numerical image and signal processing areas are blooming.

The wavelets bring their own strong benefits to that environment: a local outlook, a multiscaled
outlook, cooperation between scales, and a time-scale analysis. They demonstrate that sines and
cosines are not the only useful functions and that other bases made of weird functions serve to look at
new foreign signals, as strange as most fractals or some transient signals.

Recently, wavelets were determined to be the best way to compress a huge library of fingerprints.
This is not only a milestone that highlights the practical value of wavelets, but it has also proven to be
an instructive process for the researchers involved in the project. Our initial intuition generally was
that the proper way to tackle this problem of interweaving lines and textures was to use wavelet
packets, a flexible technique endowed with quite a subtle sharpness of analysis and a substantial
compression capability. However, it was a biorthogonal wavelet that emerged victorious and at this
time represents the best method in terms of cost as well as speed. Our intuitions led one way, but
implementing the methods settled the issue by pointing us in the right direction.

For wavelets, the period of growth and intuition is becoming a time of consolidation and
implementation. In this context, a toolbox is not only possible, but valuable. It provides a working
environment that permits experimentation and enables implementation.

Since the field still grows, it has to be vast and open. The Wavelet Toolbox product addresses this
need, offering an array of tools that can be organized according to several criteria:

• Synthesis and analysis tools
• Wavelet and wavelet packets approaches
• Signal and image processing
• Discrete and continuous analyses
• Orthogonal and redundant approaches
• Coding, de-noising and compression approaches

What can we anticipate for the future, at least in the short term? It is difficult to make an accurate
forecast. Nonetheless, it is reasonable to think that the pace of development and experimentation will
carry on in many different fields. Numerical analysis constantly uses new bases of functions to encode
its operators or to simplify its calculations to solve partial differential equations. The analysis and
synthesis of complex transient signals touches musical instruments by studying the striking up, when
the bow meets the cello string. The analysis and synthesis of multifractal signals, whose regularity (or
rather irregularity) varies with time, localizes information of interest at its geographic location.
Compression is a booming field, and coding and de-noising are promising.

For each of these areas, the Wavelet Toolbox software provides a way to introduce, learn, and apply
the methods, regardless of the user's experience. It includes a command-line mode and a graphical
user interface mode, each very capable and complementing to the other. The user interfaces help the
novice to get started and the expert to implement trials. The command line provides an open
environment for experimentation and addition to the graphical interface.

In the journey to the heart of a signal's meaning, the toolbox gives the traveler both guidance and
freedom: going from one point to the other, wandering from a tree structure to a superimposed mode,
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jumping from low to high scale, and skipping a breakdown point to spot a quadratic chirp. The time-
scale graphs of continuous analysis are often breathtaking and more often than not enlightening as to
the structure of the signal.

Here are the tools, waiting to be used.

Yves Meyer
Professor, Ecole Normale Supérieure de Cachan and Institut de France

Notes by Ingrid Daubechies

Wavelet transforms, in their different guises, have come to be accepted as a set of tools useful for
various applications. Wavelet transforms are good to have at one's fingertips, along with many other
mostly more traditional tools.

Wavelet Toolbox software is a great way to work with wavelets. The toolbox, together with the power
of MATLAB® software, really allows one to write complex and powerful applications, in a very short
amount of time. The Graphic User Interface is both user-friendly and intuitive. It provides an
excellent interface to explore the various aspects and applications of wavelets; it takes away the
tedium of typing and remembering the various function calls.

Ingrid C. Daubechies
Professor, Princeton University, Department of Mathematics and Program in Applied and
Computational Mathematics
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Wavelet Families
The Wavelet Toolbox software includes a large number of wavelets that you can use for both
continuous and discrete analysis. For discrete analysis, examples include orthogonal wavelets
(Daubechies’ extremal phase and least asymmetric wavelets) and B-spline biorthogonal wavelets. For
continuous analysis, the Wavelet Toolbox software includes Morlet, Meyer, derivative of Gaussian, and
Paul wavelets.

The choice of wavelet is dictated by the signal or image characteristics and the nature of the
application. If you understand the properties of the analysis and synthesis wavelet, you can choose a
wavelet that is optimized for your application.

Wavelet families vary in terms of several important properties. Examples include:

• Support of the wavelet in time and frequency and rate of decay.
• Symmetry or antisymmetry of the wavelet. The accompanying perfect reconstruction filters have

linear phase.
• Number of vanishing moments. Wavelets with increasing numbers of vanishing moments result in

sparse representations for a large class of signals and images.
• Regularity of the wavelet. Smoother wavelets provide sharper frequency resolution. Additionally,

iterative algorithms for wavelet construction converge faster.
• Existence of a scaling function, φ.

For continuous analysis, the Wavelet Toolbox software analytic wavelet-based analysis for select
wavelets. See cwt and icwt for details. “Inverse Continuous Wavelet Transform” for a basic
theoretical motivation. “CWT-Based Time-Frequency Analysis” on page 10-27 illustrates the use of
the continuous wavelet transform for simulated and real-world signals.

Entering waveinfo at the command line displays a survey of the main properties of available wavelet
families. For a specific wavelet family, use waveinfo with the wavelet family short name. You can
find the wavelet family short names listed in the following table and on the reference page for
waveinfo.

Wavelet Family Short Name Wavelet Family Name
'haar' Haar wavelet
'db' Daubechies wavelets
'sym' Symlets
'coif' Coiflets
'bior' Biorthogonal wavelets
'rbio' Reverse biorthogonal wavelets
'meyr' Meyer wavelet
'dmey' Discrete approximation of Meyer wavelet
'gaus' Gaussian wavelets
'mexh' Mexican hat wavelet (also known as the Ricker wavelet)
'morl' Morlet wavelet
'cgau' Complex Gaussian wavelets
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Wavelet Family Short Name Wavelet Family Name
'shan' Shannon wavelets
'fbsp' Frequency B-Spline wavelets
'cmor' Complex Morlet wavelets
'fk' Fejer-Korovkin wavelets

To display detailed information about the Daubechies’ least asymmetric orthogonal wavelets, enter:

waveinfo('sym')

To compute the wavelet and scaling function (if available), use wavefun.

The Morlet wavelet is suitable for continuous analysis. There is no scaling function associated with
the Morlet wavelet. To compute the Morlet wavelet, you can enter:

[psi,xval] = wavefun('morl',10);
plot(xval,psi); title('Morlet Wavelet');

For wavelets associated with a multiresolution analysis, you can compute both the scaling function
and wavelet. The following code returns the scaling function and wavelet for the Daubechies’
extremal phase wavelet with 4 vanishing moments.

[phi,psi,xval] = wavefun('db4',10);
subplot(211);
plot(xval,phi);
title('db4 Scaling Function');
subplot(212);
plot(xval,psi);
title('db4 Wavelet');
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In discrete wavelet analysis, the analysis and synthesis filters are of more interest than the associated
scaling function and wavelet. You can use wfilters to obtain the analysis and synthesis filters.

Obtain the decomposition (analysis) and reconstruction (synthesis) filters for the B-spline
biorthogonal wavelet. Specify 3 vanishing moments in the synthesis wavelet and 5 vanishing
moments in the analysis wavelet. Plot the filters’ impulse responses.

[LoD,HiD,LoR,HiR] = wfilters('bior3.5');
subplot(221);
stem(LoD);
title('Lowpass Analysis Filter');
subplot(222);
stem(HiD);
title('Highpass Analysis Filter');
subplot(223);
stem(LoR);
title('Lowpass Synthesis Filter');
subplot(224);
stem(HiR);
title('Highpass Synthesis Filter');

1 Wavelets, Scaling Functions, and Conjugate Quadrature Mirror Filters

1-4



Daubechies Wavelets: dbN
The dbN wavelets are the Daubechies’ extremal phase wavelets. N refers to the number of vanishing
moments. These filters are also referred to in the literature by the number of filter taps, which is 2N.
More about this family can be found in [Dau92] page 195. Enter waveinfo('db') at the MATLAB
command prompt to obtain a survey of the main properties of this family.

Daubechies Wavelets db4 on the Left and db8 on the Right

The db1 wavelet is also known as the Haar wavelet. The Haar wavelet is the only orthogonal wavelet
with linear phase. Using waveinfo('haar'), you can obtain a survey of the main properties of this
wavelet.

Symlet Wavelets: symN
The symN wavelets are also known as Daubechies’ least-asymmetric wavelets. The symlets are more
symmetric than the extremal phase wavelets. In symN, N is the number of vanishing moments. These
filters are also referred to in the literature by the number of filter taps, which is 2N. More about
symlets can be found in [Dau92], pages 198, 254-257. Enter waveinfo('sym') at the MATLAB
command prompt to obtain a survey of the main properties of this family.
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Symlets sym4 on the Left and sym8 on the Right

Coiflet Wavelets: coifN
Coiflet scaling functions also exhibit vanishing moments. In coifN, N is the number of vanishing
moments for both the wavelet and scaling functions. These filters are also referred to in the literature
by the number of filter coefficients, which is 3N. For the coiflet construction, see [Dau92] pages 258–
259. Enter waveinfo('coif') at the MATLAB command prompt to obtain a survey of the main
properties of this family.

Coiflets coif3 on the Left and coif5 on the Right

If s is a sufficiently regular continuous time signal, for large j the coefficient s, ϕ− j, k  is
approximated by 2− j/2s(2− jk).

If s is a polynomial of degree d, d ≤ N – 1, the approximation becomes an equality. This property is
used, connected with sampling problems, when calculating the difference between an expansion over
the φj,l of a given signal and its sampled version.

Biorthogonal Wavelet Pairs: biorNr.Nd
While the Haar wavelet is the only orthogonal wavelet with linear phase, you can design biorthogonal
wavelets with linear phase.
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Biorthogonal wavelets feature a pair of scaling functions and associated scaling filters — one for
analysis and one for synthesis.

There is also a pair of wavelets and associated wavelet filters — one for analysis and one for
synthesis.

The analysis and synthesis wavelets can have different numbers of vanishing moments and regularity
properties. You can use the wavelet with the greater number of vanishing moments for analysis
resulting in a sparse representation, while you use the smoother wavelet for reconstruction.

See [Dau92] pages 259, 262–285 and [Coh92] for more details on the construction of biorthogonal
wavelet bases. Enter waveinfo('bior') at the command line to obtain a survey of the main
properties of this family.

The following code returns the B-spline biorthogonal reconstruction and decomposition filters with 3
and 5 vanishing moments and plots the impulse responses.

The impulse responses of the lowpass filters are symmetric with respect to the midpoint. The impulse
responses of the highpass filters are antisymmetric with respect to the midpoint.

[LoD,HiD,LoR,HiR] = wfilters('bior3.5');
subplot(221);
stem(LoD);
title('Lowpass Analysis Filter');
subplot(222);
stem(HiD);
title('Highpass Analysis Filter');
subplot(223);
stem(LoR);
title('Lowpass Synthesis Filter');
subplot(224);
stem(HiR);
title('Highpass Synthesis Filter');

Reverse Biorthogonal Wavelet Pairs: rbioNr.Nd

This family is obtained from the biorthogonal wavelet pairs previously described.
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You can obtain a survey of the main properties of this family by typing waveinfo('rbio') from the
MATLAB command line.

Reverse Biorthogonal Wavelet rbio1.5

Meyer Wavelet: meyr
Both ψ and φ are defined in the frequency domain, starting with an auxiliary function ν (see [Dau92]
pages 117, 119, 137, 152). By typing waveinfo('meyr') at the MATLAB command prompt, you can
obtain a survey of the main properties of this wavelet.

Meyer Wavelet

The Meyer wavelet and scaling function are defined in the frequency domain:

• Wavelet function

ψ (ω) = (2eiω/2sin π
2ν 3

2π ω − 1    if    2π
3 ≤ ω ≤ 4π

3

ψ (ω) = (2eiω/2cos π
2ν 3

4π ω − 1    if    4π
3 ≤ ω ≤ 8π

3

and ψ (ω) = 0   if     ω ∉ 2π
3 , 8π

3
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where ν(a) = a4 35− 84a + 70a2− 20a3      a ∈ [0, 1]

• Scaling function

ϕ (ω) = (2     if     ω ≤ 2π
3

ϕ (ω) = (2cos π
2ν 3

2π ω − 1      if    2π
3 ≤ ω ≤ 4π

3

ϕ (ω) = 0     if    ω > 4π
3

By changing the auxiliary function, you get a family of different wavelets. For the required properties
of the auxiliary function ν (see“References” for more information). This wavelet ensures orthogonal
analysis.

The function ψ does not have finite support, but ψ decreases to 0 when , faster than any inverse
polynomial

∀n ∈ Ν, ∃Cn such that ψ(x) ≤ Cn 1 + x 2 −n

This property holds also for the derivatives

∀k ∈ N, ∀n ∈ N, ∃Ck, n, such that ψ(k)x ≤ Ck, n(1 + x 2)− n

The wavelet is infinitely differentiable.

Note Although the Meyer wavelet is not compactly supported, there exists a good approximation
leading to FIR filters that you can use in the DWT. Enter waveinfo('dmey') at the MATLAB
command prompt to obtain a survey of the main properties of this pseudo-wavelet.

Gaussian Derivatives Family: gaus

This family is built starting from the Gaussian function f (x) = Cpe−x2 by taking the pth derivative of  f.

The integer p is the parameter of this family and in the previous formula, Cp is such that f (p) 2 = 1
where f (p) is the pth derivative of f.

You can obtain a survey of the main properties of this family by typing waveinfo('gaus') from the
MATLAB command line.

 Wavelet Families

1-9



Gaussian Derivative Wavelet gaus8

Mexican Hat Wavelet: mexh
This wavelet is proportional to the second derivative function of the Gaussian probability density
function. The wavelet is a special case of a larger family of derivative of Gaussian (DOG) wavelets. It
is also known as the Ricker wavelet.

There is no scaling function associated with this wavelet.

Enter waveinfo('mexh') at the MATLAB command prompt to obtain a survey of the main
properties of this wavelet.

You can compute the wavelet with wavefun.

[psi,xval] = wavefun('mexh',10);
plot(xval,psi);
title('Mexican Hat Wavelet');

Morlet Wavelet: morl
Both real-valued and complex-valued versions of this wavelet exist. Enter waveinfo('morl') at the
MATLAB command line to obtain the properties of the real-valued Morlet wavelet.

The real-valued Morlet wavelet is defined as:
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ψ(x) = Ce−x2cos(5x)

The constant C is used for normalization in view of reconstruction.

[psi,xval] = wavefun('morl',10);
plot(xval,psi);
title('Real-valued Morlet Wavelet');

The Morlet wavelet does not technically satisfy the admissibility condition..

Additional Real Wavelets
Some other real wavelets are available in the toolbox.

Complex Wavelets
The toolbox also provides a number of complex-valued wavelets for continuous wavelet analysis.
Complex-valued wavelets provide phase information and are therefore very important in the time-
frequency analysis of nonstationary signals.

Complex Gaussian Wavelets: cgau

This family is built starting from the complex Gaussian function

f (x) = Cpe−ixe−x2 by taking the pth derivative of f. The integer p is the parameter of this family and in
the previous formula, Cp is such that

f (p) 2 = 1 where f (p) is the pth derivative of f.

You can obtain a survey of the main properties of this family by typing waveinfo('cgau') from the
MATLAB command line.
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Complex Gaussian Wavelet cgau8

Complex Morlet Wavelets: cmor

See [Teo98] pages 62–65.

A complex Morlet wavelet is defined by

ψ(x) = 1
πfb

e2iπfcxe
x2

fb

depending on two parameters:

• fb is a bandwidth parameter.
• fc is a wavelet center frequency.

You can obtain a survey of the main properties of this family by typing waveinfo('cmor') from the
MATLAB command line.

1 Wavelets, Scaling Functions, and Conjugate Quadrature Mirror Filters

1-12



Complex Morlet Wavelet morl 1.5-1

Complex Frequency B-Spline Wavelets: fbsp

See [Teo98] pages 62–65.

A complex frequency B-spline wavelet is defined by

ψ(x) = fb sinc
fbx
m

m
e2iπfcx

depending on three parameters:

• m is an integer order parameter (m ≥ 1).
• fb is a bandwidth parameter.
• fc is a wavelet center frequency.

You can obtain a survey of the main properties of this family by typing waveinfo('fbsp') from the
MATLAB command line.
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Complex Frequency B-Spline Wavelet fbsp 2-0.5-1

Complex Shannon Wavelets: shan

See [Teo98] pages 62–65.

This family is obtained from the frequency B-spline wavelets by setting m to 1.

A complex Shannon wavelet is defined by

ψ(x) = fbsinc fbx e2iπfcx

depending on two parameters:

• fb is a bandwidth parameter.
• fc is a wavelet center frequency.

You can obtain a survey of the main properties of this family by typing waveinfo('shan') from the
MATLAB command line.
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Complex Shannon Wavelet shan 0.5-1
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Wavelet Families and Associated Properties — I
Property morl mexh meyr haar dbN symN coifN biorNr.Nd
Crude ■ ■       
Infinitely regular ■ ■ ■      
Arbitrary regularity     ■ ■ ■ ■
Compactly supported
orthogonal

   ■ ■ ■ ■  

Compactly supported
biorthogonal

       ■

Symmetry ■ ■ ■ ■    ■
Asymmetry     ■    
Near symmetry      ■ ■  
Arbitrary number of
vanishing moments

    ■ ■ ■ ■

Vanishing moments for φ       ■  
Existence of φ   ■ ■ ■ ■ ■ ■
Orthogonal analysis   ■ ■ ■ ■ ■  
Biorthogonal analysis   ■ ■ ■ ■ ■ ■
Exact reconstruction ≈ ■ ■ ■ ■ ■ ■ ■
FIR filters    ■ ■ ■ ■ ■
Continuous transform ■ ■ ■ ■ ■ ■ ■ ■
Discrete transform    ■ ■ ■ ■ ■
Fast algorithm    ■ ■ ■ ■ ■
Explicit expression ■ ■  ■    For splines

Crude wavelet — A wavelet is said to be crude when satisfying only the admissibility condition.

Regularity — See “General Considerations” in “Choose a Wavelet”.

Orthogonal — See “General Considerations” in “Choose a Wavelet”.

Biorthogonal — See “Biorthogonal Wavelet Pairs: biorNr.Nd” on page 1-6.

Vanishing moments —See “General Considerations” in “Choose a Wavelet”.

Exact reconstruction — See “Reconstruction Filters” in the Wavelet Toolbox Getting Started Guide.

Continuous — See “Continuous and Discrete Wavelet Transforms” in the Wavelet Toolbox Getting
Started Guide.

Discrete — See “Critically-Sampled Discrete Wavelet Transform” in the Wavelet Toolbox Getting
Started Guide.
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Wavelet Families and Associated Properties — II
Property rbioNr.Nd gaus dmey cgau cmor fbsp shan
Crude  ■  ■ ■ ■ ■
Infinitely regular  ■  ■ ■ ■ ■
Arbitrary regularity ■       
Compactly supported
orthogonal

       

Compactly supported
biorthogonal

■       

Symmetry ■ ■ ■ ■ ■ ■ ■
Asymmetry        
Near symmetry        
Arbitrary number of
vanishing moments

■       

Vanishing moments for φ        
Existence of φ ■       
Orthogonal analysis        
Biorthogonal analysis ■       
Exact reconstruction ■ ■ ≈ ■ ■ ■ ■
FIR filters ■  ■     
Continuous transform ■ ■      
Discrete transform ■  ■     
Fast algorithm ■  ■     
Explicit expression For splines ■  ■ ■ ■ ■
Complex valued    ■ ■ ■ ■
Complex continuous
transform

   ■ ■ ■ ■

FIR-based approximation   ■     

Crude wavelet — A wavelet is said to be crude when satisfying only the admissibility condition.

Regularity — See “General Considerations” in “Choose a Wavelet”.

Orthogonal — See “General Considerations” in “Choose a Wavelet”.

Biorthogonal — See “Biorthogonal Wavelet Pairs: biorNr.Nd” on page 1-6.

Vanishing moments — See “General Considerations” in “Choose a Wavelet”.

Exact reconstruction — See “Reconstruction Filters” in the Wavelet Toolbox Getting Started Guide.

Continuous — See “Continuous and Discrete Wavelet Transforms” in the Wavelet Toolbox Getting
Started Guide.
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Discrete — See “Continuous and Discrete Wavelet Transforms” in the Wavelet Toolbox Getting
Started Guide.

FIR filters — See “Filters Used to Calculate the DWT and IDWT” on page 3-34.
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Lifting Method for Constructing Wavelets
The so-called first generation wavelets and scaling functions are dyadic dilations and translates of a
single function. Fourier methods play a key role in the design of these wavelets. However, the
requirement that the wavelet basis consist of translates and dilates of a single function imposes some
constraints that limit the utility of the multiresolution idea at the core of wavelet analysis.

The utility of wavelet methods is extended by the design of second generation wavelets via lifting.

Typical settings where translation and dilation of a single function cannot be used include:

• Designing wavelets on bounded domains — This includes the construction of wavelets on an
interval, or bounded domain in a higher-dimensional Euclidean space.

• Weighted wavelets — In certain applications, such as the solution of partial differential equations,
wavelets biorthogonal with respect to a weighted inner product are needed.

• Irregularly-spaced data — In many real-world applications, the sampling interval between data
samples is not equal.

Designing new first generation wavelets requires expertise in Fourier analysis. The lifting method
proposed by Sweldens (see [Swe98] in “References”) removes the necessity of expertise in Fourier
analysis and allows you to generate an infinite number of discrete biorthogonal wavelets starting
from an initial one. In addition to generation of first generation wavelets with lifting, the lifting
method also enables you to design second generation wavelets, which cannot be designed using
Fourier-based methods. With lifting, you can design wavelets that address the shortcomings of the
first generation wavelets.

For more information on lifting, see [Swe98], [Mal98], [StrN96], and [MisMOP03] in “References”.

Lifting Background
The DWT implemented by a filter bank is defined by four filters as described in “Fast Wavelet
Transform (FWT) Algorithm” on page 3-34. Two main properties of interest are

• The perfect reconstruction property
• The link with “true” wavelets (how to generate, starting from the filters, orthogonal or

biorthogonal bases of the space of the functions of finite energy)

To illustrate the perfect reconstruction property, the following filter bank contains two decomposition
filters and two synthesis filters. The decomposition and synthesis filters may constitute a pair of
biorthogonal bases or an orthogonal basis. The capital letters denote the Z-transforms of the filters.
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This leads to the following two conditions for a perfect reconstruction (PR) filter bank:

H∼(z)H(z) + G∼(z)G(z) = 2z−L + 1

and

H∼(− z)H(z) + G∼(− z)G(z) = 0

The first condition is usually (incorrectly) called the perfect reconstruction condition and the second
is the anti-aliasing condition.

The z−L + 1 term implies that perfect reconstruction is achieved up to a delay of one sample less than
the filter length, L. This results if the analysis filters are shifted to be causal.

Lifting designs perfect reconstruction filter banks by beginning from the basic nature of the wavelet
transform. Wavelet transforms build sparse representations by exploiting the correlation inherent in
most real world data. For example, plot the example of electricity consumption over a 3-day period.

load leleccum
plot(leleccum)
grid on
axis tight
title('Electricity Consumption')
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Polyphase Representation
The polyphase representation of a signal is an important concept in lifting. You can view each signal
as consisting of phases, which consist of taking every N-th sample beginning with some index. For
example, if you index a time series from n=0 and take every other sample starting at n=0, you extract
the even samples. If you take every other sample starting from n=1, you extract the odd samples.
These are the even and odd polyphase components of the data. Because your increment between
samples is 2, there are only two phases. If you increased your increment to 4, you can extract 4
phases. For lifting, it is sufficient to concentrate on the even and odd polyphase components. The
following diagram illustrates this operation for an input signal.

where Z denotes the unit advance operator and the downward arrow with the number 2 represents
downsampling by two. In the language of lifting, the operation of separating an input signal into even
and odd components is known as the split operation, or the lazy wavelet.

To understand lifting mathematically, it is necessary to understand the z-domain representation of the
even and odd polyphase components.

The z-transform of the even polyphase component is

X0(z) = ∑
n

x(2n)z−n

The z-transform of the odd polyphase component is

X1(z) = ∑
n

x(2n + 1)z−n

You can write the z-transform of the input signal as the sum of dilated versions of the z-transforms of
the polyphase components.

X(z) = ∑
n

x(2n)z−2n + ∑
n

x(2n + 1)z−2n + 1 = X0(z2) + z−1X1(z2)

Split, Predict, and Update
A single lifting step can be described by the following three basic operations:
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• Split — the signal into disjoint components. A common way to do this is to extract the even and
odd polyphase components explained in “Polyphase Representation” on page 1-21. This is also
known as the lazy wavelet.

• Predict — the odd polyphase component based on a linear combination of samples of the even
polyphase component. The samples of the odd polyphase component are replaced by the
difference between the odd polyphase component and the predicted value.

• Update — the even polyphase component based on a linear combination of difference samples
obtained from the predict step.

In practice, a normalization is incorporated for both the predict and update operations.

The following diagram illustrates one lifting step.

Haar Wavelet Via Lifting
Using the operations in “Split, Predict, and Update” on page 1-21, you can implement the Haar
wavelet via lifting.

• Split — Divide the signal into even and odd polyphase components
• Predict — Replace x(2n + 1) with d(n) = x(2n + 1)− x(2n). The predict operator is simply x(2n).
• Update — Replace x(2n) with x(2n) + d(n)/2. This is equal to (x(2n) + x(2n + 1))/2.

The predict operator in the Z-domain can be written in the following matrix form:

1 0
−P z 1

X0 z
X1 z

with P(z) = 1.

The update operator can be written in the following matrix form:
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1 S z
0 1

1 0
−P z 1

X0 z
X1 z

with S(z) = 1/2.

Finally, the update and predict normalization can be incorporated as follows:

2 0

0 1
2

1 S z
0 1

1 0
−P z 1

X0 z
X1 z

You can use liftingScheme to construct a lifting scheme associated with the Haar wavelet.

lscHaar = liftingScheme('Wavelet','haar');
disp(lscHaar)

      Wavelet               : 'haar' 
     LiftingSteps          : [2 × 1] liftingStep 
     NormalizationFactors  : [1.4142 0.7071] 
     CustomLowpassFilter   : [  ] 

 Details of LiftingSteps :
            Type: 'predict'
    Coefficients: -1
        MaxOrder: 0

            Type: 'update'
    Coefficients: 0.5000
        MaxOrder: 0

Note that for convenience, the negative sign is incorporated into the predict lifting step. The
elements of NormalizationFactors, 1.4142 and 0.7071, are the predict and update
normalization factors, respectively. MaxOrder gives the highest degree of the Laurent polynomial
which describes the corresponding lifting step. In this case, both are zero because the predict and
update liftings are both described by scalars.

Bior2.2 Wavelet Via Lifting
This example presents the lifting scheme for the bior2.2 biorthogonal scaling and wavelet filters.

In the Haar lifting scheme, the predict operator differenced the odd and even samples. In this
example, define a new predict operator that computes the average of the two neighboring even
samples. Subtract the average from the intervening odd sample.

d(n) = x(2n + 1)− 1
2[x(2n) + x(2n + 2)]

In the Z-domain, you can write the predict operator as

1 0

−1
2 1− z 1

X0 z
X1 z
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To obtain the update operator, examine the update operator in “Haar Wavelet Via Lifting” on page 1-
22. The update is defined in such a way that the sum of the approximation coefficients is proportional
to the mean of the input data vector.

∑
n

x(n) = 1
2∑n

a(n)

To obtain the same result in this lifting step, define the update as

1 1
4 z−1 + 1

0 1

1 0

−1
2 1 + z 1

X0 z
X1 z

You can use liftingScheme to obtain the lifting scheme.

lscBior = liftingScheme('Wavelet','bior2.2');
disp(lscBior)

      Wavelet               : 'bior2.2' 
     LiftingSteps          : [2 × 1] liftingStep 
     NormalizationFactors  : [1.4142 0.7071] 
     CustomLowpassFilter   : [  ] 

 Details of LiftingSteps :
            Type: 'predict'
    Coefficients: [-0.5000 -0.5000]
        MaxOrder: 1

            Type: 'update'
    Coefficients: [0.2500 0.2500]
        MaxOrder: 0

Add Lifting Step To Haar Lifting Scheme
This example shows how to add an elementary lifting step to a lifting scheme.

Create a lifting scheme associated with the Haar wavelet.

lsc = liftingScheme('Wavelet','haar');
disp(lsc)

      Wavelet               : 'haar' 
     LiftingSteps          : [2 × 1] liftingStep 
     NormalizationFactors  : [1.4142 0.7071] 
     CustomLowpassFilter   : [  ] 

 Details of LiftingSteps :
            Type: 'predict'
    Coefficients: -1
        MaxOrder: 0

            Type: 'update'
    Coefficients: 0.5000
        MaxOrder: 0
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Create an update elementary lifting step. Append the step to the lifting scheme.

els = liftingStep('Type','update','Coefficients',[-1/8 1/8],'MaxOrder',0);
lscNew = addlift(lsc,els);
disp(lscNew)

      Wavelet               : 'custom' 
     LiftingSteps          : [3 × 1] liftingStep 
     NormalizationFactors  : [1.4142 0.7071] 
     CustomLowpassFilter   : [  ] 

 Details of LiftingSteps :
            Type: 'predict'
    Coefficients: -1
        MaxOrder: 0

            Type: 'update'
    Coefficients: 0.5000
        MaxOrder: 0

            Type: 'update'
    Coefficients: [-0.1250 0.1250]
        MaxOrder: 0

Obtain the decomposition and reconstruction filters from the new lifting scheme.

[lod,hid,lor,hir] = ls2filt(lscNew);

Use bswfun to the plot the resulting scaling function and filter.

bswfun(lod,hid,lor,hir,'plot');
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Integer-to-Integer Wavelet Transform
In several applications it is desirable to have a wavelet transform that maps integer inputs to integer
scaling and wavelet coefficients. You can accomplish easily using lifting.

Create a lifting scheme associated with the Haar wavelet. Add an elementary lifting step to the lifting
scheme.

lsc = liftingScheme('Wavelet','haar');
els = liftingStep('Type','update','Coefficients',[-1/8 1/8],'MaxOrder',0);
lscNew = lsc.addlift(els);

Create an integer-valued signal. Obtain the integer-to-integer wavelet transform of the signal from
LWT, using the lifting scheme, with 'Int2Int' set to true.

rng default
sig = randi(20,16,1);
[ca,cd] = lwt(sig,'LiftingScheme',lscNew,'Int2Int',true);

Confirm the approximation coefficients are all integers.

max(abs(ca-floor(ca)))

ans = 0

Confirm the detail coefficients are all integers.
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len = length(cd);
for k=1:len
    disp([k, max(abs(cd{k}-floor(cd{k})))]);
end

     1     0

     2     0

     3     0

     4     0

Invert the transform and demonstrate perfect reconstruction.

xrec = ilwt(ca,cd,'LiftingScheme',lscNew,'Int2Int',true);
max(abs(xrec-sig))

ans = 0
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Orthogonal and Biorthogonal Filter Banks
This example shows to construct and use orthogonal and biorthogonal filter banks with the Wavelet
Toolbox software. The classic critically sampled two-channel filter bank is shown in the following
figure.

Let  and  denote the lowpass and highpass analysis filters and  and  denote the corresponding
lowpass and highpass synthesis filters. A two-channel critically sampled filter bank filters the input
signal using a lowpass and highpass filter. The subband outputs of the filters are downsampled by two
to preserve the overall number of samples. To reconstruct the input, upsample by two and then
interpolate the results using the lowpass and highpass synthesis filters. If the filters satisfy certain
properties, you can achieve perfect reconstruction of the input. To demonstrate this, filter an ECG
signal using Daubechies's extremal phase wavelet with two vanishing moments. The example explains
the notion of vanishing moments in a later section.

load wecg;
plot(wecg);
title('ECG Signal')
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Obtain the lowpass (scaling) and highpass (wavelet) analysis and synthesis filters.

[gtilde,htilde,g,h] = wfilters('db2');

For this example, set the padding mode for the DWT to periodization. This does not extend the signal.

origmodestatus = dwtmode('status','nodisplay');
dwtmode('per','nodisplay');

Obtain the level-one discrete wavelet transform (DWT) of the ECG signal. This is equivalent to the
analysis branch (with downsampling) of the two-channel filter bank in the figure.

[lowpass,highpass] = dwt(wecg,gtilde,htilde);

Upsample and interpolate the lowpass (scaling coefficients) and highpass (wavelet coefficients)
subbands with the synthesis filters and demonstrate perfect reconstruction.

xrec = idwt(lowpass,highpass,g,h);
max(abs(wecg-xrec))
subplot(2,1,1)
plot(wecg); title('Original ECG Waveform')
subplot(2,1,2)
plot(xrec); title('Reconstructed ECG Waveform');

ans =
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   1.3658e-12

The analysis and synthesis filters for the 'db2' wavelet are just time reverses of each other. You can
see this by comparing the following.

scalingFilters = [flip(gtilde); g]
waveletFilters = [flip(htilde); h]

scalingFilters =

    0.4830    0.8365    0.2241   -0.1294
    0.4830    0.8365    0.2241   -0.1294

waveletFilters =

   -0.1294   -0.2241    0.8365   -0.4830
   -0.1294   -0.2241    0.8365   -0.4830

This is the case with all orthogonal wavelet filter banks. The orthogonal wavelet families supported by
the Wavelet Toolbox are 'dbN', 'fkN', 'symN', and 'coifN' where N is a valid filter number.

Instead of providing dwt with the filters in the previous example, you the string 'db2' instead. Using
the wavelet family short name and filter number, you do not have to correctly specify the analysis and
synthesis filters.
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[lowpass,highpass] = dwt(wecg,'db2');
xrec = idwt(lowpass,highpass,'db2');

The filter number in the Daubechies's extremal phase and least asymmetric phase wavelets ('db' and
'sym') refers to the number of vanishing moments. Basically, a wavelet with N vanishing moments
removes a polynomial of order N-1 in the wavelet coefficients. To illustrate this, construct a signal
which consists of a linear trend with additive noise.

n = (0:511)/512;
x = 2*n+0.2*randn(size(n));
plot(n,x)

A linear trend is a polynomial of degree 1. Therefore, a wavelet with two vanishing moments removes
this polynomial. The linear trend is preserved in the scaling coefficients and the wavelet coefficients
can be regarded as consisting of only noise. Obtain the level-one DWT of the signal with the 'db2'
wavelet (two vanishing moments) and plot the coefficients.

[A,D] = dwt(x,'db2');
subplot(2,1,1)
plot(A); title('Scaling Coefficients');
subplot(2,1,2)
plot(D); title('Wavelet Coefficients');
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You can use dwt and idwt to implement a two-channel orthogonal filter bank, but it is often more
convenient to implement a multi-level two-channel filter bank using wavedec. The multi-level DWT
iterates on the output of the lowpass (scaling) filter. In other words, the input to the second level of
the filter bank is the output of the lowpass filter at level 1. A two-level wavelet filter bank is
illustrated in the following figure.
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At each successive level, the number of scaling and wavelet coefficients is downsampled by two so
the total number of coefficients are preserved. Obtain the level three DWT of the ECG signal using
the 'sym4' orthogonal filter bank.

[C,L] = wavedec(wecg,3,'sym4');

The number of coefficients by level is contained in the vector, L. The first element of L is equal to 256,
which represents the number of scaling coefficients at level 3 (the final level). The second element of
L is the number of wavelet coefficients at level 3. Subsequent elements give the number of wavelet
coefficients at higher levels until you reach the final element of L. The final element of L is equal to
the number of samples in the original signal. The scaling and wavelet coefficients are stored in the
vector C in the same order. To extract the scaling or wavelet coefficients, use appcoef or detcoef.
Extract all the wavelet coefficients in a cell array and final-level scaling coefficients.

wavcoefs = detcoef(C,L,'dcells');
a3 = appcoef(C,L,'sym4');

You can plot the wavelet and scaling coefficients at their approximate positions.

cfsmatrix = zeros(numel(wecg),4);
cfsmatrix(1:2:end,1) = wavcoefs{1};
cfsmatrix(1:4:end,2) = wavcoefs{2};
cfsmatrix(1:8:end,3) = wavcoefs{3};
cfsmatrix(1:8:end,4) = a3;
subplot(5,1,1)
plot(wecg); title('Original Signal');
axis tight;
for kk = 2:4
    subplot(5,1,kk)
    stem(cfsmatrix(:,kk-1),'marker','none','ShowBaseLine','off');
    ylabel(['D' num2str(kk-1)]);
    axis tight;
end
subplot(5,1,5);
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stem(cfsmatrix(:,end),'marker','none','ShowBaseLine','off');
ylabel('A3'); xlabel('Sample');
axis tight;

Because the critically sampled wavelet filter bank downsamples the data at each level, the analysis
must stop when you have only one coefficient left. In the case of the ECG signal with 2048 samples,
this must occur when .

[C,L] = wavedec(wecg,log2(numel(wecg)),'sym4');
fprintf('The number of coefficients at the final level is %d. \n',L(1));

The number of coefficients at the final level is 1. 

If you wish to implement an orthogonal wavelet filter bank without downsampling, you can use
modwt.

ecgmodwt = modwt(wecg,'sym4',3);
ecgmra = modwtmra(ecgmodwt,'sym4');
subplot(5,1,1);
plot(wecg); title('Original Signal');

title('MODWT-Based Multiresolution Analysis');
for kk = 2:4
    subplot(5,1,kk)
    plot(ecgmra(kk-1,:));
    ylabel(['D' num2str(kk-1)]);
end
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subplot(5,1,5);
plot(ecgmra(end,:));
ylabel('A3'); xlabel('Sample');

In a biorthogonal filter bank, the synthesis filters are not simply time-reversed versions of the
analysis filters. The family of biorthogonal spline wavelet filters are an example of such filter banks.

[LoD,HiD,LoR,HiR] = wfilters('bior3.5');

If you examine the analysis filters (LoD,HiD) and the synthesis filters (LoR,HiR), you see that they are
very different. These filter banks still provide perfect reconstruction.

[A,D] = dwt(wecg,LoD,HiD);
xrec = idwt(A,D,LoR,HiR);
max(abs(wecg-xrec))

ans =

   6.6613e-16

Biorthogonal filters are useful when linear phase is a requirement for your filter bank. Orthogonal
filters cannot have linear phase with the exception of the Haar wavelet filter. If you have Signal
Processing Toolbox™, you can look at the phase responses for an orthogonal and biorthogonal pair of
wavelet filters.
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[Lodb6,Hidb6] = wfilters('db6');
[PHIdb6,W] = phasez(Hidb6,1,512);
PHIbior35 = phasez(HiD,1,512);
figure;
subplot(2,1,1)
plot(W./(2*pi),PHIdb6); title('Phase Response for db6 Wavelet');
grid on;
xlabel('Cycles/Sample'); ylabel('Radians');
subplot(2,1,2)
plot(W./(2*pi),PHIbior35); title('Phase Response for bior3.5 Wavelet');
grid on;
xlabel('Cycles/Sample'); ylabel('Radians');

Set the dwtmode back to the original setting.

dwtmode(origmodestatus,'nodisplay');
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Scaling Function and Wavelet
This example uses wavefun to demonstrate how the number of vanishing moments in a biorthogonal
filter pair affects the smoothness of the corresponding dual scaling function and wavelet. While this
example uses wavefun for a biorthogonal wavelet, 'bior3.7', you can also use wavefun to obtain
orthogonal scaling and wavelet functions.

First, obtain the scaling and wavelet filters and look at the number of vanishing moments in the
wavelets. This is equivalent to looking at the number of zeros at -1+i0 in the dual filter.

[LoD,HiD,LoR,HiR] = wfilters('bior3.7');

If you have the Signal Processing Toolbox™, you can use zplane to look at the number of zeros at
-1+i0 for both the decomposition and reconstruction filters.

zplane(LoD); title('Decomposition Filter');

figure;
zplane(LoR); title('Reconstruction Filter');
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If you zoom in on the region around -1+i0, you find there are 7 zeros in the decomposition filter and 3
zeros in the reconstruction filter. This has important consequences for the smoothness of the
corresponding scaling functions and wavelets. For biorthogonal wavelets, the more zeros at -1+i0 in
the lowpass filter, the smoother the opposite scaling function and wavelet is. In other words, more
zeros in the decomposition filter implies a smoother reconstruction scaling function and wavelet.
Conversely, more zeros in the reconstruction filter implies a smoother decomposition scaling function
and wavelet.

Use wavefun to confirm this. For orthogonal and biorthogonal wavelets, wavefun works by reversing
the Mallat algorithm. Specifically, the algorithm starts with a single wavelet or scaling coefficient at
the coarsest resolution level and reconstructs the wavelet or scaling function to the specified finest
resolution level. Generally, 8 to 10 levels is sufficient to get an accurate representation of the scaling
function and wavelet.

[phiD,psiD,phiR,psiR] = wavefun('bior3.7',10);
subplot(2,1,1)
plot([phiD' phiR']); grid on;
title('Bior3.7 Scaling Functions');
legend('Decomposition','Reconstruction');
subplot(2,1,2)
plot([psiD' psiR']); grid on;
title('Bior3.7 Wavelets');
legend('Decomposition','Reconstruction');
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Because there are more than twice the number of zeros at -1+i0 for the lowpass decomposition filter,
the dual (reconstruction) scaling function and wavelet are much smoother than the analysis
(decomposition) scaling function and wavelet.
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Lifting a Filter Bank
This example shows how to use lifting to progressively change the properties of a perfect
reconstruction filter bank. The following figure shows the three canonical steps in lifting: split,
predict, and update.

The first step in lifting is simply to split the signal into its even- and odd-indexed samples. These are
called polyphase components and that step in the lifting process is often referred to as the "lazy"
lifting step because you really are not doing that much work. You can do this in MATLAB™ by
creating a "lazy" lifting scheme using liftingScheme with default settings.

LS = liftingScheme;

Use the lifting scheme to obtain the level 1 wavelet decomposition of a random signal.

x = randn(8,1);
[ALazy,DLazy] = lwt(x,'LiftingScheme',LS,'Level',1);

MATLAB indexes from 1 so ALazy contains the odd-indexed samples of x and DLazy contains the
even-indexed samples. Most explanations of lifting assume that the signal starts with sample 0, so
ALazy would be the even-indexed samples and DLazy the odd-indexed samples. This example follows
that latter convention. The "lazy" wavelet transform treats one half of the signal as wavelet
coefficients, DLazy, and the other half as scaling coefficients, ALazy. This is perfectly consistent
within the context of lifting, but a simple split of the data does really sparsify or capture any relevant
detail.

The next step in the lifting scheme is to predict the odd samples based on the even samples. The
theoretical basis for this is that most natural signals and images exhibit correlation among
neighboring samples. Accordingly, you can "predict" the odd-indexed samples using the even-indexed
samples. The difference between your prediction and the actual value is the "detail" in the data
missed by the predictor. That missing detail comprises the wavelet coefficients.

In equation form, you can write the prediction step as d j(n) = d j− 1(n)− P(a j− 1) where d j− 1(n) are
the wavelet coefficients at the finer scale and a j− 1 is some number of finer-scale scaling coefficients.
P( ⋅ ) is the prediction operator.

Add a simple (Haar) prediction step that subtracts the even (approximation) coefficient from the odd
(detail) coefficient. In this case the prediction operator is simply (− 1)a j− 1(n). In other words, it
predicts the odd samples based on the immediately preceding even sample.

ElemLiftStep = liftingStep('Type','predict','Coefficients',-1,'MaxOrder',0);
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The above code says "create an elementary prediction lifting step using a polynomial in z with the
highest power z0. The coefficient is -1. Update the lazy lifting scheme.

LSN = addlift(LS,ElemLiftStep);

Apply the new lifting scheme to the signal.

[A,D] = lwt(x,'LiftingScheme',LSN,'Level',1);

Note that the elements of A are identical to those in ALazy. This is expected because you did not
modify the approximation coefficients.

[A ALazy]

ans = 4×2

    0.5377    0.5377
   -2.2588   -2.2588
    0.3188    0.3188
   -0.4336   -0.4336

If you look at the elements of D{1}, you see that they are equal to DLazy{1}-ALazy.

Dnew = DLazy{1}-ALazy;
[Dnew D{1}]

ans = 4×2

    1.2962    1.2962
    3.1210    3.1210
   -1.6265   -1.6265
    0.7762    0.7762

Compare Dnew to D. Imagine an example where the signal was piecewise constant over every two
samples.

v = [1 -1 1 -1 1 -1];
u = repelem(v,2)

u = 1×12

     1     1    -1    -1     1     1    -1    -1     1     1    -1    -1

Apply the new lifting scheme to u.

[Au,Du] = lwt(u,'LiftingScheme',LSN,'Level',1);
Du{1}

ans = 6×1

     0
     0
     0
     0
     0
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     0

You see that all the Du are zero. This signal has been compressed because all the information is now
contained in 6 samples instead of 12 samples. You can easily reconstruct the original signal

urecon = ilwt(Au,Du,'LiftingScheme',LSN);
max(abs(u(:)-urecon(:)))

ans = 0

In your prediction step, you predicted that the adjacent odd sample in your signal had the same value
as the immediately preceding even sample. Obviously, this is true only for trivial signals. The wavelet
coefficients capture the difference between the prediction and the actual values (at the odd samples).
Finally, use the update step to update the even samples based on differences obtained in the
prediction step. In this case, update using the following a j(n) = a j− 1(n) + d j− 1(n)/2. This replaces
each even-indexed coefficient by the arithmetic average of the even and odd coefficients.

elsUpdate = liftingStep('Type','update','Coefficients',1/2,'MaxOrder',0);
LSupdated = addlift(LSN,elsUpdate);

Obtain the wavelet transform of the signal with the updated lifting scheme.

[A,D] = lwt(x,'LiftingScheme',LSupdated,'Level',1);

If you compare A to the original signal, x, you see that the signal mean is captured in the
approximation coefficients.

[mean(A) mean(x)]

ans = 1×2

   -0.0131   -0.0131

In fact, the elements of A are easily obtainable from x by the following.

n = 1;
for ii = 1:2:numel(x)
    meanz(n) = mean([x(ii) x(ii+1)]);
    n = n+1;
end

Compare meanz and A. As always, you can invert the lifting scheme to obtain a perfect reconstruction
of the data.

xrec = ilwt(A,D,'LiftingScheme',LSupdated);
max(abs(x-xrec))

ans = 2.2204e-16

It is common to add a normalization step at the end so that the energy in the signal (ℓ2 norm) is
preserved as the sum of the energies in the scaling and wavelet coefficients. Without this
normalization step, the energy is not preserved.

norm(x,2)^2

ans = 11.6150
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norm(A,2)^2+norm(D{1},2)^2

ans = 16.8091

Add the necessary normalization step.

LSsteps = LSupdated.LiftingSteps;
LSscaled = liftingScheme('LiftingSteps',LSsteps,'NormalizationFactors',[sqrt(2)]);
[A,D] = lwt(x,'LiftingScheme',LSscaled,'Level',1);
norm(A,2)^2+norm(D{1},2)^2

ans = 11.6150

Now the ℓ2 norm of the signal is equal to the sum of the energies in the scaling and wavelet
coefficients. The lifting scheme you developed in this example is the Haar lifting scheme.

Wavelet Toolbox™ supports many commonly used lifting schemes through liftingScheme with
predefined predict and update steps, and normalization factors. For example, you can obtain the Haar
lifting scheme with the following.

lshaar = liftingScheme('Wavelet','haar');

To see that not all lifting schemes consist of single predict and update lifting steps, examine the
lifting scheme that corresponds to the bior3.1 wavelet.

lsbior3_1 = liftingScheme('Wavelet','bior3.1')

lsbior3_1 = 
      Wavelet               : 'bior3.1' 
     LiftingSteps          : [3 × 1] liftingStep 
     NormalizationFactors  : [2.1213 0.4714] 
     CustomLowpassFilter   : [  ] 

 Details of LiftingSteps :
            Type: 'update'
    Coefficients: -0.3333
        MaxOrder: -1

            Type: 'predict'
    Coefficients: [-0.3750 -1.1250]
        MaxOrder: 1

            Type: 'update'
    Coefficients: 0.4444
        MaxOrder: 0
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Add Quadrature Mirror and Biorthogonal Wavelet Filters
This example shows how to add an orthogonal quadrature mirror filter (QMF) pair and biorthogonal
wavelet filter quadruple to Wavelet Toolbox™. While Wavelet Toolbox™ already contains many of the
most widely used orthogonal and biorthogonal wavelet families, including the Daubechies' extremal-
phase, the Daubechies' least-asymmetric phase, the coiflet, the Fejér-Korovkin filters, and
biorthogonal spline wavelets, you can easily add your own filters and use the filter in any of the
discrete wavelet or wavelet packet algorithms.

This example adds the Beylkin(18) QMF filter pair to the toolbox and shows how to subsequently use
the filter in discrete wavelet analysis. The example then demonstrates how to verify the necessary
and sufficient conditions for the QMF pair to constitute a scaling and wavelet filter. After the adding
the QMF pair, the example adds the nearly-orthogonal biorthogonal wavelet quadruple based on the
Laplacian pyramid scheme of Burt and Adelson (Table 8.4 on page 283 in [1]).

Adding a QMF

First, you must have some way of obtaining the coefficients. In this case, here are the coefficients for
the lowpass (scaling) Beylkin(18) filter. You only need a valid scaling filter. The wfilters function
creates the corresponding wavelet filter for you.

beyl = [9.93057653743539270E-02
    4.24215360812961410E-01
    6.99825214056600590E-01 
    4.49718251149468670E-01
    -1.10927598348234300E-01
    -2.64497231446384820E-01
    2.69003088036903200E-02
    1.55538731877093800E-01
    -1.75207462665296490E-02
    -8.85436306229248350E-02
    1.96798660443221200E-02
    4.29163872741922730E-02
    -1.74604086960288290E-02
    -1.43658079688526110E-02
    1.00404118446319900E-02
    1.48423478247234610E-03
    -2.73603162625860610E-03
    6.40485328521245350E-04];

Save the Beylkin(18) filter and add the new filter to the toolbox. To add to the toolbox an orthogonal
wavelet that is defined in a MAT-file, the name of the MAT-file and the variable containing the filter
coefficients must match. The name must be less than five characters long.

save beyl beyl

Use wavemngr to add the wavelet filter to the toolbox. Define the wavelet family name and the short
name used to access the filter. The short name must be the same name as the MAT-file. Define the
wavelet type to be 1. Type 1 wavelets are orthogonal wavelets in the toolbox. Because you are adding
only one wavelet in this family, define the NUMS variable input to wavemngr to be an empty string.

familyName      = 'beylkin';
familyShortName = 'beyl';
familyWaveType  = 1;
familyNums      = '';
fileWaveName    = 'beyl.mat';
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Add the wavelet using wavemngr.

wavemngr('add',familyName,familyShortName,familyWaveType,familyNums,fileWaveName)

Verify that the wavelet has been added to the toolbox.

wavemngr('read')

ans = 19x35 char array
    '==================================='
    'Haar              ->->haar           '
    'Daubechies        ->->db             '
    'Symlets           ->->sym            '
    'Coiflets          ->->coif           '
    'BiorSplines       ->->bior           '
    'ReverseBior       ->->rbio           '
    'Meyer             ->->meyr           '
    'DMeyer            ->->dmey           '
    'Gaussian          ->->gaus           '
    'Mexican_hat       ->->mexh           '
    'Morlet            ->->morl           '
    'Complex Gaussian  ->->cgau           '
    'Shannon           ->->shan           '
    'Frequency B-Spline->->fbsp           '
    'Complex Morlet    ->->cmor           '
    'Fejer-Korovkin    ->->fk             '
    'beylkin           ->->beyl           '
    '==================================='

You can now use the wavelet to analyze signals or images. For example, load an ECG signal and
obtain the MODWT of the signal down to level four using the Beylkin(18) filter.

load wecg
wtecg = modwt(wecg,'beyl',4);

Load a box image, obtain the 2-D DWT using the Beylkin(18) filter. Show the level-one diagonal detail
coefficients.

load xbox
[C,S] = wavedec2(xbox,1,'beyl');
[H,V,D] = detcoef2('all',C,S,1);
subplot(2,1,1)
imagesc(xbox)
axis off
title('Original Image')
subplot(2,1,2)
imagesc(D)
axis off
title('Level-One Diagonal Coefficients')
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Finally, verify that the new filter satisfies the conditions for an orthogonal QMF pair. Obtain the
scaling (lowpass) and wavelet (highpass) filters.

[Lo,Hi] = wfilters('beyl');

Sum the lowpass filter coefficients to verify that the sum equals 2. Sum the wavelet filter
coefficients and verify that the sum is 0.

sum(Lo)

ans = 1.4142

sum(Hi)

ans = -1.9873e-16

Verify that the autocorrelation of the scaling and wavelet filters at all even nonzero lags is 0.

[Clow,lags] = xcorr(Lo,Lo,10);
Chigh = xcorr(Hi,Hi,10);
subplot(2,1,1)
stem(lags,Clow,'markerfacecolor',[0 0 1])
grid on
title('Autocorrelation of Scaling Filter')
subplot(2,1,2)
stem(lags,Chigh,'markerfacecolor',[0 0 1])
grid on
title('Autocorrelation of Wavelet Filter')
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Note that the autocorrelation values in both plots is zero for nonzero even lags. Show that the cross-
correlation of the scaling and wavelet filter is zero at all even lags.

[xcr,lags] = xcorr(Lo,Hi,10);
figure
stem(lags,xcr,'markerfacecolor',[0 0 1])
title('Cross-correlation of QMF filters')
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The final criterion states the sum of squared magnitudes of the Fourier transforms of scaling and
wavelet filters at each frequency is equal to 2. In other words, let G(f ) be the Fourier transform of the
scaling filter and H(f ) be the Fourier transform of the wavelet filter. The following holds for all f :
|H(f ) |2 + |G(f ) |2 = 2. The DFT version of this equality is: |G2mkmodN |2 + |H2mkmodN |2 = 2 for any m.
Check this for the Beylkin(18) filter with m = 0.

N = numel(Lo);
LoDFT = fft(Lo);
HiDFT = fft(Hi);
k = 0:N-1;
m = 0;
sumDFTmags = abs(LoDFT(1+mod(2^m*k,N))).^2+abs(HiDFT(1+mod(2^m*k,N))).^2

sumDFTmags = 18×1

    2.0000
    2.0000
    2.0000
    2.0000
    2.0000
    2.0000
    2.0000
    2.0000
    2.0000
    2.0000
      ⋮

1 Wavelets, Scaling Functions, and Conjugate Quadrature Mirror Filters

1-48



All the values are equal to 2 as expected. To understand why these filters are called quadrature
mirror filters, visualize the squared-magnitude frequency responses of the scaling and wavelet filters.

nfft = 512;
F = 0:1/nfft:1/2;
LoDFT = fft(Lo,nfft);
HiDFT = fft(Hi,nfft);
figure
plot(F,abs(LoDFT(1:nfft/2+1)).^2,'DisplayName','Scaling Filter')
hold on
plot(F,abs(HiDFT(1:nfft/2+1)).^2,'r','DisplayName','Wavelet Filter')
xlabel('Frequency')
ylabel('Squared Magnitude')
title('Beylkin(18) QMF Filter Pair')
grid on
plot([1/4 1/4], [0 2],'k','HandleVisibility','off')
legend show

Note the magnitude responses are symmetric, or mirror images, of each other around the quadrature
frequency of 1/4.

The following code removes the Beylkin(18) wavelet filter.

wavemngr('del',familyShortName);
delete('beyl.mat')
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Adding a Biorthogonal Wavelet

Adding a biorthogonal wavelet to the toolbox is similar to adding a QMF. You provide valid lowpass
(scaling) filters pair used in analysis and synthesis. The wfilters function will generate the
highpass filters.

To be recognized by wfilters, the analysis scaling filter must be assigned to the variable Df, and
the synthesis scaling filter must be assigned to the variable Rf. The biorthogonal scaling filters do
not have to be of even equal length. The output biorthogonal filter pairs created will have even equal
lengths. Here are the scaling function pairs of the nearly-orthogonal biorthogonal wavelet quadruple
based on the Laplacian pyramid scheme of Burt and Adelson.

Df = [-1 5 12 5 -1]/20*sqrt(2);
Rf = [-3 -15 73 170 73 -15 -3]/280*sqrt(2);

Save the filters to a MAT-file.

save burt Df Rf

Use wavemngr to add the biorthogonal wavelet filters to the toolbox. Define the wavelet family name
and the short name used to access the filter. The short name must match the name of the MAT-file.
Since the wavelets are biorthogonal, set the wavelet type to be 2. Because you are adding only one
wavelet in this family, define the NUMS variable input to wavemngr to be an empty string.

familyName      = 'burtAdelson';
familyShortName = 'burt';
familyWaveType  = 2;
familyNums      = '';
fileWaveName    = 'burt.mat';
wavemngr('add',familyName,familyShortName,familyWaveType,familyNums,fileWaveName)

Verify that the biorthogonal wavelet has been added to the toolbox.

wavemngr('read')

ans = 19x35 char array
    '==================================='
    'Haar              ->->haar           '
    'Daubechies        ->->db             '
    'Symlets           ->->sym            '
    'Coiflets          ->->coif           '
    'BiorSplines       ->->bior           '
    'ReverseBior       ->->rbio           '
    'Meyer             ->->meyr           '
    'DMeyer            ->->dmey           '
    'Gaussian          ->->gaus           '
    'Mexican_hat       ->->mexh           '
    'Morlet            ->->morl           '
    'Complex Gaussian  ->->cgau           '
    'Shannon           ->->shan           '
    'Frequency B-Spline->->fbsp           '
    'Complex Morlet    ->->cmor           '
    'Fejer-Korovkin    ->->fk             '
    'burtAdelson       ->->burt           '
    '==================================='
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You can now use the wavelet within the toolbox. Create an analysis DWT filter bank using the burt
wavelet. Confirm the DWT filter bank is biorthogonal. Plot the magnitude frequency responses of the
wavelet bandpass filters and coarsest resolution scaling function.

fb = dwtfilterbank('Wavelet','burt');
isBiorthogonal(fb)

ans = logical
   1

freqz(fb)

Obtain the wavelet and scaling functions of the filter bank. Plot the wavelet and scaling functions at
the coarsest scale.

[fb_phi,t] = scalingfunctions(fb);
[fb_psi,~] = wavelets(fb);
subplot(2,1,1)
plot(t,fb_phi(end,:))
axis tight
grid on
title('Analysis - Scaling')
subplot(2,1,2)
plot(t,fb_psi(end,:))
axis tight
grid on
title('Analysis - Wavelet')
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Create a synthesis DWT filter bank using the burt wavelet. Compute the framebounds.

fb2 = dwtfilterbank('Wavelet','burt','FilterType','Synthesis','Level',4);
[synthesisLowerBound,synthesisUpperBound] = framebounds(fb2)

synthesisLowerBound = 0.9800

synthesisUpperBound = 1.0509

Obtain the lowpass and highpass analysis and synthesis filters associated with burt. Note the output
filters are all of equal even length. Confirm the lowpass filter coefficients sum to sqrt(2) and the
highpass filter coefficients sum to 0.

[LoD,HiD,LoR,HiR] = wfilters('burt');
[LoD' HiD' LoR' HiR']

ans = 8×4

         0    0.0152   -0.0152         0
         0   -0.0758   -0.0758         0
   -0.0707   -0.3687    0.3687   -0.0707
    0.3536    0.8586    0.8586   -0.3536
    0.8485   -0.3687    0.3687    0.8485
    0.3536   -0.0758   -0.0758   -0.3536
   -0.0707    0.0152   -0.0152   -0.0707
         0         0         0         0

sum([(LoD'/sqrt(2)) HiD' (LoR'/sqrt(2)) HiR'])
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ans = 1×4

    1.0000   -0.0000    1.0000         0

Remove the Burt-Adelson filter from the Toolbox.

wavemngr('del',familyShortName);
delete('burt.mat')

References
[1] Daubechies, I. Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied

Mathematics. Philadelphia, PA: Society for Industrial and Applied Mathematics, 1992.
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Least Asymmetric Wavelet and Phase
For a given support, the orthogonal wavelet with a phase response that most closely resembles a
linear phase filter is called least asymmetric. Symlets are examples of least asymmetric wavelets.
They are modified versions of the classic Daubechies db wavelets. In this example you will show that
the order 4 symlet has a nearly linear phase response, while the order 4 Daubechies wavelet does
not.

First plot the order 4 symlet and order 4 Daubechies scaling functions. While neither is perfectly
symmetric, note how much more symmetric the symlet is.

[phi_sym,~,xval_sym]=wavefun('sym4',10);
[phi_db,~,xval_db]=wavefun('db4',10);
subplot(2,1,1)
plot(xval_sym,phi_sym)
title('sym4 - Scaling Function')
grid on
subplot(2,1,2)
plot(xval_db,phi_db)
title('db4 - Scaling Function')
grid on

Generate the filters associated with the order 4 symlet and Daubechies wavelets.

scal_sym = symaux(4,sqrt(2));
scal_db = dbaux(4,sqrt(2));
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Compute the frequency response of the scaling synthesis filters.

[h_sym,w_sym] = freqz(scal_sym);
[h_db,w_db] = freqz(scal_db);

To avoid visual discontinuities, unwrap the phase angles of the frequency responses and plot them.
Note how well the phase angle of the symlet filter approximates a straight line.

h_sym_u = unwrap(angle(h_sym));
h_db_u = unwrap(angle(h_db));
figure
plot(w_sym/pi,h_sym_u,'.')
hold on
plot(w_sym([1 end])/pi,h_sym_u([1 end]),'r')
grid on
xlabel('Normalized Frequency ( x \pi rad/sample)')
ylabel('Phase (radians)')
legend('Phase Angle of Frequency Response','Straight Line')
title('Symlet Order 4 - Phase Angle')

figure
plot(w_db/pi,h_db_u,'.')
hold on
plot(w_db([1 end])/pi,h_db_u([1 end]),'r')
grid on
xlabel('Normalized Frequency ( x \pi rad/sample)')
ylabel('Phase (radians)')
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legend('Phase Angle of Frequency Response','Straight Line')
title('Daubechies Order 4 - Phase Angle')

The sym4 and db4 wavelets are not symmetric, but the biorthogonal wavelet is. Plot the scaling
function associated with the bior3.5 wavelet. Compute the frequency response of the synthesis
scaling filter for the wavelet and verify that it has linear phase.

[~,~,phi_bior_r,~,xval_bior]=wavefun('bior3.5',10);
figure
plot(xval_bior,phi_bior_r)
title('bior3.5 - Scaling Function')
grid on
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[LoD_bior,HiD_bior,LoR_bior,HiR_bior] = wfilters('bior3.5');
[h_bior,w_bior] = freqz(LoR_bior);
h_bior_u = unwrap(angle(h_bior));
figure
plot(w_bior/pi,h_bior_u,'.')
hold on
plot(w_bior([1 end])/pi,h_bior_u([1 end]),'r')
grid on
xlabel('Normalized Frequency ( x \pi rad/sample)')
ylabel('Phase (radians)')
legend('Phase Angle of Frequency Response','Straight Line')
title('Biorthogonal 3.5 - Phase Angle')
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See Also
dbaux | symaux
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Continuous Wavelet Analysis

• “Using Wavelet Time-Frequency Analyzer App” on page 2-2
• “1-D Continuous Wavelet Analysis” on page 2-9
• “Continuous Wavelet Analysis of Noisy Sinusoid Using Command Line Functions” on page 2-10
• “Continuous Wavelet Analysis of Noisy Sinusoid” on page 2-13
• “Importing and Exporting Information” on page 2-20
• “Morse Wavelets” on page 2-22
• “Boundary Effects and the Cone of Influence” on page 2-32
• “Time-Frequency Analysis and Continuous Wavelet Transform” on page 2-40
• “Continuous Wavelet Analysis of Modulated Signals” on page 2-51
• “Remove Time-Localized Frequency Components” on page 2-54
• “Time-Varying Coherence” on page 2-59
• “Continuous Wavelet Analysis of Cusp Signal” on page 2-63
• “Complex Continuous Wavelet Analysis of Cusp Signal” on page 2-66
• “Two-Dimensional CWT of Noisy Pattern” on page 2-69
• “2-D Continuous Wavelet Transform App” on page 2-77
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Using Wavelet Time-Frequency Analyzer App
This example shows how to use the Wavelet Time-Frequency Analyzer app to visualize the scalogram
of a 1-D signal. The scalogram is the absolute value of the continuous wavelet transform (CWT). You
can adjust wavelet parameters, voices per octave, and frequency limits to use in the CWT. You can
compare multiple scalograms and export a scalogram to your workspace. You can also recreate the
scalogram in your workspace by generating a MATLAB® script.

Import Data

Load the wecg signal into the MATLAB workspace. The sampling frequency is 180 hz.

load wecg
Fs = 180;

Visualize Scalogram

Open Wavelet Time-Frequency Analyzer. On the Analyzer tab, click Import Signals. A window
appears with a list of all the workspace variables the app can process. Select the wecg signal and
click Import. After a brief, one-time initialization, the name and type of the imported signal populates
the Signals pane. The app displays the scalogram in the Scalogram-wecg plot. The app generates
the scalogram using the analytic Morse (3, 60) wavelet and the cwt function with default settings.
The cone of influence shows areas in the scalogram potentially affected by edge-effect artifacts. You
should treat shaded regions outside the dashed white lines as suspect due to the potential for edge
effects. To learn more about the cone of influence, see “Boundary Effects and the Cone of Influence”
on page 2-32.

You can hide or display the cone of influence boundary line or shade the boundary region by setting
the option in the Preferences ▼ menu. If the signal is complex-valued, you can also choose to display
the positive (counterclockwise) and negative (clockwise) components as either separate or
concatenated scalograms. The options you choose in the Preferences ▼ menu persist across
MATLAB sessions.

By default, because the signal is not a timetable, the app plots the frequencies in cycles/sample, and
uses the sample index as the basis of the time axis. If the imported signal is a timetable, the app plots
the scalogram as a function of frequency in hertz and uses the row times of the timetable as the basis
for the time axis.

On the Analyzer tab, select the Sample Rate radio button. The axes labels in the scalogram update
using the default sampling rate of 1 hz. To set the axes labels appropriately for the wecg signal, apply
the value 180 in the Sample Rate field. You cannot modify the sample rate for timetables.
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Modify Wavelet Parameters

To access the CWT parameters used to create the scalogram, click the Scalogram tab. The
parameters correspond to input arguments of the cwt function. Parameter settings are the default
values. Because you set the sampling rate, the minimum and maximum frequency limits are in hertz.
The default frequency limits depend on the wavelet, signal length, sampling rate, and voices per
octave. For more information, see cwtfreqbounds.

To obtain the scalogram using the Morse (40,60) wavelet, first, change the Morse symmetry
parameter in the Symmetry text box to 40. Then, to enter the new value, either press the Enter key
on your keyboard or click the mouse anywhere outside the text box.

• The Compute Scalogram button is now enabled.
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• The frequency limits update because you changed the wavelet.
• In the status bar, text appears stating there are pending changes.

You can reset the CWT parameters to their default values at any time by clicking Reset Parameters.

Note: To prevent invalid settings, the app immediately validates any parameter you change. If you
enter an invalid value, the app automatically replaces it with a valid value. The app treats the
following values as invalid:

• A very low minimum frequency value
• A time-bandwidth product value that violates a constraint the Morse wavelet parameters must

satisfy

The new value might not be the desired value. To avoid unexpected results, you should ensure any
value you enter always results in a valid setting. For more information, see the example “Adjust Morse
Wavelet Parameters”.

To apply your changes and visualize the new scalogram, click Compute Scalogram.
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Compare Scalograms

To compare the current scalogram with one obtained using the bump wavelet, first click the
Duplicate button on the Analyzer tab. A second signal, wecgCopy, appears in the Signals pane. The
scalogram of the duplicate appears in the Scalogram-wecgCopy plot. Then in the Scalogram tab,
select bump from the Wavelet dropdown menu. Observe the Morse wavelet parameters are now
disabled, and the frequency limits are updated. To create the scalogram with the bump wavelet, click
Compute Scalogram. To compare with the first scalogram, select wecg in the Signals pane.
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Export Results

You can export a structure array to your workspace that contains the CWT of the selected signal. You
can also generate a MATLAB® script to recreate the scalogram in your workspace.

Export Structure

To export the CWT of wecgCopy, select that signal in the Signals pane. Then select Export
Scalogram from the Export ▼ menu to create the structure array wecgCopy_scalogram in your
workspace. The structure array has three fields:

• coefficients — CWT coefficients
• frequencyVector — Scale-to-frequency conversions
• timeVector — Time vector

You can use the field values to visualize the scalogram in a new figure by executing these commands:

figure

pcolor(wecgCopy_scalogram.timeVector, ...
    wecgCopy_scalogram.frequencyVector, ...
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    abs(wecgCopy_scalogram.coefficients))
shading flat
set(gca,"yscale","log")
title("Scalogram")
xlabel("Time (s)")
ylabel("Frequency (Hz)")

Generate Script

To generate a script that recreates the scalogram of the wecg signal in your workspace, select the
wecg signal in the Signals pane. Then select Generate MATLAB Script from the Export ▼ menu.
The app generates the script using the name of the signal you selected in the Signals pane. An
untitled script opens in your MATLAB Editor with the following executable code.

%Parameters
sampleRate = 180;
waveletParameters = [40,60];

%Compute time vector
t = 0:1/sampleRate:(length(wecg)*1/sampleRate)-1/sampleRate;

%Compute CWT
%If necessary, substitute workspace variable name for wecg as first input to cwt() function in code below
%Run the function call below without output arguments to plot the results
[waveletTransform,frequency] = cwt(wecg, sampleRate,...
    WaveletParameters = waveletParameters);
scalogram = abs(waveletTransform);

Save and execute the script. You can use the workspace variables scalogram, t, and frequency to
visualize the scalogram.

subplot(2,1,1)
pcolor(t,frequency,scalogram)
shading flat
set(gca,"yscale","log")
title("Scalogram")
ylabel("Frequency (Hz)")
xlabel("Time (s)")
subplot(2,1,2)
plot(t,wecg)
axis tight
title("Signal")
xlabel("Time (s)")
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See Also
Apps
Signal Multiresolution Analyzer

Functions
cwt | icwt | cwtfilterbank | cwtfreqbounds

Related Examples
• “Morse Wavelets” on page 2-22
• “Practical Introduction to Continuous Wavelet Analysis” on page 10-2
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1-D Continuous Wavelet Analysis

Note

This page is no longer recommended. See “Continuous and Discrete Wavelet Transforms”.

The Wavelet Toolbox software enables you to perform a continuous wavelet analysis of your
univariate or bivariate 1-D input signals. You can perform continuous wavelet analyses at the
command line or with the app which you access by typing waveletAnalyzer at the command line.

Key features include:

• Continuous wavelet transform (CWT) of a 1-D input signal using real-valued and complex-valued
wavelets. The Wavelet Toolbox software features a CWT algorithm, cwt, which is based on the
correlation of the signal with an analyzing analytic wavelet, .

• Inverse CWT of 1–D input signal. For select analyzing wavelets, you can invert the CWT to
reconstruct a time and scale-localized approximation to your input signal. See icwt for details.

• Wavelet cross spectrum and coherence. You can use wcoherence to compute the wavelet cross
spectrum and coherence between two time series. The wavelet cross spectrum and coherence can
reveal localized similarities between two time series in time and scale. See “Compare Time-
Frequency Content in Signals with Wavelet Coherence” on page 10-64 for examples.

In this section, you'll learn how to

• Load a signal
• Perform a continuous wavelet transform of a signal
• Produce a plot of the coefficients
• Produce a plot of coefficients at a given scale
• Produce a plot of local maxima of coefficients across scales
• Select the displayed plots
• Switch from scale to pseudo-frequency information
• Zoom in on detail
• Display coefficients in normal or absolute mode
• Choose the scales at which analysis is performed

Since you can perform analyses either from the command line or using the Wavelet Analyzer app, this
section has subsections covering each method.

The final subsection discusses how to exchange signal and coefficient information between the disk
and the graphical tools.
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Continuous Wavelet Analysis of Noisy Sinusoid Using
Command Line Functions

This example involves a noisy sinusoidal signal.

1 Load a signal.

From the MATLAB prompt, type

load noissin; 

You now have the signal noissin in your workspace:

whos

Name Size Bytes Class
noissin 1x1000 8000 double array

2 Perform a Continuous Wavelet Transform.

Use the cwt command. Type

c = cwt(noissin);

The arguments to cwt specify the signal to be analyzed. The returned argument c contains the
coefficients at various scales. In this case, c is a 80-by-1000 matrix with each row corresponding
to a single scale.
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3 Plot the coefficients.

The cwt command accepts a fourth argument. This is a flag that, when present, causes cwt to
produce a plot of the absolute values of the continuous wavelet transform coefficients.

The cwt command can accept more arguments to define the different characteristics of the
produced plot. For more information, see the cwt reference page.

c = cwt(noissin,1:48,'db4','plot');

A plot appears.

Of course, coefficient plots generated from the command line can be manipulated using ordinary
MATLAB graphics commands.

4 Choose scales for the analysis.

The second argument to cwt gives you fine control over the scale levels on which the continuous
analysis is performed. In the previous example, we used all scales from 1 to 48, but you can
construct any scale vector subject to these constraints:

• All scales must be real positive numbers.
• The scale increment must be positive.
• The highest scale cannot exceed a maximum value depending on the signal.

Let's repeat the analysis using every other scale from 2 to 128. Type
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c = cwt(noissin,2:2:128,'db4','plot');

A new plot appears:

This plot gives a clearer picture of what's happening with the signal, highlighting the periodicity.
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Continuous Wavelet Analysis of Noisy Sinusoid
This example shows how to use Continuous Wavelet 1-D tool to analyze a noisy sinusoidal signal.

1 Start the Continuous Wavelet 1-D Tool. From the MATLAB prompt, type

cw1dtool

The continuous wavelet analysis tool for 1-D signal data appears.

2 Load a signal.

At the MATLAB command prompt, type

load noissin;

In the Continuous Wavelet 1-D tool, select File > Import Signal from Workspace. When the
Import from Workspace dialog box appears, select the noissin variable. Click OK to import
the noisy sinusoid signal.

The default value for the sampling period is equal to 1 (second).
3 Perform a Continuous Wavelet Transform.

To start our analysis, let's perform an analysis using the db4 wavelet at scales 1 through 48, just
as we did using command line functions in the previous section.

In the upper right portion of the Continuous Wavelet 1-D tool, select the db4 wavelet and
scales 1–48.
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4 Click the Analyze button.

After a pause for computation, the tool displays the coefficients plot, the coefficients line plot
corresponding to the scale a = 24, and the local maxima plot, which displays the chaining across
scales (from a = 48 down to a = 1) of the coefficients local maxima.

5 View Wavelet Coefficients Line.

Select another scale a = 40 by clicking in the coefficients plot with the right mouse button. See
step 9 to know, more precisely, how to select the desired scale.

Click the New Coefficients Line button. The tool updates the plot.
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6 View Maxima Line.

Click the Refresh Maxima Line button. The local maxima plot displays the chaining across
scales of the coefficients local maxima from a = 40 down to a = 1.

Hold down the right mouse button over the coefficients plot. The position of the mouse is given
by the Info frame (located at the bottom of the screen) in terms of location (X) and scale (Sca).
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7 Switch from scale to Pseudo-Frequency Information.

Using the option button on the right part of the screen, select Frequencies instead of Scales.
Again hold down the right mouse button over the coefficients plot, the position of the mouse is
given in terms of location (X) and frequency (Frq) in Hertz.
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This facility allows you to interpret scale in terms of an associated pseudo-frequency, which
depends on the wavelet and the sampling period..

8 Deselect the last two plots using the check boxes in the Selected Axes frame.
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9 Zoom in on detail.

Drag a rubber band box (by holding down the left mouse button) over the portion of the signal
you want to magnify.

10 Click the X+ button (located at the bottom of the screen) to zoom horizontally only.

2 Continuous Wavelet Analysis

2-18



The Continuous Wavelet 1-D tool enlarges the displayed signal and coefficients plot (for more
information on zooming, see “Connection of Plots” on page A-2 in the Wavelet Toolbox User's
Guide).

As with the command line analysis on the preceding pages, you can change the scales or the
analyzing wavelet and repeat the analysis. To do this, just edit the necessary fields and click the
Analyze button.

11 View normal or absolute coefficients.

The Continuous Wavelet 1-D tool allows you to plot either the absolute values of the wavelet
coefficients, or the coefficients themselves.

More generally, the coefficients coloration can be done in several different ways. For more details
on the Coloration Mode, see “Controlling the Coloration Mode” on page A-6.

Choose either one of the absolute modes or normal modes from the Coloration Mode menu. In
normal modes, the colors are scaled between the minimum and maximum of the coefficients. In
absolute modes, the colors are scaled between zero and the maximum absolute value of the
coefficients.
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Importing and Exporting Information
The Continuous Wavelet 1-D tool lets you import information from and export information to disk.

You can

• Load signals from disk into the Continuous Wavelet 1-D tool.
• Save wavelet coefficients from the Continuous Wavelet 1-D tool to disk.

Loading Signals
To load a signal you have constructed in your MATLAB workspace into the Continuous Wavelet 1-D
tool, save the signal in a MAT-file (with extension mat or other).

For instance, suppose you've designed a signal called warma and want to analyze it in the
Continuous Wavelet 1-D tool.

save warma warma

The workspace variable warma must be a vector.

sizwarma = size(warma)

sizwarma =
           1     1000

To load this signal into the Continuous Wavelet 1-D tool, use the menu option File > Load Signal.
A dialog box appears that lets you select the appropriate MAT-file to be loaded.

Note The first one-dimensional variable encountered in the file is considered the signal. Variables
are inspected in alphabetical order.

Saving Wavelet Coefficients
The Continuous Wavelet 1-D tool lets you save wavelet coefficients to disk. The toolbox creates a
MAT-file in the current folder with the extension wc1 and a name you give it.

To save the continuous wavelet coefficients from the present analysis, use the menu option File >
Save > Coefficients.

A dialog box appears that lets you specify a folder and filename for storing the coefficients.

Consider the example analysis:

File > Example Analysis > with haar at scales [1:1:64] → Cantor curve.

After saving the continuous wavelet coefficients to the file cantor.wc1, load the variables into your
workspace:

load cantor.wc1 -mat
whos
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Name Size Bytes Class
coefs 64x2188 1120256 double array
scales 1x64 512 double array
wname 1x4 8 char array

Variables coefs and scales contain the continuous wavelet coefficients and the associated scales.
More precisely, in the above example, coefs is a 64-by-2188 matrix, one row for each scale; and
scales is the 1-by-64 vector 1:64. Variable wname contains the wavelet name.
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Morse Wavelets
In this section...
“What Are Morse Wavelets?” on page 2-22
“Morse Wavelet Parameters” on page 2-22
“Effect of Parameter Values on Morse Wavelet Shape” on page 2-23
“Relationship Between Analytic Morse Wavelet and Analytic Signal” on page 2-25
“Comparison of Analytic Wavelet Transform and Analytic Signal Coefficients” on page 2-26
“Recommended Morse Wavelet Settings for the CWT” on page 2-30
“References” on page 2-30

What Are Morse Wavelets?
Generalized Morse wavelets are a family of exactly analytic wavelets. Analytic wavelets are complex-
valued wavelets whose Fourier transforms are supported only on the positive real axis. They are
useful for analyzing modulated signals, which are signals with time-varying amplitude and frequency.
They are also useful for analyzing localized discontinuities. The seminal paper for generalized Morse
wavelets is Olhede and Walden [1]. The theory of Morse wavelets and their applications to the
analysis of modulated signals is further developed in a series of papers by Lilly and Olhede [2], [3],
and [4]. Efficient algorithms for the computation of Morse wavelets and their properties were
developed by Lilly [5].

The Fourier transform of the generalized Morse wavelet is

ΨP, γ(ω) = U(ω)aP, γω
P2
γ e−ωγ

where U(ω) is the unit step, ap, γ is a normalizing constant, P2 is the time-bandwidth product, and γ
characterizes the symmetry of the Morse wavelet. Much of the literature about Morse wavelets uses
β, which can be viewed as a decay or compactness parameter, rather than the time-bandwidth
product, P2 = βγ. The equation for the Morse wavelet in the Fourier domain parameterized by β and γ
is

Ψβ, γ(ω) = U(ω)aβ, γωβe−ωγ

For a detailed explanation of the parameterization of Morse wavelets, see [2].

By adjusting the time-bandwidth product and symmetry parameters of a Morse wavelet, you can
obtain analytic wavelets with different properties and behavior. A strength of Morse wavelets is that
many commonly used analytic wavelets are special cases of a generalized Morse wavelet. For
example, Cauchy wavelets have γ = 1 and Bessel wavelets are approximated by β = 8 and γ = 0.25.
See “Generalized Morse and Analytic Morlet Wavelets”.

Morse Wavelet Parameters
As previously mentioned, Morse wavelets have two parameters, symmetry and time-bandwidth
product, which determine the wavelet shape and affect the behavior of the transform. The Morse
wavelet gamma parameter, γ, controls the symmetry of the wavelet in time through the demodulate
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skewness [2]. The square root of the time-bandwidth product, P, is proportional to the wavelet
duration in time. For convenience, the Morse wavelets in cwt and cwtfilterbank are
parameterized as the time-bandwidth product and gamma. The duration determines how many
oscillations can fit into the time-domain wavelet’s center window at its peak frequency. The peak

frequency is P2

γ

1
γ
.

The (demodulate) skewness of the Morse wavelet is equal to 0 when gamma is equal to 3. The Morse
wavelets also have the minimum Heisenberg area when gamma is equal to 3. For these reasons, cwt
and cwtfilterbank use this as the default value.

Effect of Parameter Values on Morse Wavelet Shape
These plots show how different values of symmetry and time-bandwidth affect the shape of a Morse
wavelet. Longer time-bandwidths broaden the central portion of the wavelet and increase the rate of
the long time decay. Increasing the symmetry broadens the wavelet envelope, but does not affect the
long time decay. For symmetry values less than or equal to 3, the time decay increases as the time-
bandwidth increases. For symmetry greater than or equal to 3, reducing the time-bandwidth makes
the wavelet less symmetric. As both symmetry and time-bandwidth increase, the wavelet oscillates
more in time and narrows in frequency. Very small time-bandwidth and large symmetry values
produce undesired time-domain sidelobes and frequency-domain asymmetry.

In the time-domain plots in the left column, the red line is the real part and the blue line is the
imaginary part. The contour plots in the right column show how the parameters affect the spread in
time and frequency.
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Relationship Between Analytic Morse Wavelet and Analytic Signal
The coefficients from a wavelet transform using an analytic wavelet on a real signal are proportional
to the coefficients of the corresponding analytic signal. An analytic signal is defined as the inverse
Fourier transform of

x a(ω) = x (ω) + sgn(ω)x (ω)

The value of the analytic signal depends on ω.

• For ω > 0, the Fourier transform of an analytic signal is two times the Fourier transform of the
corresponding nonanalytic signal,x (ω).

• For ω = 0, the Fourier transform of an analytic signal is equal to the Fourier transform of the
corresponding nonanalytic signal.

• For ω < 0, the Fourier transform of an analytic signal vanishes.

Let Wf (u, s) denote the wavelet transform of a signal, f(t), at translation u and scale s. If the
analyzing wavelet is analytic, you obtain Wf (u, s) = 1

2Wfa(u, s), where fa(t) is the analytic signal
corresponding to f(t). For all wavelets used in cwt, the amplitude of the wavelet bandpass filter at the
peak frequency for each scale is set to 2. Additionally, cwt uses L1 normalization. For a real-valued
sinusoidal input with radian frequency ω0 and amplitude A, the wavelet transform using an analytic
wavelet yields coefficients that oscillate at the same frequency, ω0, with an amplitude equal to
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A
2 ψ (sω0). By isolating the coefficients at the scale, 

ωψ
ω0

, a peak magnitude of 2 assures that the

analyzed oscillatory component has the correct amplitude, A.

Comparison of Analytic Wavelet Transform and Analytic Signal
Coefficients
This example shows how the analytic wavelet transform of a real signal approximates the
corresponding analytic signal.

This is demonstrated using a sine wave. If you obtain the wavelet transform of a sine wave using an
analytic wavelet and extract the wavelet coefficients at a scale corresponding to the frequency of the
sine wave, the coefficients approximate the analytic signal. For a sine wave, the analytic signal is a
complex exponential of the same frequency.

Create a sinusoid with a frequency of 50 Hz.

t = 0:.001:1;
x = cos(2*pi*50*t);

Obtain its continuous wavelet transform using an analytic Morse wavelet and the analytic signal. You
must have the Signal Processing Toolbox™ to use hilbert.

[wt,f] = cwt(x,1000,'voices',32,'ExtendSignal',false);
analytsig = hilbert(x);

Obtain the wavelet coefficients at the scale closest to the sine wave's frequency of 50 Hz.

[~,idx] = min(abs(f-50));
morsecoefx = wt(idx,:);

Compare the real and imaginary parts of the analytic signal with the wavelet coefficients at the signal
frequency.

figure;
plot(t,[real(morsecoefx)' real(analytsig)']);
title('Real Parts'); 
ylim([-2 2]); grid on;
legend('Wavelet Coefficients','Analytic Signal','Location','SouthEast');
xlabel('Time'); ylabel('Amplitude');
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figure;
plot(t,[imag(morsecoefx)' imag(analytsig)']);
title('Imaginary Parts'); 
ylim([-2 2]); grid on;
legend('Wavelet Coefficients','Analytic Signal','Location','SouthEast');
xlabel('Time'); ylabel('Amplitude');
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cwt uses L1 normalization and scales the wavelet bandpass filters to have a peak magnitude of 2. The
factor of 1/2 in the above equation is canceled by the peak magnitude value.

The wavelet transform represents a frequency-localized filtering of the signal. Accordingly, the CWT
coefficients are less sensitive to noise than are the Hilbert transform coefficients.

Add highpass noise to the signal and reexamine the wavelet coefficients and the analytic signal.

y = x + filter(1,[1 0.9],0.1*randn(size(x)));
analytsig = hilbert(y);
[wt,f] = cwt(y,1000,'voices',32,'ExtendSignal',0);
morsecoefy = wt(idx,:);

figure;
plot(t,[real(analytsig)' x']);
legend('Analytic Signal','Original Signal');
grid on;
xlabel('Time'); ylabel('Amplitude');
ylim([-2 2])
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figure;
plot(t,[real(morsecoefy)' x']);
legend('Wavelet Coefficients','Original Signal');
grid on;
xlabel('Time'); ylabel('Amplitude');
ylim([-2 2])
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Recommended Morse Wavelet Settings for the CWT
For the best results when using the CWT, use a symmetry, γ, of 3, which is the default for cwt and
cwtfilterbank. With gamma fixed, increasing the time-bandwidth product P2 narrows the wavelet
filter in frequency while increasing the width of the central portion of the filter in time. It also
increases the number of oscillations of the wavelet under the central portion of the filter.

References

[1] Olhede, S. C., and A. T. Walden. “Generalized morse wavelets.” IEEE Transactions on Signal
Processing, Vol. 50, No. 11, 2002, pp. 2661-2670.

[2] Lilly, J. M., and S. C. Olhede. “Higher-order properties of analytic wavelets.” IEEE Transactions on
Signal Processing, Vol. 57, No. 1, 2009, pp. 146-160.

[3] Lilly, J. M., and S. C. Olhede. “On the analytic wavelet transform.” IEEE Transactions on
Information Theory, Vol. 56, No. 8, 2010, pp. 4135–4156.

[4] Lilly, J. M., and S. C. Olhede. “Generalized Morse wavelets as a superfamily of analytic wavelets.”
IEEE Transactions on Signal Processing Vol. 60, No. 11, 2012, pp. 6036-6041.

[5] Lilly, J. M. jLab: A data analysis package for Matlab, version 1.6.2., 2016. http://www.jmlilly.net/
jmlsoft.html.

2 Continuous Wavelet Analysis

2-30



[6] Lilly, J. M. “Element analysis: a wavelet-based method for analysing time-localized events in noisy
time series.” Proceedings of the Royal Society A. Volume 473: 20160776, 2017, pp. 1–28.
dx.doi.org/10.1098/rspa.2016.0776.

 Morse Wavelets

2-31



Boundary Effects and the Cone of Influence
This topic explains the cone of influence (COI) and the convention Wavelet Toolbox™ uses to compute
it. The topic also explains how to interpret the COI in the scalogram plot, and exactly how the COI is
computed in cwtfilterbank and cwt.

Load the Kobe earthquake seismograph signal. Plot the scalogram of the Kobe earthquake
seismograph signal. The data is sampled at 1 hertz.

load kobe
cwt(kobe,1)

In addition to the scalogram, the plot also features a dashed white line and shaded gray regions from
the edge of the white line to the time and frequency axes. Plot the same data using the sampling
interval instead of sampling rate. Now the scalogram is displayed in periods instead of frequency.

cwt(kobe,seconds(1))
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The orientation of the dashed white line has flipped upside down, but the line and the shaded regions
are still present.

The white line marks what is known as the cone of influence. The cone of influence includes the line
and the shaded region from the edge of the line to the frequency (or period) and time axes. The cone
of influence shows areas in the scalogram potentially affected by edge-effect artifacts. These are
effects in the scalogram that arise from areas where the stretched wavelets extend beyond the edges
of the observation interval. Within the unshaded region delineated by the white line, you are sure that
the information provided by the scalogram is an accurate time-frequency representation of the data.
Outside the white line in the shaded region, information in the scalogram should be treated as
suspect due to the potential for edge effects.

CWT of Centered Impulse

To begin to understand the cone of influence, create a centered impulse signal of length 1024
samples. Create a CWT filter bank using cwtfilterbank with default values. Use wt to return the
CWT coefficients and frequencies of the impulse. For better visualization, normalize the CWT
coefficients so that the maximum absolute value at each frequency (for each scale) is equal to 1.

x = zeros(1024,1);
x(512) = 1;
fb = cwtfilterbank;
[cfs,f] = wt(fb,x);
cfs = cfs./max(cfs,[],2);

Use the helper function helperPlotScalogram to the scalogram. The code for
helperPlotFunction is at the end of this example. Mark the location of the impulse with a line.
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ax = helperPlotScalogram(f,cfs);
hl = line(ax,[512 512],[min(f) max(f)],...
    [max(abs(cfs(:))) max(abs(cfs(:)))]);
title('Scalogram of Centered Impulse')

The solid black line shows the location of the impulse in time. Note that as the frequency decreases,
the width of the CWT coefficients in time that are nonzero and centered on the impulse increases.
Conversely, as the frequency increases, the width of the CWT coefficients that are nonzero decreases
and becomes increasingly centered on the impulse. Low frequencies correspond to wavelets of longer
scale, while higher frequencies correspond to wavelets of shorter scale. The effect of the impulse
persists longer in time with longer wavelets. In other words, the longer the wavelet, the longer the
duration of influence of the signal. For a wavelet centered at a certain point in time, stretching or
shrinking the wavelet results in the wavelet "seeing" more or less of the signal. This is referred to as
the wavelet's cone of influence.

Boundary Effects

The previous section illustrates the cone of influence for an impulse in the center of the observation,
or data interval. But what happens when the wavelets are located near the beginning or end of the
data? In the wavelet transform, we not only dilate the wavelet, but also translate it in time. Wavelets
near the beginning or end of the data inevitably "see" data outside the observation interval. Various
techniques are used to compensate for the fact that the wavelet coefficients near the beginning and
end of the data are affected by the wavelets extending outside the boundary. The cwtfilterbank
and cwt functions offer the option to treat the boundaries by reflecting the signal symmetrically or
periodically extending it. However, regardless of which technique is used, you should exercise caution
when interpreting wavelet coefficients near the boundaries because the wavelet coefficients are
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affected by values outside the extent of the signal under consideration. Further, the extent of the
wavelet coefficients affected by data outside the observation interval depends on the scale
(frequency). The longer the scale, the larger the cone of influence.

Repeat the impulse example, but place two impulses, one at the beginning of the data and one at the
end. Also return the cone of influence. For better visualization, normalize the CWT coefficients so that
the maximum absolute value at each frequency (for each scale) is equal to 1.

dirac = zeros(1024,1);
dirac([1 1024]) = 1;
[cfs,f,coi] = wt(fb,dirac);
cfs = cfs./max(cfs,[],2);
helperPlotScalogram(f,cfs)
title('Scalogram of Two-Impulse Signal')

Here it is clear that the cone of influence for the extreme boundaries of the observation interval
extends into the interval to a degree that depends on the scale of the wavelet. Therefore, wavelet
coefficients well inside the observation interval can be affected by what data the wavelet sees at the
boundaries of the signal, or even before the signal's actual boundaries if you extend the signal in
some way.

In the previous figure, you should already see a striking similarity between the cone of influence
returned by cwtfilterbank or plotted by the cwt function and areas where the scalogram
coefficients for the two-impulse signal are nonzero.

While it is important to understand these boundary effects on the interpretation of wavelet
coefficients, there is no mathematically precise rule to determine the extent of the cone of influence
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at each scale. Nobach et al. [2] define the extent of the cone of influence at each scale as the point
where the wavelet transform magnitude decays to 2% of its peak value. Because many of the wavelets
used in continuous wavelet analysis decay exponentially in time, Torrence and Compo [3] use the time
constant 1/e to delineate the borders of the cone of influence at each scale. For Morse wavelets, Lilly
[1] uses the concept of the "wavelet footprint," which is the time interval that encompasses
approximately 95% of the wavelet's energy. Lilly delineates the COI by adding 1/2 the wavelet
footprint to the beginning of the observation interval and subtracting 1/2 the footprint from the end
of the interval at each scale.

The cwtfilterbank and cwt functions use an approximation to the 1/e rule to delineate the COI.
The approximation involves adding one time-domain standard deviation at each scale to the
beginning of the observation interval and subtracting one time-domain standard deviation at each
scale from the end of the interval. Before we demonstrate this correspondence, add the computed
COI to the previous plot.

helperPlotScalogram(f,cfs,coi)
title('Scalogram with Cone of Influence')

You see that the computed COI is a good approximation to boundaries of the significant effects of an
impulse at the beginning and end of the signal.

To show how cwtfilterbank and cwt compute this rule explicitly, consider two examples, one for
the analytic Morlet wavelet and one for the default Morse wavelet. Begin with the analytic Morlet
wavelet, where our one time-domain standard deviation rule agrees exactly with the expression of the
folding time used by Torrence and Compo [3].
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fb = cwtfilterbank('Wavelet','amor');
[~,f,coi] = wt(fb,dirac);

The expression for the COI in Torrence and Compo is 2s where s is the scale. For the analytic Morlet
wavelet in cwtfilterbank and cwt, this is given by:

cf = 6/(2*pi);
predtimes = sqrt(2)*cf./f;

Plot the COI returned by cwtfilterbank along with the expression used in Torrence and Compo.

plot(1:1024,coi,'k--','linewidth',2)
hold on
grid on
plot(predtimes,f,'r*')
plot(1024-predtimes,f,'r*')
set(gca,'yscale','log')
axis tight
legend('COI','Predicted COI','Location','best')
xlabel('Samples')
ylabel('Hz')
title('Cone of Influence - Analytic Morlet Wavelet')

The last example shows the same correspondence for the default Morse wavelet in cwtfilterbank
and cwt. The time-domain standard deviation of the default Morse wavelet is 5.5008, and the peak
frequency is 0.2995 cycles/sample. Use the center frequencies of the wavelet bandpass filters as well
as the time-domain standard deviation rule to obtain the predicted COI and compare against the
values returned by cwtfilterbank.
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fb = cwtfilterbank;
[~,f,coi] = wt(fb,dirac);
sd = 5.5008;
cf = 0.2995;
predtimes = cf./f*sd;
figure
plot(1:1024,coi,'k--','linewidth',2)
hold on
grid on
plot(predtimes,f,'r*')
plot(1024-predtimes,f,'r*')
set(gca,'yscale','log')
axis tight
legend('COI','Predicted COI','Location','best')
xlabel('Samples')
ylabel('Hz')
title('Cone of Influence - Default Morse Wavelet')

Appendix

The following helper function is used in this example.

helperPlotScalogram

function varargout = helperPlotScalogram(f,cfs,coi)
nargoutchk(0,1);
ax = newplot;
surf(ax,1:1024,f,abs(cfs),'EdgeColor','none')
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ax.YScale = 'log';
caxis([0.01 1])
colorbar
grid on
ax.YLim = [min(f) max(f)];
ax.XLim = [1 size(cfs,2)];
view(0,90)

xlabel('Time')
ylabel('Cycles/Sample')

if nargin == 3
    hl = line(ax,1:1024,coi,ones(1024,1));
    hl.Color = 'k';
    hl.LineWidth = 2;
end

if nargout > 0
    varargout{1} = ax;
end

end
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Time-Frequency Analysis and Continuous Wavelet Transform
This example shows how the variable time-frequency resolution of the continuous wavelet transform
can help you obtain a sharp time-frequency representation.

The continuous wavelet transform (CWT) is a time-frequency transform, which is ideal for analyzing
nonstationary signals. A signal being nonstationary means that its frequency-domain representation
changes over time. Many signals are nonstationary, such as electrocardiograms, audio signals,
earthquake data, and climate data.

Load Hyperbolic Chirp

Load a signal that has two hyperbolic chirps. The data are sampled at 2048 Hz. The first chirp is
active between 0.1 and 0.68 seconds, and the second chirp is active between 0.1 and 0.75 seconds.
The instantaneous frequency (in hertz) of the first chirp at time t is 15π

(0 . 8− t)2
/2π . The instantaneous

frequency of the second chirp at time t is 5π
(0 . 8− t)2

/2π. Plot the signal.

load hychirp
plot(t,hychirp)
grid on
title('Signal')
axis tight
xlabel('Time (s)')
ylabel('Amplitude')
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Time-Frequency Analysis: Fourier Transform

The Fourier transform (FT) is very good at identifying frequency components present in a signal.
However, the FT does not identify when the frequency components occur.

Plot the magnitude spectrum of the signal. Zoom in on the region between 0 and 200 Hz.

sigLen = numel(hychirp);
fchirp = fft(hychirp);
fr = Fs*(0:1/Fs:1-1/Fs);
plot(fr(1:sigLen/2),abs(fchirp(1:sigLen/2)),'x-')
xlabel('Frequency (Hz)')
ylabel('Amplitude')
axis tight
grid on
xlim([0 200])

Time-Frequency Analysis: Short-Time Fourier Transform

The Fourier transform does not provide time information. To determine when the changes in
frequency occur, the short-time Fourier transform (STFT) approach segments the signal into different
chunks and performs the FT on each chunk. The STFT tiling in the time-frequency plane is shown
here.
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The STFT provides some information on both the timing and the frequencies at which a signal event
occurs. However, choosing a window (segment) size is key. For time-frequency analysis using the
STFT, choosing a shorter window size helps obtain good time resolution at the expense of frequency
resolution. Conversely, choosing a larger window helps obtain good frequency resolution at the
expense of time resolution.

Once you pick a window size, it remains fixed for the entire analysis. If you can estimate the
frequency components you are expecting in your signal, then you can use that information to pick a
window size for the analysis.

The instantaneous frequencies of the two chirps at their initial time points are approximately 5 Hz
and 15 Hz. Use the helper function helperPlotSpectrogram to plot the spectrogram of the signal
with a time window size of 200 milliseconds. The source code for helperPlotSpectrogram is listed
in the appendix. The helper function plots the instantaneous frequencies over the spectrogram as
black dashed-line segments. The instantaneous frequencies are resolved early in the signal, but not
as well later.

helperPlotSpectrogram(hychirp,t,Fs,200)
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Now use helperPlotSpectrogram to plot the spectrogram with a time window size of 50
milliseconds. The higher frequencies, which occur later in the signal, are now resolved, but the lower
frequencies at the beginning of the signal are not.

helperPlotSpectrogram(hychirp,t,Fs,50)
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For nonstationary signals like the hyperbolic chirp, using the STFT is problematic. No single window
size can resolve the entire frequency content of such signals.

Time-Frequency Analysis: Continuous Wavelet Transform

The continuous wavelet transform (CWT) was created to overcome the resolution issues inherent in
the STFT. The CWT tiling on the time-frequency plane is shown here.
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The CWT tiling of the plane is useful because many real-world signals have slowly oscillating content
that occurs on long scales, while high frequency events tend to be abrupt or transient. However, if it
were natural for high-frequency events to be long in duration, then using the CWT would not be
appropriate. You would have poorer frequency resolution without gaining any time resolution. But
that is quite often not the case. The human auditory system works this way; we have much better
frequency localization at lower frequencies, and better time localization at high frequencies.

Plot the scalogram of the CWT. The scalogram is the absolute value of the CWT plotted as a function
of time and frequency. The plot uses a logarithmic frequency axis because frequencies in the CWT are
logarithmic. The presence of the two hyperbolic chirps in the signal is clear from the scalogram. With
the CWT, you can accurately estimate the instantaneous frequencies throughout the duration of the
signal, without worrying about picking a segment length.

cwt(hychirp,Fs)
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The white dashed line marks what is known as the cone of influence. The cone of influence shows
areas in the scalogram potentially affected by boundary effects. For more information, see “Boundary
Effects and the Cone of Influence” on page 2-32.

To get a sense of how rapidly the magnitude of the wavelet coefficients grows, use the helper function
helperPlotScalogram3d to plot the scalogram as a 3-D surface. The source code for
helperPlotScalogram3d is listed in the appendix.

helperPlotScalogram3d(hychirp,Fs)
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Use the helper function helperPlotScalogram to plot the scalogram of the signal and the
instantaneous frequencies. The source code for helperPlotScalogram is listed in the appendix.
The instantaneous frequencies align well with the scalogram features.

helperPlotScalogram(hychirp,Fs)

 Time-Frequency Analysis and Continuous Wavelet Transform

2-47



Appendix – Helper Functions

helperPlotSpectrogram
function helperPlotSpectrogram(sig,t,Fs,timeres)
% This function is only intended to support this wavelet example.
% It may change or be removed in a future release.

[px,fx,tx] = pspectrum(sig,Fs,'spectrogram','TimeResolution',timeres/1000);
hp = pcolor(tx,fx,20*log10(abs(px)));
hp.EdgeAlpha = 0;
ylims = hp.Parent.YLim;
yticks = hp.Parent.YTick;
cl = colorbar;
cl.Label.String = 'Power (dB)';
axis tight
hold on
title(['Time Resolution: ',num2str(timeres),' ms'])
xlabel('Time (s)')
ylabel('Hz');
dt  = 1/Fs;
idxbegin = round(0.1/dt);
idxend1 = round(0.68/dt);
idxend2 = round(0.75/dt);
instfreq1 = abs((15*pi)./(0.8-t).^2)./(2*pi);
instfreq2 = abs((5*pi)./(0.8-t).^2)./(2*pi);
plot(t(idxbegin:idxend1),(instfreq1(idxbegin:idxend1)),'k--');
hold on;
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plot(t(idxbegin:idxend2),(instfreq2(idxbegin:idxend2)),'k--');
ylim(ylims);
hp.Parent.YTick = yticks;
hp.Parent.YTickLabels = yticks;
hold off
end

helperPlotScalogram

function helperPlotScalogram(sig,Fs)
% This function is only intended to support this wavelet example.
% It may change or be removed in a future release.
[cfs,f] = cwt(sig,Fs);

sigLen = numel(sig);
t = (0:sigLen-1)/Fs;

hp = pcolor(t,log2(f),abs(cfs));
hp.EdgeAlpha = 0;
ylims = hp.Parent.YLim;
yticks = hp.Parent.YTick;
cl = colorbar;
cl.Label.String = 'magnitude';
axis tight
hold on
title('Scalogram and Instantaneous Frequencies')
xlabel('Seconds');
ylabel('Hz');
dt  = 1/2048;
idxbegin = round(0.1/dt);
idxend1 = round(0.68/dt);
idxend2 = round(0.75/dt);
instfreq1 = abs((15*pi)./(0.8-t).^2)./(2*pi);
instfreq2 = abs((5*pi)./(0.8-t).^2)./(2*pi);
plot(t(idxbegin:idxend1),log2(instfreq1(idxbegin:idxend1)),'k--');
hold on;
plot(t(idxbegin:idxend2),log2(instfreq2(idxbegin:idxend2)),'k--');
ylim(ylims);
hp.Parent.YTick = yticks;
hp.Parent.YTickLabels = 2.^yticks;
end

helperPlotScalogram3d

function helperPlotScalogram3d(sig,Fs)
% This function is only intended to support this wavelet example.
% It may change or be removed in a future release.
figure
[cfs,f] = cwt(sig,Fs);

sigLen = numel(sig);
t = (0:sigLen-1)/Fs;
surface(t,f,abs(cfs));
xlabel('Time (s)')
ylabel('Frequency (Hz)')
zlabel('Magnitude')
title('Scalogram In 3-D')
set(gca,'yscale','log')
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shading interp
view([-40 30])
end

See Also
cwt | cwtfilterbank | waveletScattering | waveletScattering2

More About
• “Boundary Effects and the Cone of Influence” on page 2-32
• “Classify Time Series Using Wavelet Analysis and Deep Learning” on page 13-69
• “Wavelet Time Scattering Classification of Phonocardiogram Data” on page 13-35
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Continuous Wavelet Analysis of Modulated Signals
This example shows how to use the continuous wavelet transform (CWT) to analyze modulated
signals.

Load a quadratic chirp signal. The signal's frequency begins at approximately 500 Hz at t = 0,
decreases to 100 Hz at t=2, and increases back to 500 Hz at t=4. The sampling frequency is 1 kHz.

load quadchirp;
fs = 1000;

Obtain a time-frequency plot of this signal using the CWT with a bump wavelet. The bump wavelet is
a good choice for the CWT when your signals are oscillatory and you are more interested in time-
frequency analysis than localization of transients.

[cfs,f] = cwt(quadchirp,'bump',fs);
helperCWTTimeFreqPlot(cfs,tquad,f,'surf','CWT of Quadratic Chirp','Seconds','Hz')

The CWT clearly shows the time evolution of the quadratic chirp's frequency. The quadratic chirp is a
frequency-modulated signal. While that signal is synthetic, frequency and amplitude modulation
occur frequently in natural signals as well. Use the CWT to obtain a time-frequency analysis of an
echolocation pulse emitted by a big brown bat (Eptesicus Fuscus). The sampling interval is 7
microseconds. Use the bump wavelet with 32 voices per octave. Thanks to Curtis Condon, Ken White,
and Al Feng of the Beckman Center at the University of Illinois for the bat data and permission to use
it in this example.
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load batsignal
t = 0:DT:(numel(batsignal)*DT)-DT;
[cfs,f] = cwt(batsignal,'bump',1/DT,'VoicesPerOctave',32);
helperCWTTimeFreqPlot(cfs,t.*1e6,f./1e3,'surf','Bat Echolocation (CWT)',...
    'Microseconds','kHz')

For the final example, obtain a time-frequency analysis of some seismograph data recorded during
the 1995 Kobe earthquake. The data are seismograph (vertical acceleration, nm/sq.sec)
measurements recorded at Tasmania University, Hobart, Australia on 16 January 1995 beginning at
20:56:51 (GMT) and continuing for 51 minutes at 1 second intervals. Use the default analytic Morse
wavelet.

load kobe;
dt = 1;
cwt(kobe,1);
title('CWT of 1995 Kobe Earthquake Seismograph Data');
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Remove Time-Localized Frequency Components
Create a signal consisting of exponentially weighted sine waves. The signal has two 25-Hz
components -- one centered at 0.2 seconds and one centered at 0.5 seconds. It also has two 70-Hz
components -- one centered at 0.2 and one centered at 0.8 seconds. The first 25-Hz and 70-Hz
components co-occur in time.

t = 0:1/2000:1-1/2000;
dt = 1/2000;
x1 = sin(50*pi*t).*exp(-50*pi*(t-0.2).^2);
x2 = sin(50*pi*t).*exp(-100*pi*(t-0.5).^2);
x3 = 2*cos(140*pi*t).*exp(-50*pi*(t-0.2).^2);
x4 = 2*sin(140*pi*t).*exp(-80*pi*(t-0.8).^2);
x = x1+x2+x3+x4;
plot(t,x)
grid on;
title('Superimposed Signal')

Obtain and display the CWT.

cwt(x,2000);
title('Analytic CWT using Default Morse Wavelet');
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Remove the 25 Hz component which occurs from approximately 0.07 to 0.3 seconds by zeroing out
the CWT coefficients. Use the inverse CWT (icwt) to reconstruct an approximation to the signal.

[cfs,f] = cwt(x,2000);
T1 = .07;  T2 = .33;
F1 = 19;   F2 = 34;
cfs(f > F1 & f < F2, t> T1 & t < T2) = 0;
xrec = icwt(cfs);

Display the CWT of the reconstructed signal. The initial 25-Hz component is removed.

cwt(xrec,2000)
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Plot the original signal and the reconstruction.

subplot(2,1,1);
plot(t,x);
grid on;
title('Original Signal');
subplot(2,1,2);
plot(t,xrec)
grid on;
title('Signal with first 25-Hz component removed');
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Compare the reconstructed signal with the original signal without the 25-Hz component centered at
0.2 seconds.

y = x2+x3+x4;
figure;
plot(t,xrec)
hold on
plot(t,y,'r--')
grid on;
legend('Inverse CWT approximation','Original Signal Without 25-Hz');
hold off
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Time-Varying Coherence
Fourier-domain coherence is a well-established technique for measuring the linear correlation
between two stationary processes as a function of frequency on a scale from 0 to 1. Because wavelets
provide local information about data in time and scale (frequency), wavelet-based coherence allows
you to measure time-varying correlation as a function of frequency. In other words, a coherence
measure suitable for nonstationary processes.

To illustrate this, examine near-infrared spectroscopy (NIRS) data obtained in two human subjects.
NIRS measures brain activity by exploiting the different absorption characteristics of oxygenated and
deoxygenated hemoglobin. The recording site was the superior frontal cortex for both subjects and
the data was sampled at 10 Hz. The data is taken from Cui, Bryant, & Reiss (2012) and was kindly
provided by the authors for this example.

In the experiment, the subjects alternatively cooperated and competed on a task. The period of the
task was approximately 7.5 seconds.

load NIRSData;
figure
plot(tm,NIRSData(:,1))
hold on
plot(tm,NIRSData(:,2),'r')
legend('Subject 1','Subject 2','Location','NorthWest')
xlabel('Seconds')
title('NIRS Data')
grid on;
hold off;
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Examining the time-domain data, it is not clear what oscillations are present in the individual time
series, or what oscillations are common to both data sets. Use wavelet analysis to answer both
questions.

Obtain the wavelet coherence as a function of time and frequency. You can use wcoherence to output
the wavelet coherence, cross-spectrum, scale-to- frequency, or scale-to-period conversions, as well as
the cone of influence. In this example, the helper function helperPlotCoherence packages some
useful commands for plotting the outputs of wcoherence.

[wcoh,~,f,coi] = wcoherence(NIRSData(:,1),NIRSData(:,2),10,'numscales',16);
helperPlotCoherence(wcoh,tm,f,coi,'Seconds','Hz');
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In the plot, you see a region of strong coherence throughout the data collection period around 1 Hz.
This results from the cardiac rhythms of the two subjects. Additionally, you see regions of strong
coherence around 0.13 Hz. This represents coherent oscillations in the subjects' brains induced by
the task. If it is more natural to view the wavelet coherence in terms of periods rather than
frequencies, you can input the sampling interval. With the sampling interval, wcoherence provides
scale-to-period conversions.

[wcoh,~,P,coi] = wcoherence(NIRSData(:,1),NIRSData(:,2),seconds(1/10),...
    'numscales',16);
helperPlotCoherence(wcoh,tm,seconds(P),seconds(coi),'Time (secs)','Periods (Seconds)');
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Again, note the coherent oscillations corresponding to the subjects' cardiac activity occurring
throughout the recordings with a period of approximately one second. The task-related activity is also
apparent with a period of approximately 8 seconds. Consult Cui, Bryant, & Reiss (2012) for a more
detailed wavelet analysis of this data.

In summary, this example showed how to use wavelet coherence to look for time-localized coherent
oscillatory behavior in two time series. For nonstationary signals, a measure of coherence that
provides simultaneous time and frequency (period) information is often more useful.

Reference: Cui, X., D. M. Bryant, and A. L. Reiss. "NIRS-Based hyperscanning reveals increased
interpersonal coherence in superior frontal cortex during cooperation." Neuroimage. Vol. 59, Number
3, 2012, pp. 2430-2437.
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Continuous Wavelet Analysis of Cusp Signal
This example shows how to perform continuous wavelet analysis of a cusp signal. You can use cwt for
analysis using an analytic wavelet and wtmm to isolate and characterized singularities.

Load and plot a cusp signal. Display its definition at the command line.

load cuspamax; 
plot(cuspamax); grid on;

disp(caption)

x = linspace(0,1,1024); y = exp(-128*((x-0.3).^2))-3*(abs(x-0.7).^0.4);

Obtain and view the CWT of the cusp signal. The CWT uses an analytic Morse wavelet with gamma
equal to 2 and a time-bandwidth parameter of 2.5. Notice the narrow region in the scalogram
converging to the finest scale (highest frequency). This indicates a discontinuity in the signal.

cwt(cuspamax,'WaveletParameters',[2 2.5]);
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Obtain a plot of the wavelet maxima lines using wavelet transform modulus maxima. wtmm returns
estimates of the Holder exponents, which characterize isolated singularities in a signal. Notice that
the cusp is shown very clearly using wtmm.

wtmm(cuspamax,'ScalingExponent','local');
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Complex Continuous Wavelet Analysis of Cusp Signal
This example shows how to use the Complex Continuous Wavelet 1-D tool to analyze a cusp signal.

1 Start the Complex Continuous Wavelet 1-D Tool.

From the MATLAB prompt, type

cwimtool

The complex continuous wavelet analysis tool for 1-D signal data appears.

2 Load a signal.

At the command prompt, type

load cuspamax;

In the Complex Continuous Wavelet 1-D tool, select File > Import Signal from Workspace.
When the Import from Workspace dialog box appears, select the cuspamax variable. Click OK
to import the cusp signal data.

The default value for the sampling period is equal to 1 (second).
3 Perform a Complex Continuous Wavelet Transform

To start our analysis, let's perform an analysis using the cgau4 wavelet at scales 1 through 64 in
steps of 2, just as we did using command-line functions in “Continuous Wavelet Analysis of Cusp
Signal” on page 2-63.

In the upper-right portion of the Complex Continuous Wavelet 1-D tool, select the cgau4
wavelet and scales 1–64 in steps of 2.
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Click the Analyze button.

After a pause for computation, the tool displays the usual plots associated to the modulus of the
coefficients on the left side, and the angle of the coefficients on the right side.

Each side has exactly the same representation that we found in “Continuous Wavelet Analysis of
Noisy Sinusoid” on page 2-13.

Select the plots related to the modulus of the coefficients using the Modulus option button in the
Selected Axes frame.
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The figure now looks like the one in the real Continuous Wavelet 1-D tool.

To import and export information from the Complex Continuous Wavelet tool, see “Importing and
Exporting Information” on page 2-20. The only difference is that the variable coefs is a complex
matrix (see “Saving Wavelet Coefficients” on page 2-20).
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Two-Dimensional CWT of Noisy Pattern
This example shows how to detect a pattern in a noisy image using the 2-D continuous wavelet
transform (CWT). The example uses both isotropic (non-directional) and anisotropic (directional)
wavelets. The isotropic wavelet is not sensitive to the orientation of the feature, while the directional
wavelet is.

Use the isotropic (non-directional) Mexican hat wavelet, also known as the Ricker wavelet, and the
anisotropic (directional) Morlet wavelet. Demonstrate that the real-valued Mexican hat wavelet does
not depend on the angle.

Y = zeros(32,32);
Y(16,16) = 1;
cwtmexh = cwtft2(Y,'wavelet','mexh','scales',1,...
    'angles',[0 pi/2]);
surf(real(cwtmexh.cfs(:,:,1,1,1)));
shading interp; title('Angle = 0 Radians');

Extract the wavelet corresponding to an angle of π/2 radians. The wavelet is isotropic and therefore
does not differentiate oriented features in data.

surf(real(cwtmexh.cfs(:,:,1,1,2)));
shading interp; title('Angle = pi/2 Radians');
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Repeat the preceding steps for the complex-valued Morlet wavelet. The Morlet wavelet has a larger
spatial support than the Mexican hat wavelet, therefore this example uses a larger matrix. The
wavelet is complex-valued, so the modulus is plotted.

Y = zeros(64,64);
Y(32,32) = 1;
cwtmorl = cwtft2(Y,'wavelet','morl','scales',1,...
    'angles',[0 pi/2]);
surf(abs(cwtmorl.cfs(:,:,1,1,1)));
shading interp; title('Angle = 0 Radians');

2 Continuous Wavelet Analysis

2-70



Extract the wavelet corresponding to an angle of π/2 radians. Unlike the Mexican hat wavelet, the
Morlet wavelet is not isotropic and therefore is sensitive to the direction of features in the data.

surf(abs(cwtmorl.cfs(:,:,1,1,2)));
shading interp; title('Angle = pi/2 Radians');
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Apply the Mexican hat and Morlet wavelets to the detection of a pattern in noise. Create a pattern
consisting of line segments joined at a 90-degree angle. The amplitude of the pattern is 3 and it
occurs in additive N(0,1) white Gaussian noise.

X = zeros(256,256);
X(100:200,100:102) = 3;
X(200:202,100:125) = 3;
X = X+randn(size(X));
imagesc(X); axis xy;
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Obtain the 2-D CWT at scales 3 to 8 in 0.5 increments with the Mexican hat wavelet. Visualize the
magnitude-squared 2-D wavelet coefficients at scale 3.

cwtmexh = cwtft2(X,'wavelet','mexh','scales',3:0.5:8);
surf(abs(cwtmexh.cfs(:,:,1,3,1)).^2);
view(0,90); shading interp; axis tight;
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Use a directional Morlet wavelet to extract the vertical and horizontal line segments separately. The
vertical line segment is extracted by one angle. The horizontal line segment is extracted by another
angle.

cwtmorl = cwtft2(X,'wavelet','morl','scales',3:0.5:8,...
    'angles',[0 pi/2]);
surf(abs(cwtmorl.cfs(:,:,1,4,1)).^2);
view(0,90); shading interp; axis tight;
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figure;
surf(abs(cwtmorl.cfs(:,:,1,4,2)).^2);
view(0,90); shading interp; axis tight;
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2-D Continuous Wavelet Transform App
In this section...
“2-D Continuous Wavelet Transform” on page 2-77
“2-D CWT App Example” on page 2-77

The 2-D continuous wavelet transform (CWT) app enables you to analyze your image data and export
the results of that analysis to the MATLAB workspace. The app provides all the functionality of the
command line functions cwtft2 and cwtftinfo2. Access the 2-D CWT app in the apps gallery by
selecting Wavelet Design & Analysis in the Signal Processing and Communications section or
entering

cwtfttool2

at the MATLAB command prompt.

2-D Continuous Wavelet Transform
The 2-D continuous wavelet transform is a representation of 2-D data (image data) in 4 variables:
dilation, rotation, and position. Dilation and rotation are real-valued scalars and position is a 2-D
vector with real-valued elements. Let x denote a two-element vector of real-numbers. If

f (x) ∈ L2(ℝ2)

is square-integrable on the plane, the 2-D CWT is defined as

WTf (a, b, θ) =∫ℝ2 f (x)1
aψ(r−θ(x− b

a )) dx a ∈ ℝ+, x, b ∈ ℝ2

where the bar denotes the complex conjugate and rθ is the 2-D rotation matrix

rθ =
cos(θ) −sin(θ)
sin(θ) cos(θ)

θ ∈ [0, 2π)

The 2-D CWT is a space-scale representation of an image. You can view the inverse of the scale and
the rotation angle taken together as a spatial-frequency variable, which gives the 2-D CWT an
interpretation as a space-frequency representation. For all admissible 2-D wavelets, the 2-D CWT acts
as a local filter for an image in scale and position. If the wavelet is isotropic, there is no dependence
on angle in the analysis. The Mexican hat wavelet is an example of an isotropic wavelet. Isotropic
wavelets are suitable for pointwise analysis of images. If the wavelet is anisotropic, there is a
dependence on angle in the analysis, and the 2-D CWT acts a local filter for an image in scale,
position, and angle. The Cauchy wavelet is an example of an anisotropic wavelet. In the Fourier
domain, this means that the spatial frequency support of the wavelet is a convex cone with the apex
at the origin. Anisotropic wavelets are suitable for detecting directional features in an image. See
“Two-Dimensional CWT of Noisy Pattern” on page 2-69 for an illustration of the difference between
isotropic and anisotropic wavelets.

2-D CWT App Example
This example shows how to analyze an image using the 2-D CWT app.

Load the triangle image in the MATLAB workspace.
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imdata = imread('triangle.jpg');

Launch the 2-D CWT app by selecting Wavelet Design & Analysis in the Signal Processing and
Communications section of the apps gallery. From the 2-D section, select Continuous Wavelet
Transform 2-D. Alternatively, enter

cwtfttool2

at the MATLAB command prompt.

Select File –> Import Data to import the imdata variable.

From the Wavelet drop down menu, select the cauchy wavelet.

For the Angles and Scales, select the Manual option.

Click Define to specify a vector of angles. Select Manual from the Type drop-down list and specify a
vector of angles from 0 to 7*pi/8 radians in increments of pi/8 radians, 0:pi/8:(7*pi)/8. Click
Apply to apply your choice of angles.
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Click Define to specify a vector of scales from 0.5 to 4 in increments of 0.5. Select Linear from the
Type drop-down list. Set First Scale equal to 0.5, Gap between two scales equal to 0.5, and
Number of Scales equal to 8. Equivalently, you can select Manual from the Type drop-down list
and specify the vector of scales as 0.5:0.5:4. Click Apply to apply your choice of scales.

Click Analyze to obtain the 2-D CWT.
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Set the Index of Scale to be 1 and click More on Angles. Click Movie to step through the
manually-defined angles for the 2-D CWT coefficients at scale 0.5.

Select File –> Export Data –> Export CWTFT Struct to Workspace to export the analysis to the
MATLAB workspace. You can find an explanation of the structure fields in the function reference for
cwtft2.
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Discrete Wavelet Analysis

• “Critically Sampled and Oversampled Wavelet Filter Banks” on page 3-2
• “1-D Decimated Wavelet Transforms” on page 3-9
• “Fast Wavelet Transform (FWT) Algorithm” on page 3-34
• “Border Effects” on page 3-45
• “Nondecimated Discrete Stationary Wavelet Transforms (SWTs)” on page 3-57
• “1-D Stationary Wavelet Transform” on page 3-62
• “Wavelet Changepoint Detection” on page 3-74
• “Scale-Localized Volatility and Correlation” on page 3-85
• “R Wave Detection in the ECG” on page 3-94
• “Wavelet Cross-Correlation for Lead-Lag Analysis” on page 3-103
• “1-D Multisignal Analysis” on page 3-114
• “2-D Discrete Wavelet Analysis” on page 3-150
• “2-D Stationary Wavelet Transform” on page 3-170
• “Shearlet Systems” on page 3-180
• “3-D Discrete Wavelet Analysis” on page 3-183
• “Dual-Tree Complex Wavelet Transforms” on page 3-192
• “Analytic Wavelets Using the Dual-Tree Wavelet Transform” on page 3-220
• “Multifractal Analysis” on page 3-223
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Critically Sampled and Oversampled Wavelet Filter Banks

In this section...
“Double-Density Wavelet Transform” on page 3-3
“Dual-Tree Complex Wavelet Transform” on page 3-5
“Dual-Tree Double-Density Wavelet Transforms” on page 3-7

Wavelet filter banks are special cases of multirate filter banks called tree-structured filter banks. In a
filter bank, two or more filters are applied to an input signal and the filter outputs are typically
downsampled. The following figure illustrates two stages, or levels, of a critically sampled two-
channel tree-structured analysis filter bank. The filters are depicted in the z domain.

The filter system functions, H0(z) and H1(z), are typically designed to approximately partition the
input signal, X, into disjoint subbands. In wavelet tree-structured filter banks, the filter H0(z) is a
lowpass, or scaling, filter, with a non-zero frequency response on the interval [-π/2, π/2] radians/
sample or [-1/4, 1/4] cycles/sample. The filter H1(z) is a highpass, or wavelet, filter, with a non-zero
frequency response on the interval [-π, -π/2] ∪ [π/2, π] radians/sample or [-1/2, -1/4] ∪ [1/4, 1/2]
cycles/sample. The filter bank iterates on the output of the lowpass analysis filter to obtain successive
levels resulting into an approximate octave-band filtering of the input. The two analysis filters are not
ideal, which results in aliasing that must be canceled by appropriately designed synthesis filters for
perfect reconstruction. For an orthogonal filter bank, the union of the scaling filter and its even shifts
and the wavelet filter and its even shifts forms an orthonormal basis for the space of square-
summable sequences, ℓ2(ℤ). The synthesis filters are the time-reverse and conjugates of the analysis
filters. For biorthogonal filter banks, the synthesis filters and their even shifts form the reciprocal, or
dual, basis to the analysis filters. With two analysis filters, downsampling the output of each analysis
filter by two at each stage ensures that the total number of output samples equals the number of
input samples. The case where the number of analysis filters is equal to the downsampling factor is
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referred to as critical sampling. An analysis filter bank where the number of channels is greater than
the downsampling factor is an oversampled filter bank.

Double-Density Wavelet Transform
The following figure illustrates two levels of an oversampled analysis filter bank with three channels
and a downsampling factor of two. The filters are depicted in the z domain.

Assume the filter H0(z), is a lowpass half-band filter and the filters H1(z) and H2(z) are highpass half-
band filters.

Assume the three filters together with the corresponding synthesis filters form a perfect
reconstruction filter bank. If additionally, H1(z) and H2(z) generate wavelets that satisfy the following
relation

ψ1(t) = ψ2(t − 1/2),

the filter bank implements the double-density wavelet transform. The preceding condition guarantees
that the integer translates of one wavelet fall halfway between the integer translates of the second
wavelet. In frame-theoretic terms, the double-density wavelet transform implements a tight frame
expansion.

 Critically Sampled and Oversampled Wavelet Filter Banks

3-3



The following code illustrates the two wavelets used in the double-density wavelet transform.

x = zeros(256,1);
df = dtfilters('filters1');
wt1 = dddtree('ddt',x,5,df,df);
wt2 = dddtree('ddt',x,5,df,df);
wt1.cfs{5}(5,1,1) = 1;
wt2.cfs{5}(5,1,2) = 1;
wav1 = idddtree(wt1);
wav2 = idddtree(wt2);
plot(wav1); hold on;
plot(wav2,'r'); axis tight;
legend('\psi_1(t)','\psi_2(t)')

You cannot choose the two wavelet filters arbitrarily to implement the double-density wavelet
transform. The three analysis and synthesis filters must satisfy the perfect reconstruction (PR)
conditions. For three real-valued filters, the PR conditions are

H0(z)H0(1/z) + H1(z)H1(1/z) + H2(z)H2(1/z) = 2
H0(z)H0(− 1/z) + H1(z)H1(− 1/z) + H2(z)H2(− 1/z) = 0

You can obtain wavelet analysis and synthesis frames for the double-density wavelet transform with 6
and 12 taps using dtfilters.

[df1,sf1] = dtfilters('filters1');
[df2,sf2] = dtfilters('filters2');

df1 and df2 are three-column matrices containing the analysis filters. The first column contains the
scaling filter and columns two and three contain the wavelet filters. The corresponding synthesis
filters are in sf1 and sf2.

See [4] and [5] for details on how to generate wavelet frames for the double-density wavelet
transform.

The main advantages of the double-density wavelet transform over the critically sampled discrete
wavelet transform are

• Reduced shift sensitivity
• Reduced rectangular artifacts in the 2-D transform
• Smoother wavelets for a given number of vanishing moments

The main disadvantages are

• Increased computational costs
• Non-orthogonal transform

Additionally, while exhibiting less shift sensitivity than the critically sampled DWT, the double-density
DWT is not shift-invariant like the complex dual-tree wavelet transform. The double-density wavelet
transform also lacks the directional selectivity of the oriented dual-tree wavelet transforms.
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Dual-Tree Complex Wavelet Transform
The critically sampled discrete wavelet transform (DWT) suffers from a lack of shift invariance in 1-D
and directional sensitivity in N-D. You can mitigate these shortcomings by using approximately
analytic wavelets. An analytic wavelet is defined as

ψc(t) = ψr(t) + jψi(t)

where j denotes the unit imaginary. The imaginary part of the wavelet, ψi(t), is the Hilbert transform
of the real part, ψr(t). In the frequency domain, the analytic wavelet has support on only one half of
the frequency axis. This means that the analytic wavelet ψc(t) has only one half the bandwidth of the
real-valued wavelet ψr(t).

It is not possible to obtain exactly analytic wavelets generated by FIR filters. The Fourier transforms
of compactly supported wavelets cannot vanish on any set of nonzero measure. This means that the
Fourier transform cannot be zero on the negative frequency axis. Additionally, the efficient two-
channel filter bank implementation of the DWT derives from the following perfect reconstruction
condition for the scaling filter, H0(e jω), of a multiresolution analysis (MRA)

H0(e jω) 2 + H0(e j(ω + π)) 2 = 2.

If the wavelet associated with an MRA is analytic, the scaling function is also analytic. This implies
that

H0(e jω) = 0 − π ≤ ω < 0,

from which it follows that H0(e jω) 2 = 2 0 ≤ ω ≤ π . The result is that the scaling filter is allpass.

The preceding results demonstrate that you cannot find a compactly support wavelet determined by
FIR filters that is exactly analytic. However, you can obtain wavelets that are approximately analytic
by combining two tree-structured filter banks as long as the filters in the dual-tree transform are
carefully constructed to satisfy certain conditions [1],[6].

The dual-tree complex wavelet transform is implemented with two separate two-channel FIR filter
banks. The output of one filter bank is considered to be the real part, while the output of the other
filter bank is the imaginary part. Because the dual-tree complex wavelet transform uses two critically
sampled filter banks, the redundancy is 2d for a d-dimensional signal (image). There are a few critical
considerations in implementing the dual-tree complex wavelet transform. For convenience, refer to
the two trees as: Tree A and Tree B.

• The analysis filters in the first stage of each filter bank must differ from the filters used at
subsequent stages in both trees. It is not important which scaling and wavelet filters you use in
the two trees for stage 1. You can use the same first stage scaling and wavelet filters in both trees.

• The scaling filter in Tree B for stages ≥ 2 must approximate a 1/2 sample delay of the scaling filter
in Tree A. The one-half sample delay condition is a necessary and sufficient condition for the
corresponding Tree B wavelet to be the Hilbert transform of the Tree A wavelet.[3].

The following figure illustrates three stages of the analysis filter bank for the 1-D dual-tree complex
wavelet transform. The FIR scaling filters for the two trees are denoted by h0(n), g0(n) . The FIR
wavelet filters for the two trees are denoted by h1(n), g1(n) . The two scaling filters are designed to
approximately satisfy the half-sample delay condition
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g0(n) = h0(n− 1/2)

The superscript (1) denotes that the first-stage filters must differ from the filters used in subsequent
stages. You can use any valid scaling-wavelet filter pair for the first stage. The filters h0(n), g0(n)
cannot be arbitrary scaling filters and provide the benefits of using approximately analytic wavelets.

2-D Dual-Tree Wavelet Transforms

The dual-tree wavelet transform with approximately analytic wavelets offers substantial advantages
over the separable 2-D DWT for image processing. The traditional separable 2-D DWT suffers from
checkerboard artifacts due to symmetric frequency support of real-valued (non-analytic) scaling
functions and wavelets. Additionally, the critically sampled separable 2-D DWT lacks shift invariance
just as the 1-D critically sampled DWT does. The Wavelet Toolbox software supports two variants of
the dual-tree 2-D wavelet transform, the real oriented dual-tree wavelet transform and the oriented 2-
D dual-tree complex wavelet transform. Both are described in detail in [6].

The real oriented dual-tree transform consists of two separable (row and column filtering) wavelet
filter banks operating in parallel. The complex oriented 2-D wavelet transform requires four
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separable wavelet filter banks and is therefore not technically a dual-tree transform. However, it is
referred to as a dual-tree transform because it is the natural extension of the 1-D complex dual-tree
transform. To implement the real oriented dual-tree wavelet transform, use the 'realdt' option in
dddtree2. To implement the oriented complex dual-tree transform, use the 'cplxdt' option.

Both the real oriented and oriented complex dual-tree transforms are sensitive to directional features
in an image. Only the oriented complex dual-tree transform is approximately shift invariant. Shift
invariance is not a feature possessed by the real oriented dual-tree transform.

Dual-Tree Double-Density Wavelet Transforms
The dual-tree double-density wavelet transform combines the properties of the double-density
wavelet transform and the dual-tree wavelet transform [2].

In 1-D, the dual-tree double-density wavelet transform consists of two three-channel filter banks. The
two wavelets in each tree satisfy the conditions described in “Double-Density Wavelet Transform” on
page 3-3. Specifically, the integer translates of one wavelet fall halfway between the integer
translates of the second wavelet. Additionally, the wavelets in Tree B are the approximate Hilbert
transform of the wavelets in Tree A. To implement the dual-tree double-density wavelet transform for
1-D signals, use the 'cplxdddt' option in dddtree. Similar to the dual-tree wavelet transform, the
dual-tree double-density wavelet transform provides both real oriented and complex oriented wavelet
transforms in 2-D. To obtain the real oriented dual-tree double-density wavelet transform, use the
'realdddt' option in dddtree2. To obtain the complex oriented dual-tree double-density wavelet
transform, use the 'cplxdddt' option.
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More About
• “Dual-Tree Complex Wavelet Transforms” on page 3-192
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1-D Decimated Wavelet Transforms
This section takes you through the features of 1-D critically-sampled wavelet analysis using the
Wavelet Toolbox software.

The toolbox provides these functions for 1-D signal analysis. For more information, see the reference
pages.

Analysis-Decomposition Functions
Function Name Purpose
dwt Single-level decomposition
wavedec Decomposition
wmaxlev Maximum wavelet decomposition level

Synthesis-Reconstruction Functions
Function Name Purpose
idwt Single-level reconstruction
waverec Full reconstruction
wrcoef Selective reconstruction
upcoef Single reconstruction

Decomposition Structure Utilities
Function Name Purpose
detcoef Extraction of detail coefficients
appcoef Extraction of approximation coefficients
upwlev Recomposition of decomposition structure

Denoising and Compression
Function Name Purpose
wdenoise Automatic wavelet signal denoising (recommended)
wdenoise2 Automatic wavelet image denoising (recommended)
ddencmp Provide default values for denoising and compression
wbmpen Penalized threshold for wavelet 1-D or 2-D denoising
wdcbm Thresholds for wavelet 1-D using Birgé-Massart strategy
wdencmp Wavelet denoising and compression
wden Automatic wavelet denoising
wthrmngr Threshold settings manager

In this section, you'll learn how to
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• Load a signal
• Perform a single-level wavelet decomposition of a signal
• Construct approximations and details from the coefficients
• Display the approximation and detail
• Regenerate a signal by inverse wavelet transform
• Perform a multilevel wavelet decomposition of a signal
• Extract approximation and detail coefficients
• Reconstruct the level 3 approximation
• Reconstruct the level 1, 2, and 3 details
• Display the results of a multilevel decomposition
• Reconstruct the original signal from the level 3 decomposition
• Remove noise from a signal
• Refine an analysis
• Compress a signal
• Show a signal's statistics and histograms

Since you can perform analyses either from the command line or using the Wavelet Analyzer app, this
section has subsections covering each method.

The final subsection discusses how to exchange signal and coefficient information between the disk
and the graphical tools.

1-D Analysis Using the Command Line
This example involves a real-world signal — electrical consumption measured over the course of 3
days. This signal is particularly interesting because of noise introduced when a defect developed in
the monitoring equipment as the measurements were being made. Wavelet analysis effectively
removes the noise.

Note To denoise a signal, wdenoise and Wavelet Signal Denoiser are recommended.

1 Load the signal and select a portion for wavelet analysis.

load leleccum;
s = leleccum(1:3920);
l_s = length(s);

2 Perform a single-level wavelet decomposition of a signal.

Perform a single-level decomposition of the signal using the db1 wavelet.

[cA1,cD1] = dwt(s,'db1');

This generates the coefficients of the level 1 approximation (cA1) and detail (cD1).
3 Construct approximations and details from the coefficients.

To construct the level 1 approximation and detail (A1 and D1) from the coefficients cA1 and cD1,
type
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A1 = upcoef('a',cA1,'db1',1,l_s);
D1 = upcoef('d',cD1,'db1',1,l_s);

or

A1 = idwt(cA1,[],'db1',l_s);
D1 = idwt([],cD1,'db1',l_s);

4 Display the approximation and detail.

To display the results of the level-one decomposition, type

subplot(1,2,1); plot(A1); title('Approximation A1')
subplot(1,2,2); plot(D1); title('Detail D1')

5 Regenerate a signal by using the Inverse Wavelet Transform.

To find the inverse transform, enter

A0 = idwt(cA1,cD1,'db1',l_s);
err = max(abs(s-A0))

6 Perform a multilevel wavelet decomposition of a signal.

To perform a level 3 decomposition of the signal (again using the db1 wavelet), type

[C,L] = wavedec(s,3,'db1');

The coefficients of all the components of a third-level decomposition (that is, the third-level
approximation and the first three levels of detail) are returned concatenated into one vector, C.
Vector L gives the lengths of each component.
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7 Extract approximation and detail coefficients.

To extract the level 3 approximation coefficients from C, type

cA3 = appcoef(C,L,'db1',3);

To extract the levels 3, 2, and 1 detail coefficients from C, type

cD3 = detcoef(C,L,3);
cD2 = detcoef(C,L,2);
cD1 = detcoef(C,L,1);

or

[cD1,cD2,cD3] = detcoef(C,L,[1,2,3]);
8 Reconstruct the Level 3 approximation and the Level 1, 2, and 3 details.

To reconstruct the level 3 approximation from C, type

A3 = wrcoef('a',C,L,'db1',3);

To reconstruct the details at levels 1, 2, and 3, from C, type

D1 = wrcoef('d',C,L,'db1',1); 
D2 = wrcoef('d',C,L,'db1',2); 
D3 = wrcoef('d',C,L,'db1',3);

9 Display the results of a multilevel decomposition.

To display the results of the level 3 decomposition, type

subplot(2,2,1); plot(A3);  
title('Approximation A3') 
subplot(2,2,2); plot(D1);  
title('Detail D1') 
subplot(2,2,3); plot(D2);  
title('Detail D2') 
subplot(2,2,4); plot(D3);  
title('Detail D3')
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10 Reconstruct the original signal from the Level 3 decomposition.

To reconstruct the original signal from the wavelet decomposition structure, type

A0 = waverec(C,L,'db1');  
err = max(abs(s-A0))  

11 Crude denoising of a signal.

Using wavelets to remove noise from a signal requires identifying which component or
components contain the noise, and then reconstructing the signal without those components.

In this example, we note that successive approximations become less and less noisy as more and
more high-frequency information is filtered out of the signal.

The level 3 approximation, A3, is quite clean as a comparison between it and the original signal.

To compare the approximation to the original signal, type

subplot(2,1,1);plot(s);title('Original'); axis off 
subplot(2,1,2);plot(A3);title('Level 3 Approximation'); 
axis off
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Of course, in discarding all the high-frequency information, we've also lost many of the original
signal's sharpest features.

Optimal denoising requires a more subtle approach called thresholding. This involves discarding
only the portion of the details that exceeds a certain limit.

12 Remove noise by thresholding.

Let's look again at the details of our level 3 analysis.

To display the details D1, D2, and D3, type

subplot(3,1,1); plot(D1); title('Detail Level 1'); axis off 
subplot(3,1,2); plot(D2); title('Detail Level 2'); axis off 
subplot(3,1,3); plot(D3); title('Detail Level 3'); axis off
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Most of the noise occurs in the latter part of the signal, where the details show their greatest
activity. What if we limited the strength of the details by restricting their maximum values? This
would have the effect of cutting back the noise while leaving the details unaffected through most
of their durations. But there's a better way.

Note that cD1, cD2, and cD3 are just MATLAB vectors, so we could directly manipulate each
vector, setting each element to some fraction of the vectors' peak or average value. Then we
could reconstruct new detail signals D1, D2, and D3 from the thresholded coefficients.

To denoise the signal, use the ddencmp command to calculate the default parameters and the
wdencmp command to perform the actual denoising, type

[thr,sorh,keepapp] = ddencmp('den','wv',s); 
clean = wdencmp('gbl',C,L,'db1',3,thr,sorh,keepapp);

Note that wdencmp uses the results of the decomposition (C and L) that we already calculated.
We also specify that we used the db1 wavelet to perform the original analysis, and we specify the
global thresholding option 'gbl'. See ddencmp and wdencmp in the reference pages for more
information about the use of these commands.

To display both the original and denoised signals, type

subplot(2,1,1); plot(s(2000:3920)); title('Original') 
subplot(2,1,2); plot(clean(2000:3920)); title('denoised')
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We've plotted here only the noisy latter part of the signal. Notice how we've removed the noise
without compromising the sharp detail of the original signal. This is a strength of wavelet
analysis.

While using command line functions to remove the noise from a signal can be cumbersome, the
software's Wavelet Analyzer app includes an easy-to-use denoising feature that includes
automatic thresholding.

More information on the denoising process can be found in the following sections:

• “1-D Analysis Using the Wavelet Analyzer App” on page 3-16
• “Wavelet Denoising and Nonparametric Function Estimation” on page 6-2 in the Wavelet

Toolbox User's Guide
• “1-D Adaptive Thresholding of Wavelet Coefficients” on page 6-39
• “1-D Wavelet Variance Adaptive Thresholding” on page 6-13 in the Wavelet Toolbox User's

Guide

1-D Analysis Using the Wavelet Analyzer App
In this section, we explore the same electrical consumption signal as in the previous section, but we
use the Wavelet Analyzer app to analyze and denoise the signal.

Note Using the Wavelet Analyzer app to denoise a signal is no longer recommended. Use Wavelet
Signal Denoiser instead.
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1 Start the 1-D Wavelet Analysis Tool.

From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Analyzer appears.

Click the Wavelet 1-D menu item.

The discrete wavelet analysis tool for 1-D signal data appears.
2 Load a signal.

At the MATLAB command prompt, type

load leleccum;
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In the Wavelet 1-D tool, select File > Import from Workspace. When the Import from
Workspace dialog box appears, select the leleccum variable. Click OK to import the electrical
consumption signal.

3 Perform a single-level wavelet decomposition.

To start our analysis, let's perform a single-level decomposition using the db1 wavelet, just as we
did using the command-line functions in “1-D Analysis Using the Command Line” on page 3-10.

In the upper right portion of the Wavelet 1-D tool, select the db1 wavelet and single-level
decomposition.

Click the Analyze button.

After a pause for computation, the tool displays the decomposition.

4 Zoom in on relevant detail.

One advantage of using the Wavelet Analyzer app is that you can zoom in easily on any part of
the signal and examine it in greater detail.

Drag a rubber band box (by holding down the left mouse button) over the portion of the signal
you want to magnify. Here, we've selected the noisy part of the original signal.

3 Discrete Wavelet Analysis

3-18



Click the X+ button (located at the bottom of the screen) to zoom horizontally.

The Wavelet 1-D tool zooms all the displayed signals.

The other zoom controls do more or less what you'd expect them to. The X- button, for example,
zooms out horizontally. The history function keeps track of all your views of the signal. Return to
a previous zoom level by clicking the left arrow button.

5 Perform a multilevel decomposition.

Again, we'll use the graphical tools to emulate what we did in the previous section using
command line functions. To perform a level 3 decomposition of the signal using the db1 wavelet:

Select 3 from the Level menu at the upper right, and then click the Analyze button again.
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After the decomposition is performed, you'll see a new analysis appear in the Wavelet 1-D tool.

Selecting Different Views of the Decomposition

The Display mode menu (middle right) lets you choose different views of the wavelet
decomposition.

The default display mode is called “Full Decomposition Mode.” Other alternatives include:

• “Separate Mode,” which shows the details and the approximations in separate columns.
• “Superimpose Mode,” which shows the details on a single plot superimposed in different

colors. The approximations are plotted similarly.
• “Tree Mode,” which shows the decomposition tree, the original signal, and one additional

component of your choice. Click on the decomposition tree to select the signal component
you'd like to view.

• “Show and Scroll Mode,” which displays three windows. The first shows the original signal
superimposed on an approximation you select. The second window shows a detail you select.
The third window shows the wavelet coefficients.

• “Show and Scroll Mode (Stem Cfs)” is very similar to the “Show and Scroll Mode” except that
it displays, in the third window, the wavelet coefficients as stem plots instead of colored
blocks.

You can change the default display mode on a per-session basis. Select the desired mode from
the View > Default Display Mode submenu.

Note The Compression and Denoising windows opened from the Wavelet 1-D tool will inherit
the current coefficient visualization attribute (stems or colored blocks).

Depending on which display mode you select, you may have access to additional display options
through the More Display Options button.
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These options include the ability to suppress the display of various components, and to choose
whether or not to display the original signal along with the details and approximations.

6 Remove noise from a signal.

The Wavelet Analyzer app features a denoising option with a predefined thresholding strategy.
This makes it very easy to remove noise from a signal.

Note The denoising option is no longer recommended. Use Wavelet Signal Denoiser instead.

Bring up the denoising tool: click the denoise button, located in the middle right of the window,
underneath the Analyze button.

The Wavelet 1-D Denoising window appears.

While a number of options are available for fine-tuning the denoising algorithm, we'll accept the
defaults of soft fixed form thresholding and unscaled white noise. The Unscaled white noise
option corresponds to setting the multiplicative threshold input argument SCAL of wden to
'one'. Choosing Scaled white noise corresponds to 'sln', and Non-white noise
corresponds to 'mln'. For more information, see wden.

Continue by clicking the denoise button.

The denoised signal appears superimposed on the original. The tool also plots the wavelet
coefficients of both signals. The original detail coefficients appear on the left side of the display.
In order to time align decomposition levels across all scales, wavelet coefficients are replicated at
each scale to account for the missing time points. Therefore, as the scale becomes coarser, the
coefficients assume a staircase-like appearance.
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Zoom in on the plot of the original and denoised signals for a closer look.

Drag a rubber band box around the pertinent area, and then click the XY+ button.

The denoise window magnifies your view. By default, the original signal is shown in red, and the
denoised signal in yellow.
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Dismiss the Wavelet 1-D Denoising window: click the Close button.

You cannot have the denoise and Compression windows open simultaneously, so close the
Wavelet 1-D Denoising window to continue. When the Update Synthesized Signal dialog box
appears, click No. If you click Yes, the Synthesized Signal is then available in the Wavelet 1-D
main window.

7 Refine the analysis.

The graphical tools make it easy to refine an analysis any time you want to. Up to now, we've
looked at a level 3 analysis using db1. Let's refine our analysis of the electrical consumption
signal using the db3 wavelet at level 5.

Select 5 from the Level menu at the upper right, and select the db3 from the Wavelet menu.
Click the Analyze button.

8 Compress the signal.

The graphical interface tools feature a compression option with automatic or manual
thresholding.

Bring up the Compression window: click the Compress button, located in the middle right of
the window, underneath the Analyze button.

The Compression window appears.

While you always have the option of choosing by level thresholding, here we'll take advantage of
the global thresholding feature for quick and easy compression.

Note If you want to experiment with manual thresholding, choose the By Level thresholding
option from the menu located at the top right of the Wavelet 1-D Compression window. The
sliders located below this menu then control the level-dependent thresholds, indicated by yellow
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dotted lines running horizontally through the graphs on the left of the window. The yellow dotted
lines can also be dragged directly using the left mouse button.

Click the Compress button, located at the center right.

After a pause for computation, the electrical consumption signal is redisplayed in red with the
compressed version superimposed in yellow. Below, we've zoomed in to get a closer look at the
noisy part of the signal.

You can see that the compression process removed most of the noise, but preserved 99.99% of
the energy of the signal.

9 Show the residuals.

From the Wavelet 1-D Compression tool, click the Residuals button. The More on Residuals
for Wavelet 1-D Compression window appears.
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Displayed statistics include measures of tendency (mean, mode, median) and dispersion (range,
standard deviation). In addition, the tool provides frequency-distribution diagrams (histograms
and cumulative histograms), as well as time-series diagrams: autocorrelation function and
spectrum. The same feature exists for the Wavelet 1-D Denoising tool.

Dismiss the Wavelet 1-D Compression window: click the Close button. When the Update
Synthesized Signal dialog box appears, click No.

10 Show statistics.

You can view a variety of statistics about your signal and its components.

From the Wavelet 1-D tool, click the Statistics button.

The Wavelet 1-D Statistics window appears displaying by default statistics on the original
signal.
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Select the synthesized signal or signal component whose statistics you want to examine. Click
the appropriate option button, and then click the Show Statistics button. Here, we've chosen to
examine the synthesized signal using 100 bins instead of 30, which is the default:

Displayed statistics include measures of tendency (mean, mode, median) and dispersion (range,
standard deviation).

In addition, the tool provides frequency-distribution diagrams (histograms and cumulative
histograms). You can plot these histograms separately using the Histograms button from the
Wavelets 1-D window.

Click the Approximation option button. A menu appears from which you choose the level of the
approximation you want to examine.
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Select Level 1 and again click the Show Statistics button. Statistics appear for the level 1
approximation.

Importing and Exporting Information from the Wavelet Analyzer App
The Wavelet 1-D graphical interface tool lets you import information from and export information to
disk and the MATLAB workspace.

Saving Information to Disk

You can save synthesized signals, coefficients, and decompositions from the Wavelet 1-D tool to the
disk, where the information can be manipulated and later reimported into the graphical tool.
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Saving Synthesized Signals

You can process a signal in the Wavelet 1-D tool and then save the processed signal to a MAT-file
(with extension mat or other).

For example, load the example analysis: File > Example Analysis > Basic Signals > with db3 at
level 5 → Sum of sines, and perform a compression or denoising operation on the original signal.
When you close the Denoising or Compression window, update the synthesized signal by clicking
Yes in the dialog box.

Then, from the Wavelet 1-D tool, select the File > Save > Signal menu option.

A dialog box appears allowing you to select a folder and filename for the MAT-file. For this example,
choose the name synthsig.

To load the signal into your workspace, simply type

load synthsig;

When the synthesized signal is obtained using any thresholding method except a global one, the
saved structure is

whos

Name Size Bytes Class
synthsig 1x1000 8000 double array
thrParams 1x5 580 cell array
wname 1x3 6 char array

The synthesized signal is given by the variable synthsig. In addition, the parameters of the
denoising or compression process are given by the wavelet name (wname) and the level dependent
thresholds contained in the thrParams variable, which is a cell array of length 5 (same as the level
of the decomposition).

For i from 1 to 5, thrParams{i} contains the lower and upper bounds of the thresholding interval
and the threshold value (since interval dependent thresholds are allowed, see “1-D Adaptive
Thresholding of Wavelet Coefficients” on page 6-39).

For example, for level 1,

thrParams{1}

ans = 
    1.0e+03 *
    0.0010    1.0000    0.0014

When the synthesized signal is obtained using a global thresholding method, the saved structure is

Name Size Bytes Class
synthsig 1x1000 8000 double array
valTHR 1x1 8 double array
wname 1x3 6 char array

where the variable valTHR contains the global threshold:
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valTHR

valTHR =
    1.2922

Saving Discrete Wavelet Transform Coefficients

The Wavelet 1-D tool lets you save the coefficients of a discrete wavelet transform (DWT) to disk.
The toolbox creates a MAT-file in the current folder with a name you choose.

To save the DWT coefficients from the present analysis, use the menu option File > Save >
Coefficients.

A dialog box appears that lets you specify a folder and filename for storing the coefficients.

Consider the example analysis:

File > Example Analysis > Basic Signals > with db1 at level 5 → Cantor curve.

After saving the wavelet coefficients to the file cantor.mat, load the variables in the workspace:

load cantor 
whos

Name Size Bytes Class
coefs 1x2190 17520 double array
longs 1x7 56 double array
thrParams 0x0 0 double array
wname 1x3 6 char array

Variable coefs contains the discrete wavelet coefficients. More precisely, in the above example
coefs is a 1-by-2190 vector of concatenated coefficients, and longs is a vector giving the lengths of
each component of coefs.

Variable wname contains the wavelet name and thrParams is empty since the synthesized signal
does not exist.

Saving Decompositions

The Wavelet 1-D tool lets you save the entire set of data from a discrete wavelet analysis to disk. The
toolbox creates a MAT-file in the current folder with a name you choose, followed by the extension
wa1 (wavelet analysis 1-D).

Open the Wavelet 1-D tool and load the example analysis:

File > Example Analysis > Basic Signals > with db3 at level 5 → Sum of sines

To save the data from this analysis, use the menu option File > Save > Decomposition.

A dialog box appears that lets you specify a folder and filename for storing the decomposition data.
Type the name wdecex1d.

After saving the decomposition data to the file wdecex1d.wa1, load the variables into your
workspace:
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load wdecex1d.wa1 -mat 
whos 

Name Size Bytes Class
coefs 1x1023 8184 double array
data_name 1x6 12 char array
longs 1x7 56 double array
thrParams 0x0 0 double array
wave_name 1x3 6 char array

Note Save options are also available when performing denoising or compression inside the Wavelet
1-D tool. In the Wavelet 1-D Denoising window, you can save denoised signal and decomposition.
The same holds true for the Wavelet 1-D Compression window. This way, you can save many
different trials from inside the Denoising and Compression windows without going back to the main
Wavelet 1-D window during a fine-tuning process.

Note When saving a synthesized signal, a decomposition or coefficients to a MAT-file, the mat file
extension is not necessary. You can save approximations individually for each level or save them all at
once.

Export to Workspace

The Wavelet 1-D tool allows you to export your 1-D wavelet analysis to the MATLAB workspace in a
number of formats.

For example, load the example analysis for the freqbrk signal.

After the wavelet 1-D analysis loads, select File —> Export to Workspace.

You have the option to
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• Export Signal — This option exports the synthesized signal vector.
• Export Coefficients — This option exports the vector of wavelet and scaling coefficients, the

bookkeeping vector, and the analyzing wavelet in a structure array. The wavelet and scaling
coefficient and bookkeeping vectors are identical to the output of wavedec.

• Export Decomposition — This option is identical to Export Coefficients except that it also
contains the name of the analyzed signal.

• Export All Approximations — This option exports a L-by-N matrix where L is the value of
Level and N is the length of the input signal. Each row of the matrix is the projection onto the
approximation space at the corresponding level. For example, the first row of the matrix is the
projection onto the approximation space at level 1.

• Export All Details — This option exports a L-by-N matrix where L is the value of Level and N
is the length of the input signal. Each row of the matrix is the projection onto the detail (wavelet)
space at the corresponding level. For example, the first row of the matrix is the projection onto the
detail space at level 1.

Loading Information into the Wavelet 1-D Tool

You can load signals, coefficients, or decompositions into the Wavelet Analyzer app. The information
you load may have been previously exported from the app and then manipulated in the workspace, or
it may have been information you generated initially from the command line.

In either case, you must observe the strict file formats and data structures used by the Wavelet 1-D
tool, or else errors will result when you try to load information.

Loading Signals

To load a signal you've constructed in your MATLAB workspace into the Wavelet 1-D tool, save the
signal in a MAT-file (with extension mat or other).

For instance, suppose you've designed a signal called warma and want to analyze it in the Wavelet 1-
D tool.

save warma warma

The workspace variable warma must be a vector.

sizwarma = size(warma)    
sizwarma = 
           1        1000

To load this signal into the Wavelet 1-D tool, use the menu option File > Load > Signal.

A dialog box appears that lets you select the appropriate MAT-file to be loaded.
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Note The first 1-D variable encountered in the file is considered the signal. Variables are inspected in
alphabetical order.

Loading Discrete Wavelet Transform Coefficients

To load discrete wavelet transform coefficients into the Wavelet 1-D tool, you must first save the
appropriate data in a MAT-file, which must contain at least the two variables coefs and longs.

Variable coefs must be a vector of DWT coefficients (concatenated for the various levels), and
variable longs a vector specifying the length of each component of coefs, as well as the length of
the original signal.

After constructing or editing the appropriate data in your workspace, type

save myfile coefs longs

Use the File > Load > Coefficients menu option from the Wavelet 1-D tool to load the data into the
graphical tool.

A dialog box appears, allowing you to choose the folder and file in which your data reside.
Loading Decompositions

To load discrete wavelet transform decomposition data into the Wavelet 1-D graphical interface, you
must first save the appropriate data in a MAT-file (with extension wa1 or other).

The MAT-file contains the following variables.

Variable Status Description
coefs Required Vector of concatenated DWT coefficients
longs Required Vector specifying lengths of components of coefs

and of the original signal
wave_name Required Character vector specifying name of wavelet used

for decomposition (e.g., db3)
data_name Optional Character vector specifying name of decomposition

After constructing or editing the appropriate data in your workspace, type

save myfile coefs longs wave_name

Use the File > Load > Decomposition menu option from the Wavelet 1-D tool to load the
decomposition data into the graphical tool.

A dialog box appears, allowing you to choose the folder and file in which your data reside.
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Note When loading a signal, a decomposition or coefficients from a MAT-file, the extension of this file
is free. The mat extension is not necessary.

See Also
Wavelet Signal Denoiser | wdenoise

More About
• “Denoise a Signal with the Wavelet Signal Denoiser” on page 6-25
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Fast Wavelet Transform (FWT) Algorithm
In 1988, Mallat produced a fast wavelet decomposition and reconstruction algorithm [1]. The Mallat
algorithm for discrete wavelet transform (DWT) is, in fact, a classical scheme in the signal processing
community, known as a two-channel subband coder using conjugate quadrature filters or quadrature
mirror filters (QMFs).

• The decomposition algorithm starts with signal s, next calculates the coordinates of A1 and D1, and
then those of A2 and D2, and so on.

• The reconstruction algorithm called the inverse discrete wavelet transform (IDWT) starts from the
coordinates of AJ and DJ, next calculates the coordinates of AJ–1, and then using the coordinates of
AJ–1 and DJ–1 calculates those of AJ–2, and so on.

This section addresses the following topics:

• “Filters Used to Calculate the DWT and IDWT” on page 3-34
• “Algorithms” on page 3-36
• “Why Does Such an Algorithm Exist?” on page 3-40
• “1-D Wavelet Capabilities” on page 3-43
• “2-D Wavelet Capabilities” on page 3-44

Filters Used to Calculate the DWT and IDWT
For an orthogonal wavelet, in the multiresolution framework, we start with the scaling function φ and
the wavelet function ψ. One of the fundamental relations is the twin-scale relation (dilation equation
or refinement equation):

1
2ϕ x

2 = ∑
n ∈ Z

wnϕ(x− n)

All the filters used in DWT and IDWT are intimately related to the sequence

(wn)n∊Z

Clearly if φ is compactly supported, the sequence (wn) is finite and can be viewed as a filter. The filter
W, which is called the scaling filter (nonnormalized), is

• Finite Impulse Response (FIR)
• Of length 2N
• Of sum 1
• Of norm 1

2
• Of norm 1
• A low-pass filter

For example, for the db3 scaling filter,

load db3 
db3
    db3 =
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    0.2352   0.5706   0.3252  -0.0955  -0.0604   0.0249

sum(db3)
    ans =
         1.0000

norm(db3)
    ans =
         0.7071

From filter W, we define four FIR filters, of length 2N and of norm 1, organized as follows.

Filters Low-Pass High-Pass
Decomposition Lo_D Hi_D
Reconstruction Lo_R Hi_R

The four filters are computed using the following scheme.

where qmf is such that Hi_R and Lo_R are quadrature mirror filters (i.e., Hi_R(k) = (–1) k Lo_R(2N + 1
– k)) for k = 1, 2, ..., 2N.

Note that wrev flips the filter coefficients. So Hi_D and Lo_D are also quadrature mirror filters. The
computation of these filters is performed using orthfilt. Next, we illustrate these properties with
the db6 wavelet.

Load the Daubechies’ extremal phase scaling filter and plot the coefficients.

load db6;
subplot(421); stem(db6,'markerfacecolor',[0 0 1]);
title('Original scaling filter');

Use orthfilt to return the analysis (decomposition) and synthesis (reconstruction) filters.

Obtain the discrete Fourier transforms (DFT) of the lowpass and highpass analysis filters. Plot the
modulus of the DFT.

LoDFT = fft(Lo_D,64);
HiDFT = fft(Hi_D,64);
freq = -pi+(2*pi)/64:(2*pi)/64:pi;
subplot(427); plot(freq,fftshift(abs(LoDFT)));
set(gca,'xlim',[-pi,pi]); xlabel('Radians/sample');
title('DFT Modulus - Lowpass Filter')
subplot(428); plot(freq,fftshift(abs(HiDFT)));
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set(gca,'xlim',[-pi,pi]); xlabel('Radians/sample');
title('Highpass Filter');

Algorithms
Given a signal s of length N, the DWT consists of log2N stages at most. Starting from s, the first step
produces two sets of coefficients: approximation coefficients cA1, and detail coefficients cD1. These
vectors are obtained by convolving s with the low-pass filter Lo_D for approximation, and with the
high-pass filter Hi_D for detail, followed by dyadic decimation.

More precisely, the first step is
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The length of each filter is equal to 2L. The result of convolving a length N signal with a length 2L
filter is N+2L–1. Therefore, the signals F and G are of length N + 2L – 1. After downsampling by 2,
the coefficient vectors cA1 and cD1 are of length

N − 1
2 + L .

The next step splits the approximation coefficients cA1 in two parts using the same scheme, replacing
s by cA1 and producing cA2 and cD2, and so on.

So the wavelet decomposition of the signal s analyzed at level j has the following structure: [cAj,
cDj, ..., cD1].

This structure contains for J = 3 the terminal nodes of the following tree.

• Conversely, starting from cAj and cDj, the IDWT reconstructs cAj–1, inverting the decomposition
step by inserting zeros and convolving the results with the reconstruction filters.
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• For images, a similar algorithm is possible for two-dimensional wavelets and scaling functions
obtained from 1-D wavelets by tensorial product.

This kind of 2-D DWT leads to a decomposition of approximation coefficients at level j in four
components: the approximation at level j + 1 and the details in three orientations (horizontal,
vertical, and diagonal).

The following charts describe the basic decomposition and reconstruction steps for images.
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So, for J = 2, the 2-D wavelet tree has the following form.
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Finally, let us mention that, for biorthogonal wavelets, the same algorithms hold but the
decomposition filters on one hand and the reconstruction filters on the other hand are obtained from
two distinct scaling functions associated with two multiresolution analyses in duality.

In this case, the filters for decomposition and reconstruction are, in general, of different odd lengths.
This situation occurs, for example, for “splines” biorthogonal wavelets used in the toolbox. By zero-
padding, the four filters can be extended in such a way that they will have the same even length.

Why Does Such an Algorithm Exist?
The previous paragraph describes algorithms designed for finite-length signals or images. To
understand the rationale, we must consider infinite-length signals. The methods for the extension of a
given finite-length signal are described in “Border Effects” on page 3-45.

Let us denote h = Lo_R and g = Hi_R and focus on the 1-D case.

We first justify how to go from level j to level j+1, for the approximation vector. This is the main step
of the decomposition algorithm for the computation of the approximations. The details are calculated
in the same way using the filter g instead of filter h.

Let (Ak
(j))k∊Z be the coordinates of the vector Aj:

A j = ∑
k

Ak( j)ϕ j, k

and Ak
(j+1) the coordinates of the vector Aj+1:

A j + 1 = ∑
k

Ak( j + 1)ϕ j + 1, k

Ak
(j+1) is calculated using the formula

Ak( j + 1) = ∑
n

hn− 2kAn( j)

This formula resembles a convolution formula.

The computation is very simple.

Let us define
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h(k) = h(− k),  and Fk
( j + 1) = ∑

n
hk− nAn( j) .

The sequence F(j+1) is the filtered output of the sequence A(j) by the filter h.

We obtain

Ak
(j+1) = F2k

(j+1)

We have to take the even index values of F. This is downsampling.

The sequence A(j+1) is the downsampled version of the sequence F(j+1).

The initialization is carried out using Ak
(0) = s(k), where s(k) is the signal value at time k.

There are several reasons for this surprising result, all of which are linked to the multiresolution
situation and to a few of the properties of the functions φj,k and ψj,k.

Let us now describe some of them.

1 The family (ϕ0, k, k ∈ Z) is formed of orthonormal functions. As a consequence for any j, the family
(ϕ j, k, k ∈ Z) is orthonormal.

2 The double indexed family

(ψ j, k, j ∈ Z, k ∈ Z)

is orthonormal.
3 For any j, the (ϕ j, k, k ∈ Z) are orthogonal to (ψ j′, k, j′ ≤ j, k ∈ Z).
4 Between two successive scales, we have a fundamental relation, called the twin-scale relation.

Twin-Scale Relation for ϕ
ϕ1, 0 = ∑

k ∈ Z
hkϕ0, k ϕ j + 1, 0 = ∑

k ∈ Z
hkϕ j, k

This relation introduces the algorithm's h filter (hn = 2ωn). For more information, see “Filters
Used to Calculate the DWT and IDWT” on page 3-34.

5 We check that:

a The coordinate of φj+1,0 on φj,k is hk and does not depend on j.
b The coordinate of φj+1,n on φj,k is equal to ϕ j + 1, n, ϕ j, k = hk− 2n.

6 These relations supply the ingredients for the algorithm.
7 Up to now we used the filter h. The high-pass filter g is used in the twin scales relation linking

the ψ and φ functions. Between two successive scales, we have the following twin-scale
fundamental relation.

Twin-Scale Relation Between ψ and ϕ
ψ1, 0 = ∑

k ∈ Z
gkϕ0, k ψ j + 1, 0 = ∑

k ∈ Z
gkϕ j, k
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8 After the decomposition step, we justify now the reconstruction algorithm by building it. Let us
simplify the notation. Starting from A1 and D1, let us study A0 = A1 + Dj1. The procedure is the
same to calculate A = Aj+1 + Dj+1.

Let us define αn, δn, αk
0 by

A1 = ∑
n

anϕ1, n     D1 = ∑
n

δnψ1, n     A0 = ∑
k

ak
0ϕ0, k

Let us assess the αk
0 coordinates as

ak
0 = A0, ϕ0, k = A1 + D1, ϕ0, k = A1, ϕ0, k + D1, ϕ0, k

= ∑
n

an ϕ1, n, ϕ0, k + ∑
n

δn ψ1, n, ϕ0, k

= ∑
n

anhk− 2n + ∑
n

δngk− 2n

We will focus our study on the first sum ∑nanhk− 2n; the second sum ∑nδngk− 2n is handled in a
similar manner.

The calculations are easily organized if we note that (taking k = 0 in the previous formulas, makes
things simpler)

∑
n

anh−2n = … + a−1h2 + a0h0 + a1h−2 + a2h−4 + …

= … + a−1h2 + 0h1 + a0h0 + 0h−1 + a1h−2 + 0h−3 + a2h−4 + …

If we transform the (αn)sequence into a new sequence (αn)defined by

      ..., α–1, 0, α0, 0, α1, 0, α2, 0, ... that is precisely

a2n = an, a2n + 1 = 0

Then

∑
n

anh−2n = ∑
n

anh−n

and by extension

∑
n

anhk− 2n = ∑
n

anhk− n

Since

ak
0 = ∑

n
anhk− n + ∑

n
δngk− n

the reconstruction steps are:

1 Replace the α and δ sequences by upsampled versions α˜ and δ inserting zeros.
2 Filter by h and g respectively.
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3 Sum the obtained sequences.

1-D Wavelet Capabilities
Basic 1-D Objects

 Objects Description
Signal in original time s

Ak, 0 ≤ k ≤ j

Dk, 1 ≤ k ≤ j

Original signal

Approximation at level k

Detail at level k
Coefficients in scale-related
time

cAk, 1 ≤ k ≤ j

cDk, 1 ≤ k ≤ j

[cAj, cDj, ..., cD1]

Approximation coefficients at level k

Detail coefficients at level k

Wavelet decomposition at level j, j ≥ 1

Analysis-Decomposition Capabilities

Purpose Input Output File
Single-level decomposition s cA1, cD1 dwt
Single-level decomposition cAj cAj+1, cDj+1 dwt
Decomposition s [cAj, cDj, ..., cD1] wavedec

Synthesis-Reconstruction Capabilities

Purpose Input Output File
Single-level reconstruction cA1, cD1 s or A0 idwt
Single-level reconstruction cAj+1, cDj+1 cAj idwt
Full reconstruction [cAj, cDj, ..., cD1] s or A0 waverec
Selective reconstruction [cAj, cDj, ..., cD1] Al, Dm wrcoef

Decomposition Structure Utilities

Purpose Input Output File
Extraction of detail coefficients [cAj, cDj, ..., cD1] cDk, 1 ≤ k ≤ j detcoef
Extraction of approximation coefficients [cAj, cDj, ..., cD1] cAk, 0≤ k ≤ j appcoef
Recomposition of the decomposition
structure

[cAj, cDj, ..., cD1] [cAk, cDk, ..., cD1] 1 ≤ k ≤ j upwlev

To illustrate command-line mode for 1-D capabilities, see “1-D Analysis Using the Command Line” on
page 3-10. .
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2-D Wavelet Capabilities
Basic 2-D Objects

 Objects Description
Image in original resolution s Original image

A0 Approximation at level 0
Ak, 1 ≤ k ≤ j Approximation at level k
Dk, 1 ≤ k ≤ j Details at level k

Coefficients in scale-related
resolution

cAk, 1 ≤ k ≤ j Approximation coefficients at level k
cDk, 1 ≤ k ≤ j Detail coefficients at level k
[cAj, cDj, ..., cD1] Wavelet decomposition at level j

Dk stands for Dk(h), Dk(v), Dk(d) , the horizontal, vertical, and diagonal details at level k.

The same holds for cDk, which stands for cDk(h), cDk(v), cDk(d) .

The 2-D files are the same as those for the 1-D case, but with a 2 appended on the end of the
command.

For example, idwt becomes idwt2. For more information, see “1-D Wavelet Capabilities” on page 3-
43.

To illustrate command-line mode for 2-D capabilities, see “Wavelet Image Analysis and Compression”
on page 3-151..

References
[1] Mallat, S. G. “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,”

IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 11, Issue 7, July 1989,
pp. 674–693.
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Border Effects
Classically, the DWT is defined for sequences with length of some power of 2, and different ways of
extending samples of other sizes are needed. Methods for extending the signal include zero-padding,
smooth padding, periodic extension, and boundary value replication (symmetrization).

The basic algorithm for the DWT is not limited to dyadic length and is based on a simple scheme:
convolution and downsampling. As usual, when a convolution is performed on finite-length signals,
border distortions arise.

Signal Extensions: Zero-Padding, Symmetrization, and Smooth
Padding
To deal with border distortions, the border should be treated differently from the other parts of the
signal.

Various methods are available to deal with this problem, referred to as “wavelets on the interval” [1].
These interesting constructions are effective in theory but are not entirely satisfactory from a
practical viewpoint.

Often it is preferable to use simple schemes based on signal extension on the boundaries. This
involves the computation of a few extra coefficients at each stage of the decomposition process to get
a perfect reconstruction. It should be noted that extension is needed at each stage of the
decomposition process.

Details on the rationale of these schemes are in Chapter 8 of the book Wavelets and Filter Banks, by
Strang and Nguyen [2].

The available signal extension modes are as follows (see dwtmode):

• Zero-padding ('zpd'): This method is used in the version of the DWT given in the previous
sections and assumes that the signal is zero outside the original support.

The disadvantage of zero-padding is that discontinuities are artificially created at the border.
• Symmetrization ('sym'): This method assumes that signals or images can be recovered outside

their original support by symmetric boundary value replication.

It is the default mode of the wavelet transform in the toolbox.

Symmetrization has the disadvantage of artificially creating discontinuities of the first derivative
at the border, but this method works well in general for images.

• Smooth padding of order 1 ('spd'or 'sp1'): This method assumes that signals or images can
be recovered outside their original support by a simple first-order derivative extrapolation:
padding using a linear extension fit to the first two and last two values.

Smooth padding works well in general for smooth signals.
• Smooth padding of order 0 ('sp0'): This method assumes that signals or images can be

recovered outside their original support by a simple constant extrapolation. For a signal extension
this is the repetition of the first value on the left and last value on the right.

• Periodic-padding (1) ('ppd'): This method assumes that signals or images can be recovered
outside their original support by periodic extension.
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The disadvantage of periodic padding is that discontinuities are artificially created at the border.

The DWT associated with these five modes is slightly redundant. But IDWT ensures a perfect
reconstruction for any of the five previous modes whatever the extension mode used for DWT.

• Periodic-padding (2) ('per'): If the signal length is odd, the signal is first extended by adding
an extra-sample equal to the last value on the right. Then a minimal periodic extension is
performed on each side. The same kind of rule exists for images. This extension mode is used for
SWT (1-D & 2-D).

This last mode produces the smallest length wavelet decomposition. But the extension mode used for
IDWT must be the same to ensure a perfect reconstruction.

Before looking at an illustrative example, let us compare some properties of the theoretical Discrete
Wavelet Transform versus the actual DWT.

The theoretical DWT is applied to signals that are defined on an infinite length time interval (Z). For
an orthogonal wavelet, this transform has the following desirable properties:

1 Norm preservation

Let cA and cD be the approximation and detail of the DWT coefficients of an infinite length signal
X. Then the l2–norm is preserved:
‖X‖2 = ‖cA‖2 + ‖cD‖2

2 Orthogonality

Let A and D be the reconstructed approximation and detail. Then, A and D are orthogonal and
‖X‖2 = ‖A‖2 + ‖D‖2

3 Perfect reconstruction
X = A + D

Since the DWT is applied to signals that are defined on a finite-length time interval, extension is
needed for the decomposition, and truncation is necessary for reconstruction.

To ensure the crucial property 3 (perfect reconstruction) for arbitrary choices of

• The signal length
• The wavelet
• The extension mode

the properties 1 and 2 can be lost. These properties hold true for an extended signal of length usually
larger than the length of the original signal. So only the perfect reconstruction property is always
preserved. Nevertheless, if the DWT is performed using the periodic extension mode ('per') and if the
length of the signal is divisible by 2J, where J is the maximum level decomposition, the properties 1,
2, and 3 remain true.

Practical Considerations
The DWT iterative step consists of filtering followed by downsampling:

• Apply lowpass filter then downsample by two to obtain approximation coefficients.
• Apply highpass filter then downsample by two to obtain detail coefficients.
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So conceptually, the number of approximation coefficients is one half the number of samples, and
similarly for the detail coefficients.

In the real world, we deal with signals of finite length. With the desire of applying the theoretical
DWT algorithm to the practical, the question of boundary conditions must be addressed: how should
the signal be extended?

Before investigating the different scenarios, save the current boundary extension mode.

origmodestatus = dwtmode('status','nodisplay');

Periodic, Power of 2

Consider the following example. Load the noisdopp data. The signal has 1024 samples, which is a
power of 2. Use dwtmode to set the extension mode to periodic. Then use wavedec to obtain the
level-3 DWT of the signal using the orthogonal db4 wavelet.

load noisdopp;
x = noisdopp;
lev = 3;
wav = 'db4';
dwtmode('per','nodisp')
[c,bk] = wavedec(x,lev,wav);
bk

bk =

         128         128         256         512        1024

The bookkeeping vector bk contains the number of coefficients by level. At each stage, the number of
detail coefficients reduces exactly by a factor of 2. At the end, there are  approximation
coefficients.

Compare the -norms.

fprintf('l2-norm difference: %.5g\n',sum(x.^2)-sum(c.^2))

l2-norm difference: 9.0658e-09

Obtain the reconstructed approximations and details by setting to 0 the appropriate segments of the
coefficients vector c and taking the inverse DWT.

cx = c;
cx(bk(1)+1:end) = 0;
reconApp = waverec(cx,bk,wav);
cx = c;
cx(1:bk(1)) = 0;
reconDet = waverec(cx,bk,wav);

Check for orthogonality.

fprintf('Orthogonality difference %.4g\n',...
    sum(x.^2)-(sum(reconApp.^2)+sum(reconDet.^2)))

Orthogonality difference 1.816e-08
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Check for perfect reconstruction.

fprintf('Perfect reconstruction difference: %.5g\n',...
    max(abs(x-(reconApp+reconDet))));

Perfect reconstruction difference: 1.674e-11

The three theoretical DWT properties are preserved.

Periodic, Not Power of 2

Now obtain the three-level DWT of a signal with 1026 samples. Use the same wavelet and extension
mode is above. The number of coefficients at stage n does not evenly divide the signal length.

x = [0 0 noisdopp];
[c,bk] = wavedec(x,lev,wav);
bk

bk =

         129         129         257         513        1026

Check for -norm preservation, orthogonality, and perfect reconstruction.

cx = c;
cx(bk(1)+1:end) = 0;
reconApp = waverec(cx,bk,wav);
cx = c;
cx(1:bk(1)) = 0;
reconDet = waverec(cx,bk,wav);

fprintf('l2-norm difference: %.5g\n',sum(x.^2)-sum(c.^2))
fprintf('Orthogonality difference %.4g\n',...
    sum(x.^2)-(sum(reconApp.^2)+sum(reconDet.^2)))
fprintf('Perfect reconstruction difference: %.5g\n',...
    max(abs(x-(reconApp+reconDet))));

l2-norm difference: -1.4028
Orthogonality difference -0.3319
Perfect reconstruction difference: 1.6858e-11

Perfect reconstruction is satisfied, but the -norm and orthogonality are not preserved.

Not Periodic, Power of 2

Obtain the three-level DWT of a signal with 1024. Use the same wavelet as above, but this time
change the extension mode to smooth extension of order 1. The number of coefficients at stage n
does not evenly divide the signal length.

dwtmode('sp1','nodisp')
[c,bk] = wavedec(x,lev,wav);
bk

bk =
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         134         134         261         516        1026

Check for -norm preservation, orthogonality, and perfect reconstruction.

cx = c;
cx(bk(1)+1:end) = 0;
reconApp = waverec(cx,bk,wav);
cx = c;
cx(1:bk(1)) = 0;
reconDet = waverec(cx,bk,wav);

fprintf('l2-norm difference: %.5g\n',sum(x.^2)-sum(c.^2))
fprintf('Orthogonality difference %.4g\n',...
    sum(x.^2)-(sum(reconApp.^2)+sum(reconDet.^2)))
fprintf('Perfect reconstruction difference: %.5g\n',...
    max(abs(x-(reconApp+reconDet))));

l2-norm difference: -113.58
Orthogonality difference -2.678
Perfect reconstruction difference: 1.6372e-11

Again, only perfect reconstruction is satisfied.

Restore the original extension mode.

dwtmode(origmodestatus,'nodisplay');

To support perfect reconstruction for arbitrary choices of signal length, wavelet, and extension mode,
we use frames of wavelets.

A frame is a set of functions  that satisfy the following condition: there exist constants
 such that for any function , the frame inequality holds: 

The functions in a frame are generally not linearly independent. This means that the function  does
not have a unique expansion in . Daubechies [3] shows that if  is the dual frame and

 for some , and if not all  equal , then

.

If , the frame is called a tight frame. If  and  for all , the frame is an
orthonormal basis. If , then energy is not necessarily preserved, and the total number of
coefficients might exceed the length of the signal. If the extension mode is periodic, the wavelet is
orthogonal, and the signal length is divisible by , where  is the maximum level of the wavelet
decomposition, all three theoretical DWT properties are satisfied.

Arbitrary Extensions
It is interesting to notice that if an arbitrary extension is used, and decomposition is performed using
the convolution-downsampling scheme, perfect reconstruction is recovered using idwt or idwt2.

Create a signal and obtain the filters associated with the db9 wavelet.
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x = sin(0.3*[1:451]);
w = 'db9';
[LoD,HiD,LoR,HiR] = wfilters(w);

Append and prepend length(LoD) random numbers to the signal. Plot the original and extended
signals.

lx = length(x);
lf = length(LoD);
ex = [randn(1,lf) x randn(1,lf)];
ymin = min(ex);
ymax = max(ex);
subplot(2,1,1)
plot(lf+1:lf+lx,x)
axis([1 lx+2*lf ymin ymax]);
title('Original Signal')
subplot(2,1,2)
plot(ex)
title('Extended Signal')
axis([1 lx+2*lf ymin ymax])

Use the lowpass and highpass wavelet decomposition filters to obtain the one-level wavelet
decomposition of the extended signal.

la = floor((lx+lf-1)/2);
ar = wkeep(dyaddown(conv(ex,LoD)),la);
dr = wkeep(dyaddown(conv(ex,HiD)),la);
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Confirm perfect reconstruction of the signal.

xr = idwt(ar,dr,w,lx);
err0 = max(abs(x-xr))

err0 = 5.4700e-11

Comparing Extension Differences
Now let us illustrate the differences between the first three methods both for 1-D and 2-D signals.

Zero-Padding

Using the Wavelet Analysis app we will examine the effects of zero-padding.

1 From the MATLAB prompt, type

dwtmode('zpd')

2 From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Analyzer appears.
3 Click the Wavelet 1-D menu item. The discrete wavelet analysis tool for 1-D signal data appears.
4 From the File menu, choose the Example Analysis option and select Basic Signals > with db2

at level 5 > Two nearby discontinuities.
5 Select Display Mode: Show and Scroll.

The detail coefficients clearly show the signal end effects.

Symmetric Extension
6 From the MATLAB prompt, type

dwtmode('sym')

7 Click the Wavelet 1-D menu item.

The discrete wavelet analysis tool for 1-D signal data appears.
8 From the File menu, choose the Example Analysis option and select Basic Signals > with db2

at level 5 > Two nearby discontinuities.
9 Select Display Mode: Show and Scroll.

The detail coefficients clearly show the signal end effects.
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Smooth Padding
10 From the MATLAB prompt, type

dwtmode('spd')
11 Click the Wavelet 1-D menu item.

The discrete wavelet analysis tool for 1-D signal data appears.
12 From the File menu, choose the Example Analysis option and select Basic Signals > with db2

at level 5 > Two nearby discontinuities.
13 Select Display Mode: Show and Scroll.

The detail coefficients show the signal end effects are not present, and the discontinuities are
well detected.

Image Extensions
Let us now consider an image example. Save the current extension mode. Load and display the
geometry image.

origmodestatus = dwtmode('status','nodisplay');
load geometry
nbcol = size(map,1);
colormap(pink(nbcol))
image(wcodemat(X,nbcol))
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Zero-Padding

Set the extension mode to zero-padding and perform a decomposition of the image to level 3 using
the sym4 wavelet. Then reconstruct the approximation of level 3.

lev = 3;
wname = 'sym4';
dwtmode('zpd','nodisp')
[c,s] = wavedec2(X,lev,wname);
a = wrcoef2('a',c,s,wname,lev);
image(wcodemat(a,nbcol))
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Symmetric Extension

Set the extension mode to symmetric extension and perform a decomposition of the image to level 3
using the sym4 wavelet. Then reconstruct the approximation of level 3.

dwtmode('sym','nodisp')
[c,s] = wavedec2(X,lev,wname);
a = wrcoef2('a',c,s,wname,lev);
image(wcodemat(a,nbcol))

3 Discrete Wavelet Analysis

3-54



Smooth Padding

Set the extension mode to smooth padding and perform a decomposition of the image to level 3 using
the sym4 wavelet. Then reconstruct the approximation of level 3.

dwtmode('spd','nodisp')
[c,s] = wavedec2(X,lev,wname);
a = wrcoef2('a',c,s,wname,lev);
image(wcodemat(a,nbcol))
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Restore the original extension mode.

dwtmode(origmodestatus,'nodisplay')
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Nondecimated Discrete Stationary Wavelet Transforms (SWTs)
We know that the classical DWT suffers a drawback: the DWT is not a time-invariant transform. This
means that, even with periodic signal extension, the DWT of a translated version of a signal X is not,
in general, the translated version of the DWT of X.

How to restore the translation invariance, which is a desirable property lost by the classical DWT?
The idea is to average some slightly different DWT, called ε-decimated DWT, to define the stationary
wavelet transform (SWT). This property is useful for several applications such as breakdown points
detection.

The main application of the SWT is denoising. For more information on the rationale, see [CoiD95] in
“References”. For examples, see “1-D Stationary Wavelet Transform” on page 3-62 and “2-D
Stationary Wavelet Transform” on page 3-170.

The principle is to average several denoised signals. Each of them is obtained using the usual
denoising scheme (see “Wavelet Denoising and Nonparametric Function Estimation” on page 6-2),
but applied to the coefficients of an ε-decimated DWT.

Note The SWT is defined only for signals of length divisible by 2J, where J is the maximum
decomposition level. The SWT uses periodic (per) extension.

ε-Decimated DWT
What is an ε-decimated DWT?

There exist a lot of slightly different ways to handle the discrete wavelet transform. Let us recall that
the DWT basic computational step is a convolution followed by a decimation. The decimation retains
even indexed elements.

But the decimation could be carried out by choosing odd indexed elements instead of even indexed
elements. This choice concerns every step of the decomposition process, so at every level we chose
odd or even.

If we perform all the different possible decompositions of the original signal, we have 2J different
decompositions, for a given maximum level J.

Let us denote by εj = 1 or 0 the choice of odd or even indexed elements at step j. Every decomposition
is labeled by a sequence of 0s and 1s: ε = ε1...,εJ. This transform is called the ε-decimated DWT.

You can obtain the basis vectors of the ε-decimated DWT from those of the standard DWT by applying
a shift and corresponds to a special choice of the origin of the basis functions.

How to Calculate the ε-Decimated DWT: SWT
It is possible to calculate all the ε-decimated DWT for a given signal of length N, by computing the
approximation and detail coefficients for every possible sequence ε. Do this using iteratively, a
slightly modified version of the basic step of the DWT of the form:

[A,D] = dwt(X,wname,'mode','per','shift',e); 
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The last two arguments specify the way to perform the decimation step. This is the classical one for e
= 0, but for e = 1 the odd indexed elements are retained by the decimation.

Of course, this is not a good way to calculate all the ε-decimated DWT, because many computations
are performed many times. We shall now describe another way, which is the stationary wavelet
transform (SWT).

The SWT algorithm is very simple and is close to the DWT one. More precisely, for level 1, all the ε-
decimated DWT (only two at this level) for a given signal can be obtained by convolving the signal
with the appropriate filters as in the DWT case but without downsampling. Then the approximation
and detail coefficients at level 1 are both of size N, which is the signal length. This can be visualized
in the following figure.

The general step j convolves the approximation coefficients at level j–1, with upsampled versions of
the appropriate original filters, to produce the approximation and detail coefficients at level j. This
can be visualized in the following figure.

Next, we illustrate how to extract a given ε-decimated DWT from the approximation and detail
coefficients structure of the SWT.

We decompose a sequence of height numbers with the SWT, at level J = 3, using an orthogonal
wavelet.
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The function swt calculates successively the following arrays, where A(j,ε1,...,εj) or D(j,ε1,...,εj)
denotes an approximation or a detail coefficient at level j obtained for the ε-decimated DWT
characterized by ε=[ε1,...,εj].

Step 0 (Original Data)

A(0) A(0) A(0) A(0) A(0) A(0) A(0) A(0)

Step 1

D(1,0) D(1,1) D(1,0) D(1,1) D(1,0) D(1,1) D(1,0) D(1,1)
A(1,0) A(1,1) A(1,0) A(1,1) A(1,0) A(1,1) A(1,0) A(1,1)

Step 2

D(1,0) D(1,1) D(1,0) D(1,1) D(1,0) D(1,1) D(1,0) D(1,1)
D(2,0,0) D(2,1,0) D(2,0,1) D(2,1,1) D(2,0,0) D(2,1,0) D(2,0,1) D(2,1,1)
A(2,0,0) A(2,1,0) A(2,0,1) A(2,1,1) A(2,0,0) A(2,1,0) A(2,0,1) A(2,1,1)

Step 3

D(1,0) D(1,1) D(1,0) D(1,1) D(1,0) D(1,1) D(1,0) D(1,1)
D(2,0,0) D(2,1,0) D(2,0,1) D(2,1,1) D(2,0,0) D(2,1,0) D(2,0,1) D(2,1,1)
D(3,0,0,0) D(3,1,0,0) D(3,0,1,0) D(3,1,1,0) D(3,0,0,1) D(3,1,0,1) D(3,0,1,1) D(3,1,1,1)
A(3,0,0,0) A(3,1,0,0) A(3,0,1,0) A(3,1,1,0) A(3,0,0,1) A(3,1,0,1) A(3,0,1,1) A(3,1,1,1)

Let j denote the current level, where j is also the current step of the algorithm. Then we have the
following abstract relations with εi = 0 or 1:

[tmpAPP,tmpDET] = 
dwt(A(j,ε1, ,ɛj),wname,'mode','per','shift',ɛj+1); 
A(j+1,ɛ1, ,ɛj,ɛj+1) = circshift(tmpAPP,-ɛj+1);
D(j+1,ɛ1, ,ɛj,ɛj+1) = circshift(tmpDET,-ɛj+1);

where circshift performs a ε-circular shift of the input vector. Therefore, if εj+1 = 0, the
circshift instruction is ineffective and can be suppressed.

Let ε = [ε1,...,εJ] with εi = 0 or 1. We have 2J = 23 = eight different ε-decimated DWTs at level 3.
Choosing ε, we can retrieve the corresponding ε-decimated DWT from the SWT array.

Now, consider the last step, J = 3, and let [Cε,Lε] denote the wavelet decomposition structure of an ε-
decimated DWT for a given ε. Then, it can be retrieved from the SWT decomposition structure by
selecting the appropriate coefficients as follows:

Cε =

A(3, ε1, ε2, ε3) D(3, ε1, ε2, ε3) D(2, ε1, ε2) D(2, ε1, ε2) D(1, ε1) D(1, ε1) D(1, ε1) D(1, ε1)

Lε = [1,1,2,4,8]

For example, the ε-decimated DWT corresponding to ε = [ε1, ε2, ε3] = [1,0,1] is shown in bold in the
sequence of arrays of the previous example.
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This can be extended to the 2-D case. The algorithm for the stationary wavelet transform for images
is visualized in the following figure.

Inverse Discrete Stationary Wavelet Transform (ISWT)
Each ε-decimated DWT corresponding to a given ε can be inverted.

To reconstruct the original signal using a given ε-decimated DWT characterized by [ε1,...,εJ], we can
use the abstract algorithm

FOR j = J:-1:1
  A(j-1, ε1, ,ɛj-1) = ...
  idwt(A(j,ɛ1, ,ɛj),D(S,ɛ1, ,ɛj)],wname,'mode','per','shift',ɛj);
END

For each choice of ε = (ε1,...,εJ), we obtain the original signal A(0), starting from slightly different
decompositions, and capturing in different ways the main features of the analyzed signal.
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The idea of the inverse discrete stationary wavelet transform is to average the inverses obtained for
every ε-decimated DWT. This can be done recursively, starting from level J down to level 1.

The ISWT is obtained with the following abstract algorithm:

FOR j = J:-1:1
    X0 = idwt(A(j,ɛ1, ,ɛj),D(j,ɛ1, ,ɛj)],wname, ...
            'mode','per','shift',0);
    X1 = idwt(A(j,ɛ1, ,ɛj),D(j,ɛ1, ,ɛj)],wname, ...
            'mode','per','shift',1);
    X1 = circshift(X1,-1);
    A(j-1, ɛ1, ,ɛj-1) = (X0+X1)/2;
END

Along the same lines, this can be extended to the 2-D case.

More About SWT
Some useful references for the Stationary Wavelet Transform (SWT) are [CoiD95], [NasS95], and
[PesKC96] in “References”.
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1-D Stationary Wavelet Transform
This topic takes you through the features of 1-D discrete stationary wavelet analysis using the
Wavelet Toolbox software. For more information see “Nondecimated Discrete Stationary Wavelet
Transforms (SWTs)” on page 3-57 in the Wavelet Toolbox User's Guide.

The toolbox provides these functions for 1-D discrete stationary wavelet analysis. For more
information on the functions, see the reference pages.

Analysis-Decomposition Functions
Function Name Purpose
swt Decomposition

Synthesis-Reconstruction Functions
Function Name Purpose
iswt Reconstruction

The stationary wavelet decomposition structure is more tractable than the wavelet one. So the
utilities, useful for the wavelet case, are not necessary for the stationary wavelet transform (SWT).

In this section, you'll learn to

• Load a signal
• Perform a stationary wavelet decomposition of a signal
• Construct approximations and details from the coefficients
• Display the approximation and detail at level 1
• Regenerate a signal by using inverse stationary wavelet transform
• Perform a multilevel stationary wavelet decomposition of a signal
• Reconstruct the level 3 approximation
• Reconstruct the level 1, 2, and 3 details
• Reconstruct the level 1 and 2 approximations
• Display the results of a decomposition
• Reconstruct the original signal from the level 3 decomposition
• Remove noise from a signal

Since you can perform analyses either from the command line or using the Wavelet Analyzer app, this
section has subsections covering each method.

The final subsection discusses how to exchange signal and coefficient information between the disk
and the graphical tools.

1-D Analysis Using the Command Line
This example involves a noisy Doppler test signal.
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1 Load a signal.

From the MATLAB prompt, type

load noisdopp
2 Set the variables. Type

s = noisdopp; 

For the SWT, if a decomposition at level k is needed, 2^k must divide evenly into the length of
the signal. If your original signal does not have the correct length, you can use the wextend
function to extend it.

3 Perform a single-level Stationary Wavelet Decomposition.

Perform a single-level decomposition of the signal using the db1 wavelet. Type

[swa,swd] = swt(s,1,'db1');

This generates the coefficients of the level 1 approximation (swa) and detail (swd). Both are of
the same length as the signal. Type

whos

Name Size Bytes Class
noisdopp 1x1024 8192 double array
s 1x1024 8192 double array
swa 1x1024 8192 double array
swd 1x1024 8192 double array

4 Display the coefficients of approximation and detail.

To display the coefficients of approximation and detail at level 1, type

subplot(1,2,1), plot(swa); title('Approximation cfs') 
subplot(1,2,2), plot(swd); title('Detail cfs')
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5 Regenerate the signal by Inverse Stationary Wavelet Transform.

To find the inverse transform, type

A0 = iswt(swa,swd,'db1'); 

To check the perfect reconstruction, type

err = norm(s-A0)
err = 
 2.1450e-14

6 Construct and display approximation and detail from the coefficients.

To construct the level 1 approximation and detail (A1 and D1) from the coefficients swa and swd,
type

nulcfs = zeros(size(swa));
A1 = iswt(swa,nulcfs,'db1');  
D1 = iswt(nulcfs,swd,'db1');

To display the approximation and detail at level 1, type

subplot(1,2,1), plot(A1); title('Approximation A1'); 
subplot(1,2,2), plot(D1); title('Detail D1');

7 Perform a multilevel Stationary Wavelet Decomposition.

To perform a decomposition at level 3 of the signal (again using the db1 wavelet), type

[swa,swd] = swt(s,3,'db1');
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This generates the coefficients of the approximations at levels 1, 2, and 3 (swa) and the
coefficients of the details (swd). Observe that the rows of swa and swd are the same length as the
signal length. Type

clear A0 A1 D1 err nulcfs 
whos

Name Size Bytes Class
noisdopp 1x1024 8192 double array
s 1x1024 8192 double array
swa 3x1024 24576 double array
swd 3x1024 24576 double array

8 Display the coefficients of approximations and details.

To display the coefficients of approximations and details, type

kp = 0; 
for i = 1:3
    subplot(3,2,kp+1), plot(swa(i,:));
    title(['Approx. cfs level ',num2str(i)])
    subplot(3,2,kp+2), plot(swd(i,:));  
    title(['Detail cfs level ',num2str(i)])
    kp = kp + 2; 
end

9 Reconstruct approximation at Level 3 From coefficients.
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To reconstruct the approximation at level 3, type

mzero = zeros(size(swd)); 
A = mzero; 
A(3,:) = iswt(swa,mzero,'db1');

10 Reconstruct details from coefficients.

To reconstruct the details at levels 1, 2 and 3, type

D = mzero; 
for i = 1:3
    swcfs = mzero;
    swcfs(i,:) = swd(i,:);
    D(i,:) = iswt(mzero,swcfs,'db1');
end

11 Reconstruct and display approximations at Levels 1 and 2 from approximation at Level 3 and
details at Levels 2 and 3.

To reconstruct the approximations at levels 2 and 3, type

A(2,:) = A(3,:) + D(3,:); 
A(1,:) = A(2,:) + D(2,:);

To display the approximations and details at levels 1, 2 and 3, type

kp = 0; 
for i = 1:3
    subplot(3,2,kp+1), plot(A(i,:));
    title(['Approx. level ',num2str(i)])
    subplot(3,2,kp+2), plot(D(i,:));
    title(['Detail level ',num2str(i)])
    kp = kp + 2;
end
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12 Remove noise by thresholding.

To denoise the signal, use the ddencmp command to calculate a default global threshold. Use the
wthresh command to perform the actual thresholding of the detail coefficients, and then use the
iswt command to obtain the denoised signal.

Note All methods for choosing thresholds in the 1-D Discrete Wavelet Transform case are also
valid for the 1-D Stationary Wavelet Transform, which are also those used by the Wavelet
Analysis app. This is also true for the 2-D transforms.

[thr,sorh] = ddencmp('den','wv',s); 
dswd = wthresh(swd,sorh,thr); 
clean = iswt(swa,dswd,'db1');

To display both the original and denoised signals, type

subplot(2,1,1), plot(s); 
title('Original signal') 
subplot(2,1,2), plot(clean); 
title('denoised signal')
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The obtained signal remains a little bit noisy. The result can be improved by considering the
decomposition of s at level 5 instead of level 3, and repeating steps 14 and 15. To improve the
previous denoising, type

[swa,swd] = swt(s,5,'db1'); 
[thr,sorh] = ddencmp('den','wv',s); 
dswd = wthresh(swd,sorh,thr);
clean = iswt(swa,dswd,'db1'); 
subplot(2,1,1), plot(s); title('Original signal') 
subplot(2,1,2), plot(clean); title('denoised signal')
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A second syntax can be used for the swt and iswt functions, giving the same results:

lev = 5; swc = swt(s,lev,'db1'); 
swcden = swc; 
swcden(1:end-1,:) = wthresh(swcden(1:end-1,:),sorh,thr);
clean = iswt(swcden,'db1');

You can obtain the same plot by using the same plot commands as in step 16 above.

Interactive 1-D Stationary Wavelet Transform Denoising
Now we explore a strategy to denoise signals, based on the 1-D stationary wavelet analysis using the
Wavelet Analyzer app. The basic idea is to average many slightly different discrete wavelet analyses.

1 Start the Stationary Wavelet Transform Denoising 1-D Tool.

From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Analyzer appears.
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Click the SWT Denoising 1-D menu item. The discrete stationary wavelet transform denoising
tool for 1-D signals appears.

2 Load data.

At the MATLAB command prompt, type

load noisbloc;

In the SWT Denoising 1-D tool, select File > Import Signal from Workspace. When the
Import from Workspace dialog box appears, select the noisbloc variable. Click OK to import
the noisy blocks signal.

3 Perform a Stationary Wavelet Decomposition.

Select the db1 wavelet from the Wavelet menu and select 5 from the Level menu, and then click
the Decompose Signal button. After a pause for computation, the tool displays the stationary
wavelet approximation and detail coefficients of the decomposition. These are also called
nondecimated coefficients since they are obtained using the same scheme as for the DWT, but
omitting the decimation step (see “Fast Wavelet Transform (FWT) Algorithm” on page 3-34 in the
Wavelet Toolbox User's Guide).
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4 denoise the signal using the Stationary Wavelet Transform.

While a number of options are available for fine-tuning the denoising algorithm, we'll accept the
defaults of fixed form soft thresholding and unscaled white noise. The sliders located on the right
part of the window control the level-dependent thresholds, indicated by yellow dotted lines
running horizontally through the graphs of the detail coefficients to the left of the window. The
yellow dotted lines can also be dragged directly using the left mouse button over the graphs.

Note that the approximation coefficients are not thresholded.

Click the denoise button.

 1-D Stationary Wavelet Transform

3-71



The result is quite satisfactory, but seems to be oversmoothed around the discontinuities of the
signal. This can be seen by looking at the residuals, and zooming on a breakdown point, for
example around position 800.

Selecting a Thresholding Method

Select hard for the thresholding mode instead of soft, and then click the denoise button.

The result is of good quality and the residuals look like a white noise sample. To investigate this last
point, you can get more information on residuals by clicking the Residuals button.
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Importing and Exporting from the Wavelet Analysis App
The tool lets you save the denoised signal to disk. The toolbox creates a MAT-file in the current folder
with a name of your choice.

To save the above denoised signal, use the menu option File > Save denoised Signal. A dialog box
appears that lets you specify a folder and filename for storing the signal. Type the name dnoibloc.
After saving the signal data to the file dnoibloc.mat, load the variables into your workspace:

load dnoibloc 
whos

Name Size Bytes Class
dnoibloc 1x1024 8192 double array
thrParams 1x5 580 cell array
wname 1x3 6 char array

The denoised signal is given by dnoibloc. In addition, the parameters of the denoising process are
available. The wavelet name is contained in wname:

wname

wname =   
    db1

and the level dependent thresholds are encoded in thrParams, which is a cell array of length 5 (the
level of the decomposition). For i from 1 to 5, thrParams{i} contains the lower and upper bounds of
the interval of thresholding and the threshold value (since interval dependent thresholds are
allowed). For more information, see “1-D Adaptive Thresholding of Wavelet Coefficients” on page 6-
39.

For example, for level 1,

thrParams{1}
 ans =
      1.0e+03 *
      0.0010 1.0240 0.0041

Here the lower bound is 1, the upper bound is 1024, and the threshold value is 4.1. The total time-
interval is not segmented and the procedure does not use the interval dependent thresholds.
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Wavelet Changepoint Detection
This example shows how to use wavelets to detect changes in the variance of a process. Changes in
variance are important because they often indicate that something fundamental has changed about
the data-generating mechanism.

The first example applies wavelet changepoint detection to a very old time series -- the Nile river
minima data for the years 622 to 1281 AD. The river-level minima were measured at the Roda gauge
near Cairo. Measurements are in meters.

Load and plot the data.

load nileriverminima
years = 622:1284;
figure
plot(years,nileriverminima)
title('Nile River Minimum Levels')
AX = gca;
AX.XTick = 622:100:1222;
grid on
xlabel('Year')
ylabel('Meters')

Construction began on a new measuring device around 715 AD. Examining the data prior to and after
approximately 722 AD, there appears to be a change in the variability of the data. You can use
wavelets to explore the hypothesis that the variability of the measurements has been affected by the
introduction of a new measuring device.
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Obtain a multiresolution analysis (MRA) of the data using the Haar wavelet.

wt = modwt(nileriverminima,'haar',4);
mra = modwtmra(wt,'haar');

Plot the MRA and focus on the level-one and level-two details.

figure
subplot(2,1,1)
plot(years,mra(1,:))
title('Level 1 Details')
subplot(2,1,2)
plot(years,mra(2,:))
title('Level 2 Details')
AX = gca;
AX.XTick = 622:100:1222;
xlabel('Years')

Apply an overall change of variance test to the wavelet coefficients.

for JJ = 1:5
    pts_Opt = wvarchg(wt(JJ,:),2);
    changepoints{JJ} = pts_Opt;
end
cellfun(@(x) ~isempty(x),changepoints,'uni',0)

ans =
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  1x5 cell array

    {[1]}    {[0]}    {[0]}    {[0]}    {[0]}

Determine the year corresponding to the detected change of variance.

years(cell2mat(changepoints))

ans =

   721

Split the data into two segments. The first segment includes the years 622 to 721 when the fine-scale
wavelet coefficients indicate a change in variance. The second segment contains the years 722 to
1284. Obtain unbiased estimates of the wavelet variance by scale.

tspre = nileriverminima(1:100);
tspost = nileriverminima(101:end);
wpre = modwt(tspre,'haar',4);
wpost = modwt(tspost,'haar',4);
wvarpre = modwtvar(wpre,'haar',0.95,'table')
wvarpost = modwtvar(wpost,'haar',0.95,'table')

wvarpre =

  5x4 table

          NJ     Lower      Variance     Upper 
          __    ________    ________    _______

    D1    99     0.25199     0.36053    0.55846
    D2    97     0.15367     0.25149    0.48477
    D3    93    0.056137     0.11014    0.30622
    D4    85    0.018881    0.047427    0.26453
    S4    85    0.017875      0.0449    0.25044

wvarpost =

  5x4 table

          NJ      Lower      Variance     Upper 
          ___    ________    ________    _______

    D1    562     0.11394     0.13354    0.15869
    D2    560    0.085288     0.10639    0.13648
    D3    556      0.0693    0.094168    0.13539
    D4    548    0.053644    0.081877    0.14024
    S4    548     0.24608     0.37558    0.64329

Compare the results.
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Vpre = table2array(wvarpre);
Vpost = table2array(wvarpost);
Vpre = Vpre(1:end-1,2:end);
Vpost = Vpost(1:end-1,2:end);

Vpre(:,1) = Vpre(:,2)-Vpre(:,1);
Vpre(:,3) = Vpre(:,3)-Vpre(:,2);

Vpost(:,1) = Vpost(:,2)-Vpost(:,1);
Vpost(:,3) = Vpost(:,3)-Vpost(:,2);

figure
errorbar(1:4,Vpre(:,2),Vpre(:,1),Vpre(:,3),'ko',...
    'MarkerFaceColor',[0 0 0])
hold on
errorbar(1.5:4.5,Vpost(:,2),Vpost(:,1),Vpost(:,3),'b^',...
    'MarkerFaceColor',[0 0 1])
set(gca,'xtick',1.25:4.25)
set(gca,'xticklabel',{'2 Year','4 Years','8 Years','16 Years','32 Years'})
grid on
ylabel('Variance')
title('Wavelet Variance 622-721 and 722-1284 by Scale','fontsize',14)
legend('Years 622-721','Years 722-1284','Location','NorthEast')

The wavelet variance indicates a significant change in variance between the 622-721 and 722-1284
data over scales of 2 and 4 years.
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The above example used the Haar wavelet filter with only two coefficients because of concern over
boundary effects with the relatively small time series (100 samples from 622-721). If your data are
approximately first or second-order difference stationary, you can substitute the biased estimate
using the 'reflection' boundary. This permits you to use a longer wavelet filter without worrying about
boundary coefficients. Repeat the analysis using the default 'sym4' wavelet.

wpre = modwt(tspre,4,'reflection');
wpost = modwt(tspost,4,'reflection');
wvarpre = modwtvar(wpre,[],[],'EstimatorType','biased',...
    'Boundary','reflection','table');
wvarpost = modwtvar(wpost,[],[],'EstimatorType','biased',...
    'Boundary','reflection','table');

Plot the results.

Vpre = table2array(wvarpre);
Vpost = table2array(wvarpost);
Vpre = Vpre(1:end-1,2:end);
Vpost = Vpost(1:end-1,2:end);

Vpre(:,1) = Vpre(:,2)-Vpre(:,1);
Vpre(:,3) = Vpre(:,3)-Vpre(:,2);

Vpost(:,1) = Vpost(:,2)-Vpost(:,1);
Vpost(:,3) = Vpost(:,3)-Vpost(:,2);

figure
errorbar(1:4,Vpre(:,2),Vpre(:,1),Vpre(:,3),'ko','MarkerFaceColor',[0 0 0])
hold on
errorbar(1.5:4.5,Vpost(:,2),Vpost(:,1),Vpost(:,3),'b^','MarkerFaceColor',[0 0 1])
set(gca,'xtick',1.25:4.25)
set(gca,'xticklabel',{'2 Years','4 Years', '8 Years', '16 Years','32 Years'})
grid on
ylabel('Variance')
title({'Wavelet Variance 622-721 and 722-1284 by Scale'; ...
    'Biased Estimate -- Reflection Boundary'},'fontsize',14)
legend('622-721','722-1284','Location','NorthEast')
hold off
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The conclusion is reinforced. There is a significant difference in the variance of the data over scales
of 2 and 4 years, but not at longer scales. You can conclude that something has changed about the
process variance.

In financial time series, you can use wavelets to detect changes in volatility. To illustrate this,
consider the quarterly chain-weighted U.S. real GDP data for 1974Q1 to 2012Q4. The data were
transformed by first taking the natural logarithm and then calculating the year-over-year difference.
Obtain the wavelet transform (MODWT) of the real GDP data down to level six with the 'db2' wavelet.
Examine the variance of the data and compare that to the variances by scale obtained with the
MODWT.

load GDPcomponents
realgdpwt = modwt(realgdp,'db2',6,'reflection');
gdpmra = modwtmra(realgdpwt,'db2','reflection');
vardata = var(realgdp,1);
varwt = var(realgdpwt(:,1:numel(realgdp)),1,2);

In vardata you have the variance for the aggregate GDP time series. In varwt you have the variance
by scale for the MODWT. There are seven elements in varwt because you obtained the MODWT down
to level six resulting in six wavelet coefficient variances and one scaling coefficient variance. Sum the
variances by scale to see that the variance is preserved. Plot the wavelet variances by scale ignoring
the scaling coefficient variance.

totalMODWTvar = sum(varwt);
bar(varwt(1:end-1,:))
AX = gca;
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AX.XTickLabels = {'[2 4)','[4 8)','[8 16)','[16 32)','[32 64)','[64 128)'};
xlabel('Quarters')
ylabel('Variance')
title('Wavelet Variance by Scale')

Because this data is quarterly, the first scale captures variations between two and four quarters, the
second scale between four and eight, the third between 8 and 16, and so on.

From the MODWT and a simple bar plot, you see that cycles in the data between 8 and 32 quarters
account for the largest variance in the GDP data. If you consider the wavelet variances at these
scales, they account for 57% of the variability in the GDP data. This means that oscillations in the
GDP over a period of 2 to 8 years account for most of the variability seen in the time series.

Plot the level-one details, D1. These details capture oscillations in the data between two and four
quarters in duration.

helperFinancialDataExample1(gdpmra(1,:),years,...
    'Year over Year Real U.S. GDP - D1')
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Examining the level-one details, it appears there is a reduction of variance beginning in the 1980s.

Test the level-one wavelet coefficients for significant variance changepoints.

pts_Opt = wvarchg(realgdpwt(1,1:numel(realgdp)),2);
years(pts_Opt)

ans =

        1982

There is a variance changepoint identified in 1982. This example does not correct for the delay
introduced by the 'db2' wavelet at level one. However, that delay is only two samples so it does not
appreciably affect the results.

To assess changes in the volatility of the GDP data pre and post 1982, split the original data into pre-
and post-changepoint series. Obtain the wavelet transforms of the pre and post datasets. In this case,
the series are relatively short so use the Haar wavelet to minimize the number of boundary
coefficients. Compute unbiased estimates of the wavelet variance by scale and plot the result.

tspre = realgdp(1:pts_Opt);
tspost = realgdp(pts_Opt+1:end);
wtpre = modwt(tspre,'haar',5);
wtpost = modwt(tspost,'haar',5);
prevar = modwtvar(wtpre,'haar','table');
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postvar = modwtvar(wtpost,'haar','table');
xlab = {'[2Q,4Q)','[4Q,8Q)','[8Q,16Q)','[16Q,32Q)','[32Q,64Q)'};
helperFinancialDataExampleVariancePlot(prevar,postvar,'table',xlab)
title('Wavelet Variance By Scale')
legend('Pre 1982 Q2','Post 1982 Q2','Location','NorthWest')

From the preceding plot, it appears there are significant differences between the pre-1982Q2 and
post-1982Q2 variances at scales between 2 and 16 quarters.

Because the time series are so short in this example, it can be useful to use biased estimates of the
variance. Biased estimates do not remove boundary coefficients. Use a 'db2' wavelet filter with four
coefficients.

wtpre = modwt(tspre,'db2',5,'reflection');
wtpost = modwt(tspost,'db2',5,'reflection');
prevar = modwtvar(wtpre,'db2',0.95,'EstimatorType','biased','table');
postvar = modwtvar(wtpost,'db2',0.95,'EstimatorType','biased','table');
xlab = {'[2Q,4Q)','[4Q,8Q)','[8Q,16Q)','[16Q,32Q)','[32Q,64Q)'};
figure
helperFinancialDataExampleVariancePlot(prevar,postvar,'table',xlab)
title('Wavelet Variance By Scale')
legend('Pre 1982 Q2','Post 1982 Q2','Location','NorthWest')
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The results confirm our original finding that there is a reduction in volatility over scales from 2 to 16
quarters.

Using the wavelet transform allows you to focus on scales where the change in volatility is localized.
To see this, examine a plot of the raw data along with the level-one wavelet details.

subplot(2,1,1)
helperFinancialDataExample1(realgdp,years,...
    'Year over Year Real U.S. GDP -- Raw Data')
subplot(2,1,2)
helperFinancialDataExample1(gdpmra(1,:),years,...
    'Year over Year Real U.S. GDP -- Wavelet Level 1 Details')
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The shaded region is referred to as the "Great Moderation" signifying a period of decreased
macroeconomic volatility in the U.S. beginning in the mid 1980s.

Examining the aggregate data, it is not clear that there is in fact reduced volatility in this period.
However, the wavelet level-one details uncover the change in volatility.
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Scale-Localized Volatility and Correlation
There are a number of different variations of the wavelet transform. This example focuses on the
maximal overlap discrete wavelet transform (MODWT). The MODWT is an undecimated wavelet
transform over dyadic (powers of two) scales, which is frequently used with financial data. One nice
feature of the MODWT for time series analysis is that it partitions the data variance by scale. To
illustrate this, consider the quarterly chain-weighted U.S. real GDP data for 1974Q1 to 2012Q4. The
data were transformed by first taking the natural logarithm and then calculating the year-over-year
difference. Obtain the MODWT of the real GDP data down to level six with the 'db2' wavelet. Examine
the variance of the data and compare that to the variances by scale obtained with the MODWT.

load GDPcomponents
realgdpwt = modwt(realgdp,'db2',6);
vardata = var(realgdp,1);
varwt = var(realgdpwt,1,2);

In vardata you have the variance for the aggregate GDP time series. In varwt you have the variance
by scale for the MODWT. There are seven elements in varwt because you obtained the MODWT down
to level six resulting in six wavelet coefficient variances and one scaling coefficient variance. Sum the
variances by scale to see that the variance is preserved. Plot the wavelet variances by scale ignoring
the scaling coefficient variance.

totalMODWTvar = sum(varwt);
bar(varwt(1:end-1,:))
AX = gca;
AX.XTickLabels = {'[2 4)','[4 8)','[8 16)','[16 32)','[32 64)','[64 128)'};
xlabel('Quarters')
ylabel('Variance')
title('Wavelet Variance by Scale')
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Because this data is quarterly, the first scale captures variations between two and four quarters, the
second scale between four and eight, the third between 8 and 16, and so on.

From the MODWT and a simple bar plot, you see that cycles in the data between 8 and 32 quarters
account for the largest variance in the GDP data. If you consider the wavelet variances at these
scales, they account for 57% of the variability in the GDP data. This means that oscillations in the
GDP over a period of 2 to 8 years account for most of the variability seen in the time series.

Wavelet analysis can often reveal changes in volatility not evident in aggregate data. Begin with a
plot of the GDP data.

helperFinancialDataExample1(realgdp,years,'Year over Year Real U.S. GDP')
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The shaded region is referred to as the "Great Moderation" signifying a period of decreased
macroeconomic volatility in the U.S. beginning in the mid 1980s.

Examining the aggregate data, it is not clear that there is in fact reduced volatility in this period. Use
wavelets to investigate this by first obtaining a multiresolution analysis of the real GDP data using the
'db2' wavelet down to level 6.

realgdpwt = modwt(realgdp,'db2',6,'reflection');
gdpmra = modwtmra(realgdpwt,'db2','reflection');

Plot the level-one details, D1. These details capture oscillations in the data between two and four
quarters in duration.

helperFinancialDataExample1(gdpmra(1,:),years,...
    'Year over Year Real U.S. GDP - D1')
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Examining the level-one details, it appears there is a reduction of variance in the period of the Great
Moderation.

Test the level-one wavelet coefficients for significant variance changepoints.

[pts_Opt,kopt,t_est] = wvarchg(realgdpwt(1,1:numel(realgdp)),2);
years(pts_Opt)

ans =

        1982

There is a variance changepoint identified in 1982. This example does not correct for the delay
introduced by the 'db2' wavelet at level one. However, that delay is only two samples so it does not
appreciably affect the results.

To assess changes in the volatility of the GDP data pre and post 1982, split the original data into pre-
and post-changepoint series. Obtain the wavelet transforms of the pre and post datasets. In this case,
the series are relatively short so use the Haar wavelet to minimize the number of boundary
coefficients. Compute unbiased estimates of the wavelet variance by scale and plot the result.

tspre = realgdp(1:pts_Opt);
tspost = realgdp(pts_Opt+1:end);
wtpre = modwt(tspre,'haar',5);
wtpost = modwt(tspost,'haar',5);
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prevar = modwtvar(wtpre,'haar','table');
postvar = modwtvar(wtpost,'haar','table');
xlab = {'[2Q,4Q)','[4Q,8Q)','[8Q,16Q)','[16Q,32Q)','[32Q,64Q)'};
helperFinancialDataExampleVariancePlot(prevar,postvar,'table',xlab)
title('Wavelet Variance By Scale');
legend('Pre 1982 Q2','Post 1982 Q2','Location','NorthWest');

From the preceding plot, it appears there are significant differences between the pre-1982Q2 and
post-1982Q2 variances at scales between 2 and 16 quarters.

Because the time series are so short in this example, it can be useful to use biased estimates of the
variance. Biased estimates do not remove boundary coefficients. Use a 'db2' wavelet filter with four
coefficients.

wtpre = modwt(tspre,'db2',5,'reflection');
wtpost = modwt(tspost,'db2',5,'reflection');
prevar = modwtvar(wtpre,'db2',0.95,'EstimatorType','biased','table');
postvar = modwtvar(wtpost,'db2',0.95,'EstimatorType','biased','table');
xlab = {'[2Q,4Q)','[4Q,8Q)','[8Q,16Q)','[16Q,32Q)','[32Q,64Q)'};
figure;
helperFinancialDataExampleVariancePlot(prevar,postvar,'table',xlab)
title('Wavelet Variance By Scale');
legend('Pre 1982 Q2','Post 1982 Q2','Location','NorthWest');
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The results confirm our original finding that the Great Moderation is manifested in volatility
reductions over scales from 2 to 16 quarters.

You can also use wavelets to analyze correlation between two datasets by scale. Examine the
correlation between the aggregate data on government spending and private investment. The data
cover the same period as the real GDP data and are transformed in the exact same way.

[rho,pval] = corrcoef(privateinvest,govtexp);

Government spending and personal investment demonstrate a weak, but statistically significant,
negative correlation of -0.215. Repeat this analysis using the MODWT.

wtPI = modwt(privateinvest,'db2',5,'reflection');
wtGE = modwt(govtexp,'db2',5,'reflection');
wcorrtable = modwtcorr(wtPI,wtGE,'db2',0.95,'reflection','table');
display(wcorrtable)

wcorrtable =

  6x6 table

          NJ      Lower        Rho         Upper        Pvalue      AdjustedPvalue
          ___    ________    ________    __________    _________    ______________

    D1    257    -0.29187    -0.12602      0.047192       0.1531         0.7502   
    D2    251    -0.54836    -0.35147      -0.11766    0.0040933       0.060171   
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    D3    239    -0.62443    -0.35248    -0.0043207     0.047857        0.35175   
    D4    215    -0.70466    -0.32112       0.20764      0.22523        0.82773   
    D5    167    -0.63284     0.12965       0.76448      0.75962              1   
    S5    167    -0.63428     0.12728       0.76347      0.76392              1   

The multiscale correlation available with the MODWT shows a significant negative correlation only at
scale 2, which corresponds to cycles in the data between 4 and 8 quarters. Even this correlation is
only marginally significant when adjusting for multiple comparisons.

The multiscale correlation analysis reveals that the slight negative correlation in the aggregate data
is driven by the behavior of the data over scales of four to eight quarters. When you consider the data
over different time periods (scales), there is no significant correlation.

With financial data, there is often a leading or lagging relationship between variables. In those cases,
it is useful to examine the cross-correlation sequence to determine if lagging one variable with
respect to another maximizes their cross-correlation. To illustrate this, consider the correlation
between two components of the GDP -- personal consumption expenditures and gross private
domestic investment.

piwt = modwt(privateinvest,'fk8',5);
pcwt = modwt(pc,'fk8',5);
figure;
modwtcorr(piwt,pcwt,'fk8')

Personal expenditure and personal investment are negatively correlated over a period of 2-4 quarters.
At longer scales, there is a strong positive correlation between personal expenditure and personal
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investment. Examine the wavelet cross-correlation sequence at the scale representing 2-4 quarter
cycles.

[xcseq,xcseqci,lags] = modwtxcorr(piwt,pcwt,'fk8');
zerolag = floor(numel(xcseq{1})/2)+1;
plot(lags{1}(zerolag:zerolag+20),xcseq{1}(zerolag:zerolag+20));
hold on;
plot(lags{1}(zerolag:zerolag+20),xcseqci{1}(zerolag:zerolag+20,:),'r--');
xlabel('Lag (Quarters)');
grid on;
title('Wavelet Cross-Correlation Sequence -- [2Q,4Q)');

The finest-scale wavelet cross-correlation sequence shows a peak positive correlation at a lag of one
quarter. This indicates that personal investment lags personal expenditures by one quarter.
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R Wave Detection in the ECG
This example shows how to use wavelets to analyze electrocardiogram (ECG) signals. ECG signals are
frequently nonstationary meaning that their frequency content changes over time. These changes are
the events of interest.

Wavelets decompose signals into time-varying frequency (scale) components. Because signal features
are often localized in time and frequency, analysis and estimation are easier when working with
sparser (reduced) representations.

The QRS complex consists of three deflections in the ECG waveform. The QRS complex reflects the
depolarization of the right and left ventricles and is the most prominent feature of the human ECG.

Load and plot an ECG waveform where the R peaks of the QRS complex have been annotated by two
or more cardiologists. The ECG data and annotations are taken from the MIT-BIH Arrhythmia
Database. The data are sampled at 360 Hz.

load mit200
figure
plot(tm,ecgsig)
hold on
plot(tm(ann),ecgsig(ann),'ro')
xlabel('Seconds')
ylabel('Amplitude')
title('Subject - MIT-BIH 200')
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You can use wavelets to build an automatic QRS detector for use in applications like R-R interval
estimation.

There are two keys for using wavelets as general feature detectors:

• The wavelet transform separates signal components into different frequency bands enabling a
sparser representation of the signal.

• You can often find a wavelet which resembles the feature you are trying to detect.

The 'sym4' wavelet resembles the QRS complex, which makes it a good choice for QRS detection. To
illustrate this more clearly, extract a QRS complex and plot the result with a dilated and translated
'sym4' wavelet for comparison.

qrsEx = ecgsig(4560:4810);
fb = dwtfilterbank('Wavelet','sym4','SignalLength',numel(qrsEx),'Level',3);
psi = wavelets(fb);
figure
plot(qrsEx)
hold on
plot(-2*circshift(psi(3,:),[0 -38]),'r')
axis tight
legend('QRS Complex','Sym4 Wavelet')
title('Comparison of Sym4 Wavelet and QRS Complex')
hold off

Use the maximal overlap discrete wavelet transform (MODWT) to enhance the R peaks in the ECG
waveform. The MODWT is an undecimated wavelet transform, which handles arbitrary sample sizes.
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First, decompose the ECG waveform down to level 5 using the default 'sym4' wavelet. Then,
reconstruct a frequency-localized version of the ECG waveform using only the wavelet coefficients at
scales 4 and 5. The scales correspond to the following approximate frequency bands.

• Scale 4 -- [11.25, 22.5) Hz
• Scale 5 -- [5.625, 11.25) Hz.

This covers the passband shown to maximize QRS energy.

wt = modwt(ecgsig,5);
wtrec = zeros(size(wt));
wtrec(4:5,:) = wt(4:5,:);
y = imodwt(wtrec,'sym4');

Use the squared absolute values of the signal approximation built from the wavelet coefficients and
employ a peak finding algorithm to identify the R peaks.

If you have Signal Processing Toolbox™, you can use findpeaks to locate the peaks. Plot the R-peak
waveform obtained with the wavelet transform annotated with the automatically-detected peak
locations.

y = abs(y).^2;
[qrspeaks,locs] = findpeaks(y,tm,'MinPeakHeight',0.35,...
    'MinPeakDistance',0.150);
figure
plot(tm,y)
hold on
plot(locs,qrspeaks,'ro')
xlabel('Seconds')
title('R Peaks Localized by Wavelet Transform with Automatic Annotations')
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Add the expert annotations to the R-peak waveform. Automatic peak detection times are considered
accurate if within 150 msec of the true peak (±75 msec).

plot(tm(ann),y(ann),'k*')
title('R peaks Localized by Wavelet Transform with Expert Annotations')
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At the command line, you can compare the values of tm(ann) and locs, which are the expert times
and automatic peak detection times respectively. Enhancing the R peaks with the wavelet transform
results in a hit rate of 100% and no false positives. The calculated heart rate using the wavelet
transform is 88.60 beats/minute compared to 88.72 beats/minute for the annotated waveform.

If you try to work on the square magnitudes of the original data, you find the capability of the wavelet
transform to isolate the R peaks makes the detection problem much easier. Working on the raw data
can cause misidentifications such as when the squared S-wave peak exceeds the R-wave peak around
10.4 seconds.

figure
plot(tm,ecgsig,'k--')
hold on
plot(tm,y,'r','linewidth',1.5)
plot(tm,abs(ecgsig).^2,'b')
plot(tm(ann),ecgsig(ann),'ro','markerfacecolor',[1 0 0])
set(gca,'xlim',[10.2 12])
legend('Raw Data','Wavelet Reconstruction','Raw Data Squared', ...
    'Location','SouthEast');
xlabel('Seconds')
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Using findpeaks on the squared magnitudes of the raw data results in twelve false positives.

[qrspeaks,locs] = findpeaks(ecgsig.^2,tm,'MinPeakHeight',0.35,...
    'MinPeakDistance',0.150);

In addition to switches in polarity of the R peaks, the ECG is often corrupted by noise.

load mit203
figure
plot(tm,ecgsig)
hold on
plot(tm(ann),ecgsig(ann),'ro')
xlabel('Seconds')
ylabel('Amplitude')
title('Subject - MIT-BIH 203 with Expert Annotations')
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Use the MODWT to isolate the R peaks. Use findpeaks to determine the peak locations. Plot the R-
peak waveform along with the expert and automatic annotations.

wt = modwt(ecgsig,5);
wtrec = zeros(size(wt));
wtrec(4:5,:) = wt(4:5,:);
y = imodwt(wtrec,'sym4');
y = abs(y).^2;
[qrspeaks,locs] = findpeaks(y,tm,'MinPeakHeight',0.1,...
    'MinPeakDistance',0.150);
figure
plot(tm,y)
title('R-Waves Localized by Wavelet Transform')
hold on
hwav = plot(locs,qrspeaks,'ro');
hexp = plot(tm(ann),y(ann),'k*');
xlabel('Seconds')
legend([hwav hexp],'Automatic','Expert','Location','NorthEast');
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The hit rate is again 100% with zero false alarms.

The previous examples used a very simple wavelet QRS detector based on a signal approximation
constructed from modwt. The goal was to demonstrate the ability of the wavelet transform to isolate
signal components, not to build the most robust wavelet-transform-based QRS detector. It is possible,
for example, to exploit the fact that the wavelet transform provides a multiscale analysis of the signal
to enhance peak detection.
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Wavelet Cross-Correlation for Lead-Lag Analysis
This example shows how to use wavelet cross-correlation to measure similarity between two signals
at different scales.

Wavelet cross-correlation is simply a scale-localized version of the usual cross-correlation between
two signals. In cross-correlation, you determine the similarity between two sequences by shifting one
relative to the other, multiplying the shifted sequences element by element and summing the result.
For deterministic sequences, you can write this as an ordinary inner product:
< xn, yn− k >n = ∑

n
xny‾n− k where xn and yn are sequences (signals) and the bar denotes complex

conjugation. The variable, k, is the lag variable and represents the shift applied to yn. If both xn and
yn are real, the complex conjugate is not necessary. Assume that yn is the same sequence as xn but
delayed by L>0 samples, where L is an integer. For concreteness, assume yn = xn− 10. If you express
yn in terms of xn above, you obtain < xn, xn− 10− k >n = ∑

n
xnx‾n− 10− k. By the Cauchy-Schwartz

inequality, the above is maximized when k = − 10. This means if you left shift (advance) yn by 10
samples, you get the maximum cross-correlation sequence value. If xn is a L-delayed version of yn,
xn = yn− L, then the cross-correlation sequence is maximized at k = L. You can show this by using
xcorr.

Create a triangular signal consisting of 20 samples. Create a noisy shifted version of this signal. The
shift in the peak of the triangle is 3 samples. Plot the x and y sequences.

n = 20;
x0 = 1:n/2;
x1 = (2*x0-1)/n;
x = [x1 fliplr(x1)]';
rng default;
y = [zeros(3,1);x]+0.3*randn(length(x)+3,1);

subplot(2,1,1)
stem(x,'filled')
axis([0 22 -1 2])
title('Input Sequence')

subplot(2,1,2)
stem(y,'filled')
axis([0 22 -1 2])
title('Output Sequence')
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Use xcorr to obtain the cross-correlation sequence and determine the lag where the maximum is
obtained.

[xc,lags] = xcorr(x,y);
[~,I] = max(abs(xc));
figure
stem(lags,xc,'filled')
legend(sprintf('Maximum at lag %d',lags(I)))
title('Sample Cross-Correlation Sequence')
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The maximum is found at a lag of -3. The signal y is the second input to xcorr and it is a delayed
version of x. You have to shift y 3 samples to the left (a negative shift) to maximize the cross
correlation. If you reverse the roles of x and y as inputs to xcorr, the maximum lag now occurs at a
positive lag.

[xc,lags] = xcorr(y,x);
[~,I] = max(abs(xc));
figure
stem(lags,xc,'filled')
legend(sprintf('Maximum at lag %d',lags(I)))
title('Sample Cross-Correlation Sequence')

 Wavelet Cross-Correlation for Lead-Lag Analysis

3-105



x is an advanced version of y and you delay x by three samples to maximize the cross correlation.

modwtxcorr is the scale-based version of xcorr. To use modwtxcorr, you first obtain the
nondecimated wavelet transforms.

Apply wavelet cross-correlation to two signals that are shifted versions of each other. Construct two
exponentially-damped 200-Hz sine waves with additive noise. The x signal has its time center at
t = 0 . 2 seconds while y is centered at t = 0 . 5 seconds.

t = 0:1/2000:1-1/2000;
x = sin(2*pi*200*t).*exp(-50*pi*(t-0.2).^2)+0.1*randn(size(t));
y = sin(2*pi*200*t).*exp(-50*pi*(t-0.5).^2)+0.1*randn(size(t));
figure
plot(t,x)
hold on
plot(t,y)
xlabel('Seconds')
ylabel('Amplitude')
grid on
legend('x','y')
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You see that x and y are very similar except that y is delayed by 0.3 seconds. Obtain the
nondecimated wavelet transform of x and y down to level 5 using the Fejer-Korovkin (14) wavelet.
The wavelet coefficients at level 3 with a sampling frequency of 2 kHz are an approximate
[2000/24, 2000/23) bandpass filtering of the inputs. The frequency localization of the Fejer-Korovkin
filters ensures that this bandpass approximation is quite good.

wx = modwt(x,'fk14',5);
wy = modwt(y,'fk14',5);

Obtain the wavelet cross-correlation sequences for the wavelet transforms of x and y. Plot the level 3
wavelet cross-correlation sequence for 2000 lags centered at zero lag. Multiply the lags by the
sampling period to obtain a meaningful time axis.

[xc,~,lags] = modwtxcorr(wx,wy,'fk14');
lev = 3;
zerolag = floor(numel(xc{lev})/2+1);
tlag = lags{lev}(zerolag-999:zerolag+1000).*(1/2000);
figure
plot(tlag,xc{lev}(zerolag-999:zerolag+1000))
title('Wavelet Cross-Correlation Sequence (level 3)')
xlabel('Time')
ylabel('Cross-Correlation Coefficient')
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The cross-correlation sequence peaks at a delay of -0.3 seconds. The wavelet transform of y is the
second input to modwtxcorr. Because the second input of modwtxcorr is shifted relative to the first,
the peak correlation occurs at a negative delay. You have to left shift (advance) the cross-correlation
sequence to align the time series. If you reverse the roles of the inputs to modwtxcorr, you obtain
the peak correlation at a positive lag.

[xc,~,lags] = modwtxcorr(wy,wx,'fk14');
lev = 3;
zerolag = floor(numel(xc{lev})/2+1);
tlag = lags{lev}(zerolag-999:zerolag+1000).*(1/2000);
figure
plot(tlag,xc{lev}(zerolag-999:zerolag+1000))
title('Wavelet Cross-Correlation Sequence (level 3)')
xlabel('Time')
ylabel('Cross-Correlation Coefficient')
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To show that wavelet cross-correlation enables scale(frequency)-localized correlation, plot the cross-
correlation sequences at levels 1 and 5.

lev = 1;
zerolag = floor(numel(xc{lev})/2+1);
tlag = lags{lev}(zerolag-999:zerolag+1000).*(1/2000);
plot(tlag,xc{lev}(zerolag-999:zerolag+1000))
title('Wavelet Cross-Correlation Sequence (level 1)')
xlabel('Time')
ylabel('Cross-Correlation Coefficient')
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figure
lev = 5;
zerolag = floor(numel(xc{lev})/2+1);
tlag = lags{lev}(zerolag-999:zerolag+1000).*(1/2000);
plot(tlag,xc{lev}(zerolag-999:zerolag+1000))
title('Wavelet Cross-Correlation Sequence (level 5)')
xlabel('Time')
ylabel('Cross-Correlation Coefficient')
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The wavelet cross-correlation sequences at levels 1 and 5 do not show any evidence of the
exponentially-weighted sinusoids due to the bandpass nature of the wavelet transform.

With financial data, there is often a leading or lagging relationship between variables. In those cases,
it is useful to examine the cross-correlation sequence to determine if lagging one variable with
respect to another maximizes their cross-correlation. To illustrate this, consider the correlation
between two components of the GDP -- personal consumption expenditures and gross private
domestic investment. The data is quarterly chain-weighted U.S. real GDP data for 1974Q1 to 2012Q4.
The data were transformed by first taking the natural logarithm and then calculating the year-over-
year difference. Look at the correlation between two components of the GDP -- personal consumption
expenditures, pc, and gross private domestic investment, privateinvest.

load GDPcomponents
piwt = modwt(privateinvest,'fk8',5);
pcwt = modwt(pc,'fk8',5);
figure
modwtcorr(piwt,pcwt,'fk8')
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Personal expenditure and personal investment are negatively correlated over a period of 2-4 quarters.
At longer scales, there is a strong positive correlation between personal expenditure and personal
investment. Examine the wavelet cross-correlation sequence at the scale representing 2-4 quarter
cycles. Plot the cross-correlation sequence along with 95% confidence intervals.

[xcseq,xcseqci,lags] = modwtxcorr(piwt,pcwt,'fk8');
zerolag = floor(numel(xcseq{1})/2)+1;
figure
plot(lags{1}(zerolag:zerolag+20),xcseq{1}(zerolag:zerolag+20))
hold on
plot(lags{1}(zerolag:zerolag+20),xcseqci{1}(zerolag:zerolag+20,:),'r--')
xlabel('Lag (Quarters)')
ylabel('Cross-Correlation')
grid on
title({'Wavelet Cross-Correlation Sequence -- [2Q,4Q)'; ...
    'Personal Consumption and Private Investment'})
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The finest-scale wavelet cross-correlation sequence shows a peak positive correlation at a lag of one
quarter. This indicates that personal investment lags personal expenditures by one quarter. If you
take that lagging relationship into account, then there is a positive correlation between the GDP
components at all scales.
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1-D Multisignal Analysis
This section takes you through the features of 1-D multisignal wavelet analysis, compression and
denoising using the Wavelet Toolbox software. The rationale for each topic is the same as in the 1-D
single signal case.

The toolbox provides the following functions for multisignal analysis.

Analysis-Decomposition and Synthesis-Reconstruction Functions

Function Name Purpose
mdwtdec Multisignal wavelet decomposition
mdwtrec Multisignal wavelet reconstruction and extraction of

approximation and detail coefficients

Decomposition Structure Utilities

Function Name Purpose
chgwdeccfs Change multisignal 1-D decomposition coefficients
wdecenergy Multisignal 1-D decomposition energy repartition

Compression and Denoising Functions

Function Name Purpose
mswcmp Multisignal 1-D compression using wavelets
mswcmpscr Multisignal 1-D wavelet compression scores
mswcmptp Multisignal 1-D compression thresholds and performance
mswden Multisignal 1-D denoising using wavelets
mswthresh Perform multisignal 1-D thresholding

You can perform analyses from the MATLAB command line or by using the Wavelet Analyzer app. This
section describes each method. The last section discusses how to exchange signal and coefficient
information between the disk and the graphical tools.

1-D Multisignal Analysis — Command Line
1 Load a file, from the MATLAB prompt, by typing

load thinker

The file thinker.mat contains a single variable X. Use whos to show information about X.

whos

Name Size Bytes Class
X 192x96 147456 double array

2 Plot some signals.

figure;
plot(X(1:5,:)','r');   hold on 

3 Discrete Wavelet Analysis

3-114



plot(X(21:25,:)','b'); plot(X(31:35,:)','g')
set(gca,'Xlim',[1,96]) 
grid

3 Perform a wavelet decomposition of signals at level 2 of row signals using the db2 wavelet.

dec = mdwtdec('r',X,2,'db2')

This generates the decomposition structure dec:

dec =
         dirDec: 'r'
          level: 2
          wname: 'db2'
     dwtFilters: [1x1 struct]
        dwtEXTM: 'sym'
       dwtShift: 0
       dataSize: [192 96]
             ca: [192x26 double]
             cd: {[192x49 double]  [192x26 double]}

4 Change wavelet coefficients.

For each signal change the wavelet coefficients by setting all the coefficients of the detail of level
1 to zero.

decBIS = chgwdeccfs(dec,'cd',0,1);

This generates a new decomposition structure decBIS.
5 Perform a wavelet reconstruction of signals and plot some of the new signals.

Xbis = mdwtrec(decBIS); 
figure;  
plot(Xbis(1:5,:)','r');   hold on 
plot(Xbis(21:25,:)','b');
plot(Xbis(31:35,:)','g') 
grid; set(gca,'Xlim',[1,96])
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Compare old and new signals by plotting them together.

figure; idxSIG = [1 31]; 
plot(X(idxSIG,:)','r','linewidth',2);   hold on 
plot(Xbis(idxSIG,:)','b','linewidth',2);
grid; set(gca,'Xlim',[1,96])

6 Set the wavelet coefficients at level 1 and 2 for signals 31 to 35 to the value zero, perform a
wavelet reconstruction of signal 31, and compare some of the old and new signals.

decTER = chgwdeccfs(dec,'cd',0,1:2,31:35); 
Y = mdwtrec(decTER,'a',0,31);
figure; 
plot(X([1 31],:)','r','linewidth',2);   hold on 
plot([Xbis(1,:)
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; Y]','b','linewidth',2); 
grid; set(gca,'Xlim',[1,96])

7 Compute the energy of signals and the percentage of energy for wavelet components.

[E,PEC,PECFS] = wdecenergy(dec);

Energy of signals 1 and 31:

Ener_1_31 = E([1 31])
Ener_1_31 = 

  1.0e+006 * 
    3.7534 
    2.2411 

8 Compute the percentage of energy for wavelet components of signals 1 and 31.

PEC_1_31 = PEC([1 31],:)  

PEC_1_31 = 
   99.7760    0.1718    0.0522 
   99.3850    0.2926    0.3225

The first column shows the percentage of energy for approximations at level 2. Columns 2 and 3
show the percentage of energy for details at level 2 and 1, respectively.

9 Display the percentage of energy for wavelet coefficients of signals 1 and 31. As we can see in
the dec structure, there are 26 coefficients for the approximation and the detail at level 2, and
49 coefficients for the detail at level 1.

PECFS_1 = PECFS(1,:); PECFS_31 = PECFS(31,:); 
figure; 
plot(PECFS_1,'r','linewidth',2); hold on 
plot(PECFS_31,'b','linewidth',2); 
grid; set(gca,'Xlim',[1,size(PECFS,2)])
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10 Compress the signals to obtain a percentage of zeros near 95% for the wavelet coefficients.

[XC,decCMP,THRESH] = mswcmp('cmp',dec,'N0_perf',95); 
[Ecmp,PECcmp,PECFScmp] = wdecenergy(decCMP);

Plot the original signals 1 and 31, and the corresponding compressed signals.

figure;
plot(X([1 31],:)','r','linewidth',2);   hold on 
plot(XC([1 31],:)','b','linewidth',2);
grid; set(gca,'Xlim',[1,96])

Compute thresholds, percentage of energy preserved and percentage of zeros associated with
the L2_perf method preserving at least 95% of energy.

[THR_VAL,L2_Perf,N0_Perf] = mswcmptp(dec,'L2_perf',95); 
idxSIG = [1,31];  

Thr   = THR_VAL(idxSIG)
Thr = 
  256.1914 
  158.6085 

L2per = L2_Perf(idxSIG) 
L2per =  
  96.5488
  94.7197

N0per = N0_Perf(idxSIG) 
N0per = 
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  79.2079  
  86.1386

Compress the signals to obtain a percentage of zeros near 60% for the wavelet coefficients.

[XC,decCMP,THRESH] = mswcmp('cmp',dec,'N0_perf',60);

XC signals are the compressed versions of the original signals in the row direction.

Compress the XC signals in the column direction

XX = mswcmp('cmpsig','c',XC,'db2',2,'N0_perf',60);

Plot original signals X and the compressed signals XX as images.

figure;
subplot(1,2,1); image(X) 
subplot(1,2,2); image(XX) 
colormap(pink(222))

11 Denoise the signals using the universal threshold:
[XD,decDEN,THRESH] = mswden('den',dec,'sqtwolog','sln'); figure; 
plot(X([1 31],:)','r','linewidth',2); hold on 
plot(XD([1 31],:)','b','linewidth',2); 
grid; set(gca,'Xlim',[1,96])

XD signals are the denoised versions of the original signals in the row direction.
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Denoise the XD signals in column direction

XX = mswden('densig','c',XD,'db2',2,'sqtwolog','sln');

Plot original signals X and the denoised signals XX as images.

figure;
subplot(1,2,1); image(X) 
subplot(1,2,2); image(XX) 
colormap(pink(222))

1-D Multisignal Analysis Using the Wavelet Analyzer App
In this section, we explore the same signal as in the previous section, but use the Wavelet Analyzer
app to analyze it.

1 Start the Wavelet 1-D Multisignal Analysis Tool.

From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Analyzer appears.
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Click Multisignal Analysis 1-D to open the Wavelet 1-D Multisignal Analysis tool.

The tool is divided into five panes. Two of them are the same as in all Wavelet Toolbox app tools,
the Command Frame on the right side of the figure and the Dynamic Visualization tool at the
bottom. The Command Frame contains a special component found in all multisignal tools: the
Selection of Data Sets pane which is used to manage two lists.

The three new panes are the Visualization of Selected Data pane, the Information on
Selected Data pane, and the Selection of Data pane.

2 Load the signals.

At the MATLAB command prompt, type

load thinker

In the Multisignal Analysis 1-D tool, select File > Import from Workspace > Import
Signals. When the Import from Workspace dialog box appears, select the X variable. Click OK
to import the data matrix and display the first signal.
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The Selection of Data pane contains a list of selectable signals. At the beginning, only the
originally loaded signals are available. You can generate and add new signals to the list by
decomposing, compressing, or denoising original signals.

Each row of the list displays the index of selectable signal (Idx Sel), the index of original signal
(Idx Sig) and three wavelet transform attributes describing the process used to obtain the
selectable signal from the original one.

3 View the signals and signal information.

With signal 1 highlighted, Shift-click the mouse on signal 3 to select signals 1, 2, and 3.

Ctrl-click the mouse on signals 7, 9, and 11. (The Select ALL button at the bottom of the
Selection of Data pane selects all signals and the Clear button deselects all signals.)

The selected signals (1, 2, 3, 7, 9 and 11) appear in the Visualization of Selected Data pane.
The Information on Selected Data pane contains the box plots of the minimums, the means,
and the maximums of these signals.

4 Highlight a signal.

Using the Highlight Sel button in the lower-left corner of the Visualization of Selected Data
pane, select signal 3.
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5 Select Different Views.

In the Visualization of Selected Data pane, change the view mode using the pop-up in the
lower-right corner. Choose Separate Mode. The selected signals appear.

6 Decompose a multisignal.

Perform an analysis at level 4 using the db2 wavelet and the same file used in the command line
section: thinker.mat.

In the upper right portion of the Wavelet 1-D Multisignal Analysis tool, select db2 and level 4 in
the Wavelet fields.

Click Decompose. After a pause for computation, all the original signals are decomposed and
signal 1 is automatically selected

 1-D Multisignal Analysis

3-123



In the Selection of Data pane, new information is added for each original signal — the
percentage of energy of the wavelet components (D1,...,D4 and A4) and the total energy. The
Information on Selected Data pane contains information on the single selected signal: Min,
Mean, Max and the energy distribution of the signal.

Since the original signals are decomposed, new objects appear and the Selection of Data Sets
pane in the Command Frame updates.

The Selection of Data Sets pane defines the available signals that are now selectable from the
Selection of Data pane.

The list on the left allows you to select sets of signals and the right list allows you to select sets of
corresponding coefficients: original signals (Orig. Signals), approximations (APP 1,...)and
details from levels 1 to 4 (DET 1,...).

In the list on the right, the coefficients vectors can be of different lengths, but only components
of the same length can be selected together.

After a decomposition the original signals (Orig. Signals) data set appears automatically
selected.

Select signals 1, 2, 3, 7, 9 and 11.
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The energy of selected signals is primarily concentrated in the approximation A4, so the box plot
is crushed (see following figure on the left). Deselect App. On/Off to see a better representation
of details energy (see following figure on the right).

7 Display multisignal decompositions.

In the Visualization of Selected Data pane, change the view mode using the pop-up below the
plots and select Full Dec Mode. The decompositions of the selected signals display.
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Change the Level to 2.

Select the signal 7 in Highlight Sel.
8 Change the visualization modes.

Using the second pop-up from the left at the bottom of the pane, select Full Dec Mode (Cfs).
The coefficients of the decompositions of the selected signals display. At level k, coefficients are
duplicated 2k times.

Change the view mode to Stem Mode (Abs), and then change to Tree Mode. The wavelet tree
corresponding to the decompositions of the selected signals displays.

Select the level 4 and click the node a3. Then highlight signal 7.
9 Select Different Wavelet Components.

Ctrl-click Orig. Signals, APP 1, APP 3 and DET 1 to select these four sets of signals from the
list on the left in the Selection of Data Sets pane.

The total number of selected data (Number of Sig.) appears in the Selection of Data Sets
pane: four sets of 192 signals each is a total of 768 signals.

Click the Asc. button in the Sort pane. The selected data are sorted in ascending order with
respect to the Idx Sig parameter
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Note that DWT attributes of each selectable signal have been updated where a stands for
approximation, d for detail and s for signal.

Click the Idx Sel 1 signal and then shift-click the Idx Sel 579 signal.

Choose Separate Mode.

Ctrl-click to select two sets of signals from the right-most list of the Selection of Data Sets
pane: APP 1 and DET 1.
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Note that in this list of coefficients sets, the selected vectors must be of same length, which
means that you must select components of the same level.

Click the Asc. button in the Sort pane. The selected data are sorted in ascending order with
respect to Idx Sig parameter.

Select the ten first signals.

10 Compress a multisignal.

The Wavelet Analyzer app features a compression option with automatic or manual thresholding.

Click Compress, located in the lower-right side of the window. This displays the Compression
window.
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Note The tool always compresses all the original signals when you click the Compress button.

Before compressing, choose the particular strategy for computing the thresholds. Select the
adapted parameters in the Select Compression Method frame. Then, apply this strategy to
compute the thresholds according to the current method, either to the current selected signals
by clicking the Selected button, or to all signals by clicking the ALL button. For this example,
accept the defaults and click the ALL button.

The thresholds for each level (ThrD1 to ThrD4), the energy ratio (En. Rat.) and the sparsity
ratio (NbZ Rat.) are displayed in the Selection of Data pane.

Click the Compress button at the bottom of the Thresholding pane. Now you can select new
data sets: compressed Signals, the corresponding approximations, details and coefficients.

Press the Ctrl key and click the Compressed item in the left list of the Selection of Data Sets
pane. The original signals and their compressed versions are selected (2 x 192 = 384 signals).
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Click the Asc. button at the bottom of the Selection of Data pane to sort the signals using Idx
Sig number.

With the mouse, select the first four signals. They correspond to the original signals 1, 2 and the
corresponding compressed signals 193, 194.

Click the Close button to close the Compression window.
11 Denoise a multisignal.

The Wavelet Analyzer app offers a denoising option with either a predefined thresholding
strategy or a manual thresholding method. Using this tool makes very easy to remove noise from
many signals in one step.

Display the Denoising window by clicking the Denoise button located in the bottom part of the
Command Frame on the right of the window.

A number of options are available for fine-tuning the denoising algorithm. For this example,
accept the defaults: soft type of thresholding, Fixed form threshold method, and Scaled
white noise as noise structure.

Click the ALL button in the Thresholding pane. The threshold for each level (ThrD1, ..., ThrD4)
computes and displays in the Selection of Data pane.
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Then click the Denoise button at the bottom of the Thresholding pane.

Ctrl-click the Denoised item in the list on the left of the Selection of Data Sets pane. The
original signals and the corresponding denoised ones are selected (2 x 192 = 384 signals).

Click the Asc. button at the bottom of the Selection of Data pane to sort the signals according
to the Idx Sig parameter.

With the mouse, select the first four signals. They correspond to the original signals 1, 2 and the
corresponding denoised signals 193, 194

Choose Separate Mode.

 1-D Multisignal Analysis

3-131



12 To view residuals, Ctrl-click the Orig. Signal, the Denoised and the Residuals items in the
list on the left of the Selection of Data Sets pane. Original, denoised and residual signals are
selected (3 x 192 = 576 signals).

Click the Asc. button at the bottom of the Selection of Data pane to sort the signals using the
Idx Sig parameter.

With the mouse, select the first six signals. They correspond to the original signals 1, 2, the
corresponding denoised signals 193, 194 and the residuals 385, 386.

Then, choose Separate Mode.

13 Click Close to close the denoising tool. Then, click the Yes button to update the synthesized
signals.

Manual Threshold Tuning

1 Choose a method, select one or several signals in the Selection of Data pane using the mouse
and keys. Then click the Selected button. You can select another group of signals using the same
method. Press the Denoise button to denoise the selected signal(s).
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You can also use manual threshold tuning. Click the Enable Manual Thresholding Tuning
button.

The horizontal lines in the wavelet coefficient axes (cd1, ..., cd4) can be dragged using the
mouse. This may be done individually, by group or all together depending on the values in the
Select Signal and Selected Level fields in the Manual Threshold Tuning pane.

2 In the Wavelet 1-D Multisignal Analysis Compression tool, you can use two methods for threshold
tuning: the By level thresholding method which is used in the Wavelet 1-D Multisignal Analysis
Denoising tool, and the Global thresholding method.
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You can drag the vertical lines in the Energy and Nb. Zeros Performances axes using the
mouse. This can be done individually or all together depending on the values of Select Signal in
the Manual Threshold Tuning pane.

The threshold value, L2 performance, and number of zeros performance are updated in the
corresponding edit buttons in the Manual Threshold Tuning pane.

Statistics on Signals

1 You can display various statistical parameters related to the signals and their components. From
the Wavelet 1-D Multisignal Analysis tool, click the Statistics button. Then select the signal 1 in
the Selection of Data Sets pane.
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Select the signals 1, 2, 3, 7, 9 and 11 in the Selection of Data pane, and display the
corresponding boxplots and correlation plots.

2 To display statistics on many wavelet components, in the Selection Data Sets pane, in the left
column, select Orig.Signals, APP 1, DET 1, Denoised and Residuals signals. Then choose
Separate Mode, and click the Asc. button in the Sort pane. The selected data are sorted in
ascending order with respect to Idx Sig parameter. In the Selection of Data pane, select data
related to signal 1.
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Clustering Signals

Note To use clustering, you must have Statistics and Machine Learning Toolbox™ software installed.
For more information about clustering, including measuring distances between objects and
determining the proximity of objects to each other, see “Hierarchical Clustering” (Statistics and
Machine Learning Toolbox).

1 Click the Clustering button located in the Command Frame, which is in the lower right of the
Wavelet 1-D Multisignal Analysis window to open the Clustering tool.
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You can cluster various type of signals and wavelet components: original, denoised or
compressed, residuals, and approximations or details (reconstructed or coefficients). Similarly,
there are several methods for constructing partitions of data.

Use the default parameters (Original and Signal in Data to Cluster, and in Ascending
Hierarchical, euclidean, ward, and 6 in Clustering) and click the Compute Clusters
button.

A full dendrogram and a restricted dendrogram display in the Selection by Dendrogram pane.
For each signal, the cluster number displays in the Selection of Data pane.

2 Select one cluster, several clusters, or a part of a cluster.

Click the xticklabel 3 at the bottom of the restricted dendrogram. The links of the third
cluster blink in the full dendrogram and the 24 signals of this class display in the Visualization
of Selected Data pane. You can see their numbers in the Selection of Data pane.

Clicking the line in the restricted or in the full dendrogram lets you select one cluster, several
linked clusters, or a part of a cluster. For a more accurate selection, use the Dilate X and the
Translate X sliders under the full dendrogram. You can also use the Yscale button located
above the full dendrogram. The corresponding signals display in the Visualization of Selected
Data pane and in the list of the Selection of Data pane.
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You can use the horizontal line in the full dendrogram to change the number of clusters. Use the
left mouse button to drag the line up or down.

3 Use the Show Clusters button to examine the clusters of the current partition. You can display
the mean (or the median) of each cluster, the global standard deviation and the pointwise
standard deviation distance around the mean (or the median). Each plot title contains: the
number of signals in the cluster (Nb) and percent of total, the global standard deviation (D) of the
cluster, and two indices of quality, Q1 and Q2.

The Q1 and Q2 indices can be interpreted as measures of how well a cluster is concentrated in
multidimensional space. The values min and max are the minimum and maximum values,
respectively, of the absolute values of the signal samples in the cluster. If the global standard
deviation D is small, then Q1 is close to 1 and Q2 is close to 0. In this case, the cluster is
considered well-concentrated. If D is large, then Q1 is small and Q2 is large. In this case, the
cluster is considered more disperse. For example, in Cluster 3 the minimum and maximum values
of the absolute values of the signal samples are 5 and 220, respectively. Then Q1 = 1 −
37.208/220 = 0.831 and Q2 = 37.208/(220-5) = 0.173.
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4 Click the Store Current Partition button below the Clustering pane to store the current
partition for further comparisons. A default name is suggested. Note that the 1-D Wavelet
Multisignal Analysis tool stores the partitions and they are not saved on the disk.

Partitions
1 Build and store several partitions (for example, partitions with signals, denoised signals

approximations at level 1, 2 and 3, and denoised signals). Then, click the Open Partition
Manager button below the Store Current Partition button. The Partitions Management
pane appears. The names of all stored partitions are listed.

Now, you can show, clear, or save the partitions (individually, selected ones, or all together).
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2 To display partitions, select the Ori Signals and the Den Signals partitions, and click the
Selected button next to the Show Partitions label.

The clusters are almost the same, but it is difficult to see this on the Selected Partitions axis,
due to the scaling difference. Press the Apply button to renumber the clusters (starting from the
selected partition as basic numbering) to compare the two partitions.

Only three signals are not classified in the same cluster for the two considered partitions.

3 Select the partitions you want to save and click the Save Partitions button below the Store
Current Partition button in the Partitions Management pane.
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Partitions are saved as an array of integers, where each column corresponds to one partition and
contains the indices of clusters. When you choose the Full Partitions option, an array object
(wpartobj) is saved.

4 To load or clear stored partitions use File > Partitions in the Wavelet 1-D Multisignal Analysis
tool. (File > Partitions is also available in the Wavelet 1-D Multisignal Analysis Clustering tool
and you can also save the current partition.)

To clear one or more stored partitions, select File > Partitions > Clear Partition.

Select File > Partitions > Load Partition to load one or several partitions from the disk. The
loaded partitions are stored in Wavelet 1-D Multisignal Analysis tool with any previously stored
partitions. A partition can also be a manually created column vector.
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Note The number of signals in loaded partitions must be equal to the number of signals in the
Wavelet 1-D Multisignal Analysis tool. A warning appears if this condition is not true.

5 In each subcomponent of the Wavelet 1-D Multisignal Analysis tool (main, statistics, denoising,
compression, clustering), you can import a stored partition from the list in the Selection of Data
pane. Click the Import Part button at the bottom of the Selection of Data pane, the Partition
Set Manager window appears. Select one partition and click the Import button.

For this example, go back to the main window, import the Ori Signals partition and sort the
signals in descending order with respect to A4 energy percentage.

6 You can compare partitions with the Partition tool. To display the Partition tool, click the More
on Partitions button at the bottom of the Partitions Management pane. By default, when the
Partition tool opens, the currently selected partition, in this case Ori Signals, is compared
with itself. In the lower left plot, an integer N at (i,j) means there is a group of N signals in the
ith cluster of P1 and the jth cluster of P2. Since the Partition tool is comparing a partition with
itself, all the numbers are plotted on the main diagonal.
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Statistics measuring the similarity of the partitions P1 and P2 are displayed in the panels on the
right. The Partitions Pairs Links panel counts pairs of signals. Two signals x and y are
considered a pair if they are in the same cluster. For any two signals x and y, there are four
possibilities.

• The signals are paired in P1 and P2. This is called a true positive.
• The signals are paired in P1 but not in P2. This is called a false positive.
• The signals are not paired in P1 but are in P2. This is called a false negative.
• The signals are not paired in either P1 or P2. This is called a true negative.

The Partitions Pairs Links shows the percentages of each of the four possibilities. In this
example, since there are 192 signals, there are total of 192*191/2 = 18336 possible pairs.
Slightly more than 19% of the linked pairs are considered true positives, and approximately 80%
are true negatives. Since the partition is being compared with itself, no pair is considered a false
positive or false negative.

You can also measure how similar two partitions are by assigning a distance (or index) between
them [1]. The distance is based on the number of true and false positives and negatives. Distance
can be defined in different ways. Let R be the number of true positives, S be the number of true
negatives, U be the number of false positives, and V be the number of false negatives. The
Partitions Similarity Indices panel shows the distance between the P1 and P2 partitions using
different definitions of distance:

• Rand Index (Rand): (R+S)/(R+S+U+V).
• Asymmetric Rand Index (RandAsym): (2 × (R+S+U)+NS)/NS2 where NS is the total number

of signals.
• Jaccard Index (Jaccard): R/(R+U+V).
• Corrected Rand Index (HubAra): (R-ER)/(MR-ER) where ER is the expected value of R and MR

is the maximum value of the index. If the two partitions are identical, the index is equal to 1.
It is possible for this index to be negative.

• Wallace Index (Wallace): R/sqrt(|pi(P1)| × |pi(P2)|) where |pi(Pi)| is the number of joined
pairs in the partition Pi.
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• McNemar Index (MacNemar): If abs(U+V) = 0, then the index is equal to 1. Otherwise, the
index is equal to abs(U-V)/(U+V).

• Lerman Index (ICL): (R-ER)/sqrt(VR) where VR is the variance of R.
• Normalized Lerman Index (ILN):ICL(P1,P2)/sqrt(ICL(P1,P1) × ICL(P2,P2) where ICL(P,Q)

denotes the Lerman index of two partitions P and Q.
7 Select the Den Signals in Sel P2 in the upper-right corner of the window. Then, in the lower

left axis, click the yellow text containing the value 2 (the coordinates of the corresponding point
are (4,5)). The corresponding signals are displayed together with all related information.

More on Clustering

Instead of the Ascending Hierarchical Tree clustering method, you can use the K-means method. For
this case, the partition cannot be represented by a dendrogram and other representations should be
used.

In the image representation (see figure below on the left), you can select a cluster by clicking on the
corresponding color on the colorbar. You can also select a cluster or part of a cluster by clicking on
the image.

In the center representation (see figure below on the right) you can select a cluster by clicking on the
corresponding colored center.
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Importing and Exporting Information from the Wavelet Analyzer App
The Wavelet 1-D Multisignal Analysis tool lets you move data to and from disk.

Saving Information to Disk

You can save decompositions and denoised or compressed signals (including the corresponding
decompositions from Wavelet 1-D Multisignal Analysis tools) to disk. You then can manipulate the
data and later import it again into the graphical tools.

Saving Decompositions

The Wavelet 1-D Multisignal Analysis main tool lets you save the entire set of data from a wavelet
analysis to disk. The toolbox creates a MAT-file in the current folder with a name you choose.

1 Open the Wavelet 1-D Multisignal Analysis main tool and load the example analysis by selecting
File > Example > Ex 21: Thinker (rows).

2 Save the data from this analysis, using the menu option File > Save Decompositions.

A dialog box appears that lets you specify a folder and filename for storing the decomposition
data. For this example, use the name decORI.mat.

3 Type the name decORI.
4 After saving the decomposition data to the file decORI.mat, load the variables into your

workspace:

load decORI 
whos

Name Size Bytes Class
dec 1x1 163306 struct

dec
dec =
         dirDec: 'r'
          level: 4
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          wname: 'db2'
     dwtFilters: [1x1 struct]
        dwtEXTM: 'sym'
       dwtShift: 0
       dataSize: [192 96]
             ca: [192x8 double]
             cd: {1x4 cell}

The field ca of the structure dec gives the coefficients of approximation at level 4, the field cd is
a cell array which contains the coefficients of details.

size(dec.cd{1})
ans = 
   192    49 
size(dec.cd{2})
ans = 
   192    26 
size(dec.cd{3})
ans = 
   192    14 
size(dec.cd{4})
ans = 
   192     8

You can change the coefficients using the chgwdeccfs function.

Note For a complete description of the dec structure, see “Loading Decompositions” on page 3-
147.

Loading Information into the Wavelet 1-D Multisignal Analysis Tool

You can load signals or decompositions into the graphical interface. The information you load may be
previously exported from the graphical interface, and then manipulated in the workspace; or it may
be information you initially generated from the command line. In either case, you must observe the
strict file formats and data structures used by the Wavelet 1-D Multisignal Analysis tools or errors will
occur when you try to load information.

Loading Signals

To load a signal you constructed in your MATLAB workspace into the Wavelet 1-D Multisignal
Analysis tool, save the signal in a MAT-file (with extension .mat).

For example, if you design a signal called magic128 and want to analyze it in the Wavelet 1-D
Multisignal Analysis tool, type
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save magic128 magic128

Note The workspace variable magic128 must be a matrix and the number of rows and columns must
be greater than 1.

sizmag = size(magic128)

sizmag =
    128   128

To load this signal into the Wavelet 1-D Multisignal Analysis tool, use the File > Load Signal menu
item. A dialog box appears in which you select the appropriate MAT-file to be loaded.

Note When you load a matrix of signals from the disk, the name of 2-D variables are inspected in the
following order: x, X, sigDATA, and signals. Then, the 2-D variables encountered in the file are
inspected in alphabetical order.

Loading Decompositions

To load decompositions that you constructed in the MATLAB workspace into the Wavelet 1-D
Multisignal Analysis tool, save the signal in a MAT-file (with extension mat).

For instance, if you design a signal called magic128 and want to analyze it in the Wavelet 1-D
Multisignal Analysis too, the structure dec must have the following fields:

'dirDec' Direction indicator with 'r' for row or 'c' for column
'level' Level of DWT decomposition
'wname' Wavelet name
'dwtFilters' Structure with four fields: LoD, HiD, LoR, HiR
'dwtEXTM' DWT extension mode (see dwtmode)
'dwtShift' DWT shift parameter (0 or 1)
'dataSize' Size of original matrix X
'ca' Approximation coefficients at level dec.level
'cd' Cell array of detail coefficients, from 1 to dec.level

The coefficients cA and cD{k}, for (k = 1 to dec.level), are matrices and are stored row-wise if
dec.dirDec is equal to 'r' or column-wise if dec.dirDec is equal to 'c'.

Note The fields 'wname' and 'dwtFilters' have to be compatible (see the wfilters function).
The sizes of cA and cD{k}, (for k = 1 to dec.level) must be compatible with the direction, the
level of the decomposition, and the extension mode.

Loading and Saving Partitions.
Loading

The Wavelet 1-D Multisignal Analysis main tool and clustering tool let you load a set of partitions
from disk.
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Saving Partitions

The Wavelet 1-D Multisignal Analysis clustering tool lets you save a set of partitions to disk.

For example:

1 Open the Wavelet 1-D Multisignal Analysis main tool and load the example analysis using File >
Example > Ex 21: Thinker (rows).

2 Click the Clustering button. The Wavelet 1-D Multisignal Analysis Clustering window appears.
3 Click the Compute Clusters button, and then save the current partition using menu option File

> Partitions > Save Current Partition. A dialog box appears that lets you specify the type of
data to save.

4 Click the Save Curr. button.

5 Another dialog box appears that lets you specify a folder and filename for storing the partition
data. Type the name curPART.
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6 After saving the partition data to the file curPART.mat, load the variables into your workspace:

load curPART
whos

Name Size Bytes Class
tab_IdxCLU 192x1 1536 double

7 You can modify the array tab_IdxCLU in the workspace, and save the partition data in a file. For
example to create two new partitions with four and two clusters, type the following lines:

tab_IdxCLU(:,2) = rem((1:192)',4) + 1; 
tab_IdxCLU(:,3) = double((1:192)'>96) + 1; 
save newpart tab_IdxCLU

Now you can use three partitions for the example Ex 21: Thinker (rows). Then, you can load the
partitions stored in the file newPART.mat in the Wavelet 1-D Multisignal Analysis main tool and
clustering tool.

Note A partition is a column vector of integers. The values must vary from 1 to NbClusters
(NbClusters > 1), and each cluster must contain at least one element. The number of rows
must be equal to the number of signals.

References
[1] Denoeud, L., Garreta, H., and A. Guénoche. "Comparison of Distance Indices Between Partitions."

In International Symposium on Applied Stochastic Models and Data Analysis, 432–440. Brest,
France: École Nationale des Télécommunications de Bretagne, 2005.
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2-D Discrete Wavelet Analysis
This section takes you through the features of 2-D discrete wavelet analysis using the Wavelet
Toolbox software. The toolbox provides these functions for image analysis. For more information, see
the function reference pages.

Note In this section the presentation and examples use 2-D arrays corresponding to indexed image
representations. However, the functions described are also available when using truecolor images,
which are represented by m-by-n-by-3 arrays of uint8. For more information on image formats, see
“Wavelets: Working with Images”.

Analysis-Decomposition Functions
Function Name Purpose
dwt2 Single-level decomposition
wavedec2 Decomposition
wmaxlev Maximum wavelet decomposition level

Synthesis-Reconstruction Functions
Function Name Purpose
idwt2 Single-level reconstruction
waverec2 Full reconstruction
wrcoef2 Selective reconstruction
upcoef2 Single reconstruction

Decomposition Structure Utilities
Function Name Purpose
detcoef2 Extraction of detail coefficients
appcoef2 Extraction of approximation coefficients
upwlev2 Recomposition of decomposition structure

Denoising and Compression
Function Name Purpose
wdenoise2 Wavelet image denoising
ddencmp Provide default values for denoising and compression
wbmpen Penalized threshold for wavelet 1-D or 2-D denoising
wdcbm2 Thresholds for wavelet 2-D using Birgé-Massart strategy
wdencmp Wavelet denoising and compression
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Function Name Purpose
wthrmngr Threshold settings manager

In this section, you'll learn

• How to load an image
• How to analyze an image
• How to perform single-level and multilevel image decompositions and reconstructions (command

line only)
• How to use Square and Tree mode features (GUI only)
• How to zoom in on detail (GUI only)
• How to compress an image

Wavelet Image Analysis and Compression
This example shows how you can use 2-D wavelet analysis to compress an image efficiently without
sacrificing its clarity.

Note: Instead of directly using image(I) to visualize the image I, we use image(wcodemat(I)),
which displays a rescaled version of I leading to a clearer presentation of the details and
approximations (see wcodemat).

Load an image.

load wbarb
whos X map

  Name        Size              Bytes  Class     Attributes

  X         256x256            524288  double              
  map       192x3                4608  double              

Display the image.

image(X)
colormap(map)
colorbar
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If the colormap is smooth, the wavelet transform can be directly applied to the indexed image;
otherwise the indexed image should be converted to grayscale format. For more information, see
“Wavelets: Working with Images”. Since the colormap is smooth in this image, you can now perform
the decomposition.

Perform a single-level wavelet decomposition of the image using the bior3.7 wavelet. The
coefficient matrix cA1 are the approximation coefficients. The horizontal, vertical, and diagonal
details are in the matrices cH1, cV1, and cD1, respectively.

wv = 'bior3.7';
[cA1,cH1,cV1,cD1] = dwt2(X,wv);

Use idwt1 to construct the approximations and details from the coefficients. (Note: You can also use
upcoef2.

sx = size(X);
A1 = idwt2(cA1,[],[],[],wv,sx);
H1 = idwt2([],cH1,[],[],wv,sx);
V1 = idwt2([],[],cV1,[],wv,sx);
D1 = idwt2([],[],[],cD1,wv,sx);

Display the approximations and details.

figure
subplot(2,2,1)
image(wcodemat(A1,192))
title('Approximation A1')
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subplot(2,2,2)
image(wcodemat(H1,192))
title('Horizontal Detail H1')
subplot(2,2,3)
image(wcodemat(V1,192))
title('Vertical Detail V1')
subplot(2,2,4)
image(wcodemat(D1,192))
title('Diagonal Detail D1')
colormap(map)

Regenerate the image by the single-level inverse discrete wavelet transform. Confirm the difference
between the regenerated and original images are small.

Xrec = idwt2(cA1,cH1,cV1,cD1,wv);
max(abs(X(:)-Xrec(:)))

ans = 1.4211e-13

Perform a level-2 wavelet decomposition of the image using the same bior3.7 wavelet. The
coefficients of all the components of a second-level decomposition (that is, the second-level
approximation and the first two levels of detail) are returned concatenated into one vector, C.
Argument S is a bookkeeping matrix that keeps track of the sizes of each component.

[c,s] = wavedec2(X,2,wv);

Extract the level 2 approximation coefficients. Extract the first- and second-level detail coefficients.
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cA2 = appcoef2(c,s,wv,2);
[cH2,cV2,cD2] = detcoef2('all',c,s,2);
[cH1,cV1,cD1] = detcoef2('all',c,s,1);

Reconstruct the level 2 approximation and the level 1 and level 2 details.

A2 = wrcoef2('a',c,s,wv,2);
H1 = wrcoef2('h',c,s,wv,1);
V1 = wrcoef2('v',c,s,wv,1);
D1 = wrcoef2('d',c,s,wv,1);
H2 = wrcoef2('h',c,s,wv,2);
V2 = wrcoef2('v',c,s,wv,2);
D2 = wrcoef2('d',c,s,wv,2);

Display the approximation and details.

figure
subplot(2,4,1)
image(wcodemat(A1,192))
title('Approximation A1')
subplot(2,4,2)
image(wcodemat(H1,192))
title('Horizontal Detail H1')
subplot(2,4,3)
image(wcodemat(V1,192))
title('Vertical Detail V1')
subplot(2,4,4)
image(wcodemat(D1,192))
title('Diagonal Detail D1')
subplot(2,4,5)
image(wcodemat(A2,192))
title('Approximation A2')
subplot(2,4,6)
image(wcodemat(H2,192))
title('Horizontal Detail H2')
subplot(2,4,7)
image(wcodemat(V2,192))
title('Vertical Detail V2')
subplot(2,4,8)
image(wcodemat(D2,192))
title('Diagonal Detail D2')
colormap(map)
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Compress the image. Use ddencmp to calculate the default parameters and wdencmp to perform the
actual compression.

[thr,sorh,keepapp] = ddencmp('cmp','wv',X);
[Xcomp,CXC,LXC,PERF0,PERFL2] = ... 
wdencmp('gbl',c,s,wv,2,thr,sorh,keepapp);

Compare the compressed image with the original image.

fprintf('Percentage of wavelet coefficients set to zero: %.4f\nPercentage of energy preserved: %.4f\n',...
    PERF0,PERFL2);

Percentage of wavelet coefficients set to zero: 49.8024
Percentage of energy preserved: 99.9817

figure
subplot(121)
image(X)
title('Original Image') 
axis square
subplot(122)
image(Xcomp)
title('Compressed Image') 
axis square
colormap(map)
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Note that, even though the compressed image is constructed from only about half as many nonzero
wavelet coefficients as the original, there is almost no detectable deterioration in the image quality.

2-D Wavelet Analysis Using the Wavelet Analyzer App
In this section we explore the same image as in the previous section, but we use the Wavelet Analyzer
app to analyze the image.

1 Start the 2-D Wavelet Analysis Tool.

From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Tool Main Menu appears.
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Click the Wavelet 2-D menu item. The discrete wavelet analysis tool for 2-D image data appears.

2 Load an image.

At the MATLAB command prompt, type

load wbarb
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In the Wavelet 2-D tool, select File > Import from Workspace > Import Image. When the
Import from Workspace dialog box appears, select the X variable. Click OK to import the
image.

The image is loaded into the Wavelet 2-D tool.
3 Analyze the image.

Using the Wavelet and Level menus located to the upper right, determine the wavelet family, the
wavelet type, and the number of levels to be used for the analysis.

For this analysis, select the bior3.7 wavelet at level 2.

Click the Analyze button. After a pause for computation, the Wavelet 2-D tool displays its
analysis.
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Using Square Mode Features

By default, the analysis appears in “Square Mode.” This mode includes four different displays. In
the upper left is the original image. Below that is the image reconstructed from the various
approximations and details. To the lower right is a decomposition showing the coarsest
approximation coefficients and all the horizontal, diagonal, and vertical detail coefficients.
Finally, the visualization space at the top right displays any component of the analysis that you
want to look at more closely.

Click on any decomposition component in the lower right window.

A blue border highlights the selected component. At the lower right of the Wavelet 2-D window,
there is a set of three buttons labeled “Operations on selected image.” Note that if you click
again on the same component, you'll deselect it and the blue border disappears.
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Click the Visualize button.

The selected image is displayed in the visualization area. You are seeing the raw, unreconstructed
2-D wavelet coefficients. Using the other buttons, you can display the reconstructed version of
the selected image component, or you can view the selected component at full screen resolution.

Using Tree Mode Features

Choose Tree from the View Mode menu.

Your display changes to reveal the following.
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This is the same information shown in square mode, with in addition all the approximation
coefficients, but arranged to emphasize the tree structure of the decomposition. The various
buttons and menus work just the same as they do in square mode.

Zooming in on Detail

Drag a rubber band box (by holding down the left mouse button) over the portion of the image
you want to magnify.

Click the XY+ button (located at the bottom of the screen) to zoom horizontally and vertically.

The Wavelet 2-D tool enlarges the displayed images.

To zoom back to original magnification, click the History <<- button.
4 Compress the image
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Click the Compress button, located to the upper right of the Wavelet 2-D window. The Wavelet
2-D Compression window appears.

The tool automatically selects thresholding levels to provide a good initial balance between
retaining the image's energy while minimizing the number of coefficients needed to represent the
image.

However, you can also adjust thresholds manually using the By Level thresholding option, and
then the sliders or edits corresponding to each level.

For this example, select the By Level thresholding option and select the Remove near 0
method from the Select thresholding method menu.

The following window is displayed.
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Select from the direction menu whether you want to adjust thresholds for horizontal, diagonal or
vertical details. To make the actual adjustments for each level, use the sliders or use the left
mouse button to directly drag the dashed lines.

To compress the original image, click the Compress button. After a pause for computation, the
compressed image is displayed beside the original. Notice that compression eliminates almost
half the coefficients, yet no detectable deterioration of the image appears.

5 Show the residuals.

From the Wavelet 2-D Compression tool, click the Residuals button. The More on Residuals
for Wavelet 2-D Compression window appears.
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Displayed statistics include measures of tendency (mean, mode, median) and dispersion (range,
standard deviation). In addition, the tool provides frequency-distribution diagrams (histograms
and cumulative histograms). The same tool exists for the Wavelet 2-D Denoising tool.

Note The statistics displayed in the above figure are related to the displayed image but not to
the original one. Usually this information is the same, but in some cases, edge effects may cause
the original image to be cropped slightly. To see the exact statistics, use the command line
functions to get the desired image and then apply the desired MATLAB statistical function(s).

Importing and Exporting Information from the Wavelet Analyzer App
The Wavelet 2-D graphical tool lets you import information from and export information to disk, if
you adhere to the proper file formats.

Saving Information to Disk

You can save synthesized images, coefficients, and decompositions from the Wavelet 2-D tool to disk,
where the information can be manipulated and later reimported into the graphical tool.

Saving Synthesized Images

You can process an image in the Wavelet 2-D tool, and then save the processed image to a MAT-file
(with extension mat or other).

For example, load the example analysis:

File > Example Analysis > Indexed Images > at level 3, with sym4 → Detail Durer

and perform a compression on the original image. When you close the Wavelet 2-D Compression
window, update the synthesized image by clicking Yes in the dialog box that appears.

Then, from the Wavelet 2-D tool, select the File > Save > Synthesized Image menu option. A
dialog box appears allowing you to select a folder and filename for the MAT-file (with extension mat
or other). For this example, choose the name symage.

To load the image into your workspace, type

load symage 
whos
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Name Size Bytes Class
X 359x371 1065512 double array
map 64x3 1536 double array
valTHR 1x1 8 double array
wname 1x4 8 char array

The synthesized image is given by X and map contains the colormap. In addition, the parameters of
the denoising or compression process are given by the wavelet name (wname) and the global
threshold (valTHR).

Saving Discrete Wavelet Transform Coefficients

The Wavelet 2-D tool lets you save the coefficients of a discrete wavelet transform (DWT) to disk.
The toolbox creates a MAT-file in the current folder with a name you choose.

To save the DWT coefficients from the present analysis, use the menu option File > Save >
Coefficients.

A dialog box appears that lets you specify a folder and filename for storing the coefficients.

Consider the example analysis:

File > Example Analysis > Indexed Images > at level 3, with sym4 → Detail Durer

After saving the discrete wavelet coefficients to the file cfsdurer.mat, load the variables into your
workspace:

load cfsdurer
whos

Name Size Bytes Class
coefs 1x142299 1138392 double array
map 64x3 1536 double array
sizes 5x2 80 double array
valTHR 0x0 0 double array
wname 1x4 8 char array

Variable map contains the colormap. Variable wname contains the wavelet name and valTHR is empty
since the synthesized image is the same as the original one.

Variables coefs and sizes contain the discrete wavelet coefficients and the associated matrix sizes.
More precisely, in the above example, coefs is a 1-by-142299 vector of concatenated coefficients,
and sizes gives the length of each component.

Saving Decompositions

The Wavelet 2-D tool lets you save the entire set of data from a discrete wavelet analysis to disk. The
toolbox creates a MAT-file in the current folder with a name you choose, followed by the extension
wa2 (wavelet analysis 2-D).

Open the Wavelet 2-D tool and load the example analysis:
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File > Example Analysis > Indexed Images > at level 3, with sym4 → Detail Durer.

To save the data from this analysis, use the menu option File > Save > Decomposition.

A dialog box appears that lets you specify a folder and filename for storing the decomposition data.
Type the name decdurer.

After saving the decomposition data to the file decdurer.wa2, load the variables into your
workspace:

load decdurer.wa2 -mat 
whos 

Name Size Bytes Class
coefs 1x142299 1138392 double array
data_name 1x6 12 char array
map 64x3 1536 double array
sizes 5x2 80 double array
valTHR 0x0 0 double array
wave_name 1x4 8 char array

Variables coefs and sizes contain the wavelet decomposition structure. Other variables contain the
wavelet name, the colormap, and the filename containing the data. Variable valTHR is empty since
the synthesized image is the same as the original one.

Note Save options are also available when performing denoising or compression inside the Wavelet
2-D tool. In the Wavelet 2-D Denoising window, you can save denoised image and decomposition.
The same holds true for the Wavelet 2-D Compression window. This way, you can save many
different trials from inside the Denoising and Compression windows without going back to the main
Wavelet 2-D window during a fine-tuning process. When saving a synthesized signal, a
decomposition or coefficients to a MAT-file, the mat file extension is not necessary. You can save
approximations individually for each level or save them all at once.

Loading Information into the Wavelet 2-D Tool

You can load images, coefficients, or decompositions into the Wavelet Analyzer app. The information
you load may have been previously exported from the Wavelet Analyzer app, and then manipulated in
the workspace; or it may have been information you generated initially from the command line.

In either case, you must observe the strict file formats and data structures used by the Wavelet 2-D
tool, or else errors will result when you try to load information.
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Loading Images

This toolbox supports only indexed images. An indexed image is a matrix containing only integers
from 1 to n, where n is the number of colors in the image.

This image may optionally be accompanied by an n-by-3 matrix called map. This is the colormap
associated with the image. When MATLAB displays such an image, it uses the values of the matrix to
look up the desired color in this colormap. If the colormap is not given, the Wavelet 2-D tool uses a
monotonic colormap with max(max(X))min(min(X))+1 colors.

To load an image you've constructed in your MATLAB workspace into the Wavelet 2-D tool, save the
image (and optionally, the variable map) in a MAT-file (with extension mat or other).

For instance, suppose you've created an image called brain and want to analyze it in the Wavelet 2-D
tool. Type

X = brain; 
map = pink(256); 
save myfile X map

To load this image into the Wavelet 2-D tool, use the menu option File > Load > Image.

A dialog box appears that lets you select the appropriate MAT-file to be loaded.

Note The graphical tools allow you to load an image that does not contain integers from 1 to n. The
computations are correct because they act directly on the matrix, but the display of the image is
strange. The values less than 1 are evaluated as 1, the values greater than n are evaluated as n, and a
real value within the interval [1,n] is evaluated as the closest integer.

The coefficients, approximations, and details produced by wavelet decomposition are not indexed
image matrices.

To display these images in a suitable way, the Wavelet 2-D tool follows these rules:

• Reconstructed approximations are displayed using the colormap map.
• The coefficients and the reconstructed details are displayed using the colormap map applied to a

rescaled version of the matrices.
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Note The first 2-D variable encountered in the file (except the variable map, which is reserved for the
colormap) is considered the image. Variables are inspected in alphabetical order.

Loading Discrete Wavelet Transform Coefficients

To load discrete wavelet transform (DWT) coefficients into the Wavelet 2-D tool, first save the
appropriate data in a MAT-file, which must contain at least the two variables:

• coefs, the coefficients vector
• sizes, the bookkeeping matrix

For an indexed image the matrix sizes is an n+2-by-2 array:

For a truecolor image, the matrix sizes is a n+2-by-3:

Variable coefs must be a vector of concatenated DWT coefficients. The coefs vector for an n-level
decomposition contains 3n+1 sections, consisting of the level-n approximation coefficients, followed
by the horizontal, vertical, and diagonal detail coefficients, in that order, for each level. Variable
sizes is a matrix, the rows of which specify the size of cAn, the size of cHn (or cVn, or cDn),..., the size
of cH1 (or cV1, or cD1), and the size of the original image X. The sizes of vertical and diagonal details
are the same as the horizontal detail.

After constructing or editing the appropriate data in your workspace, type

save myfile coefs sizes
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Use the File > Load > Coefficients menu option from the Wavelet 2-D tool to load the data into the
graphical tool.

A dialog box appears, allowing you to choose the folder and file in which your data reside.

Loading Decompositions

To load discrete wavelet transform decomposition data into the Wavelet 2-D tool, you must first save
the appropriate data in a MAT-file (with extension wa2 or other).

The MAT-file contains these variables.

Variable Status Description
coefs Required Vector of concatenated DWT coefficients
sizes Required Matrix specifying sizes of components of coefs and of

the original image
wave_name Required Character vector specifying name of wavelet used for

decomposition (e.g., db3)
map Optional n-by-3 colormap matrix.
data_name Optional Character vector specifying name of decomposition

After constructing or editing the appropriate data in your workspace, type

save myfile.wa2 coefs sizes wave_name

Use the File > Load > Decomposition menu option from the Wavelet 2-D tool to load the image
decomposition data.

A dialog box appears, allowing you to choose the folder and file in which your data reside.

Note When loading an image, a decomposition, or coefficients from a MAT-file, the extension of this
file is free. The mat extension is not necessary.
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2-D Stationary Wavelet Transform
This section takes you through the features of 2-D discrete stationary wavelet analysis using the
Wavelet Toolbox software.

Analysis-Decomposition Function
Function Name Purpose
swt2 Decomposition

Synthesis-Reconstruction Function
Function Name Purpose
iswt2 Reconstruction

The stationary wavelet decomposition structure is more tractable than the wavelet one. So, the
utilities useful for the wavelet case are not necessary for the Stationary Wavelet Transform (SWT).

In this section, you'll learn to

• Load an image
• Analyze an image
• Perform single-level and multilevel image decompositions and reconstructions (command line

only)
• denoise an image

2-D Analysis Using the Command Line
In this example, we'll show how you can use 2-D stationary wavelet analysis to denoise an image.

Note Instead of using image(I) to visualize the image I, we use image(wcodemat(I)), which
displays a rescaled version of I leading to a clearer presentation of the details and approximations
(see the wcodemat reference page).

This example involves a image containing noise.

1 Load an image.

From the MATLAB prompt, type

load noiswom 
whos

Name Size Bytes Class
X 96x96 73728 double array
map 255x3 6120 double array
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For the SWT, if a decomposition at level k is needed, 2^k must divide evenly into size(X,1) and
size(X,2). If your original image is not of correct size, you can use the function wextend to
extend it.

2 Perform a single-level Stationary Wavelet Decomposition.

Perform a single-level decomposition of the image using the db1 wavelet. Type

[swa,swh,swv,swd] = swt2(X,1,'db1');

This generates the coefficients matrices of the level-one approximation (swa) and horizontal,
vertical and diagonal details (swh, swv, and swd, respectively). Both are of size-the-image size.
Type

whos

Name Size Bytes Class
X 96x96 73728 double array
map 255x3 6120 double array
swa 96x96 73728 double array
swh 96x96 73728 double array
swv 96x96 73728 double array
swd 96x96 73728 double array

3 Display the coefficients of approximation and details.

To display the coefficients of approximation and details at level 1, type

map = pink(size(map,1)); colormap(map) 
subplot(2,2,1), image(wcodemat(swa,192));
title('Approximation swa') 
subplot(2,2,2), image(wcodemat(swh,192));
title('Horiz. Detail swh') 
subplot(2,2,3), image(wcodemat(swv,192));
title('Vertical Detail swv') 
subplot(2,2,4), image(wcodemat(swd,192));
title('Diag. Detail swd');
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4 Regenerate the image by Inverse Stationary Wavelet Transform.

To find the inverse transform, type

A0 = iswt2(swa,swh,swv,swd,'db1');

To check the perfect reconstruction, type

err = max(max(abs(X-A0)))

err =
     1.1369e-13

5 Construct and display approximation and details from the coefficients.

To construct the level 1 approximation and details (A1, H1, V1 and D1) from the coefficients swa,
swh, swv and swd, type

nulcfs = zeros(size(swa));
A1 = iswt2(swa,nulcfs,nulcfs,nulcfs,'db1');  
H1 = iswt2(nulcfs,swh,nulcfs,nulcfs,'db1');
V1 = iswt2(nulcfs,nulcfs,swv,nulcfs,'db1'); 
D1 = iswt2(nulcfs,nulcfs,nulcfs,swd,'db1');

To display the approximation and details at level 1, type

colormap(map)
subplot(2,2,1), image(wcodemat(A1,192)); 
title('Approximation A1')
subplot(2,2,2), image(wcodemat(H1,192)); 
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title('Horiz. Detail H1')
subplot(2,2,3), image(wcodemat(V1,192)); 
title('Vertical Detail V1')
subplot(2,2,4), image(wcodemat(D1,192)); 
title('Diag. Detail D1')

6 Perform a multilevel Stationary Wavelet Decomposition.

To perform a decomposition at level 3 of the image (again using the db1 wavelet), type

[swa,swh,swv,swd] = swt2(X,3,'db1');

This generates the coefficients of the approximations at levels 1, 2, and 3 (swa) and the
coefficients of the details (swh, swv and swd). Observe that the matrices swa(:,:,i),
swh(:,:,i), swv(:,:,i), and swd(:,:,i) for a given level i are of size-the-image size. Type

clear A0 A1 D1 H1 V1 err nulcfs 
whos 

Name Size Bytes Class
X 96x96 73728 double array
map 255x3 6120 double array
swa 96x96x3 221184 double array
swh 96x96x3 221184 double array
swv 96x96x3 221184 double array
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Name Size Bytes Class
swd 96x96x3 221184 double array

7 Display the coefficients of approximations and details.

To display the coefficients of approximations and details, type

colormap(map)
kp = 0; 
for i = 1:3
    subplot(3,4,kp+1), image(wcodemat(swa(:,:,i),192));
    title(['Approx. cfs level ',num2str(i)])
    subplot(3,4,kp+2), image(wcodemat(swh(:,:,i),192));
    title(['Horiz. Det. cfs level ',num2str(i)]) 
    subplot(3,4,kp+3), image(wcodemat(swv(:,:,i),192));
    title(['Vert. Det. cfs level ',num2str(i)]) 
    subplot(3,4,kp+4), image(wcodemat(swd(:,:,i),192)); 
    title(['Diag. Det. cfs level ',num2str(i)])
    kp = kp + 4; 
end

8 Reconstruct approximation at Level 3 and details from coefficients.

To reconstruct the approximation at level 3, type

mzero = zeros(size(swd)); 
A = mzero; 
A(:,:,3) = iswt2(swa,mzero,mzero,mzero,'db1');

To reconstruct the details at levels 1, 2 and 3, type

H = mzero; V = mzero; 
D = mzero; 
for i = 1:3
    swcfs = mzero; swcfs(:,:,i) = swh(:,:,i); 
    H(:,:,i) = iswt2(mzero,swcfs,mzero,mzero,'db1');
    swcfs = mzero; swcfs(:,:,i) = swv(:,:,i); 
    V(:,:,i) = iswt2(mzero,mzero,swcfs,mzero,'db1');
    swcfs = mzero; swcfs(:,:,i) = swd(:,:,i); 
    D(:,:,i) = iswt2(mzero,mzero,mzero,swcfs,'db1');
end

9 Reconstruct and display approximations at Levels 1, 2 from approximation at Level 3 and details
at Levels 1, 2, and 3.

To reconstruct the approximations at levels 2 and 3, type

A(:,:,2) = A(:,:,3) + H(:,:,3) + V(:,:,3) + D(:,:,3); 
A(:,:,1) = A(:,:,2) + H(:,:,2) + V(:,:,2) + D(:,:,2);

To display the approximations and details at levels 1, 2, and 3, type

colormap(map)
kp = 0; 
for i = 1:3 
    subplot(3,4,kp+1), image(wcodemat(A(:,:,i),192));
    title(['Approx. level ',num2str(i)]) 
    subplot(3,4,kp+2), image(wcodemat(H(:,:,i),192));
    title(['Horiz. Det. level ',num2str(i)]) 
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    subplot(3,4,kp+3), image(wcodemat(V(:,:,i),192)); 
    title(['Vert. Det. level ',num2str(i)])
    subplot(3,4,kp+4), image(wcodemat(D(:,:,i),192)); 
    title(['Diag. Det. level ',num2str(i)]) 
    kp = kp + 4; 
end

10 Remove noise by thresholding.

To denoise an image, use the threshold value we find using the Wavelet Analyzer app tool (see
the next section), use the wthresh command to perform the actual thresholding of the detail
coefficients, and then use the iswt2 command to obtain the denoised image.

thr = 44.5; 
sorh = 's'; dswh = wthresh(swh,sorh,thr); 
dswv = wthresh(swv,sorh,thr);
dswd = wthresh(swd,sorh,thr); 
clean = iswt2(swa,dswh,dswv,dswd,'db1');

To display both the original and denoised images, type

colormap(map)
subplot(1,2,1), image(wcodemat(X,192)); 
title('Original image') 
subplot(1,2,2), image(wcodemat(clean,192)); 
title('denoised image')

A second syntax can be used for the swt2 and iswt2 functions, giving the same results:
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lev= 4; 
swc = swt2(X,lev,'db1'); 
swcden = swc; 
swcden(:,:,1:end-1) =
wthresh(swcden(:,:,1:end-1),sorh,thr); 
clean = iswt2(swcden,'db1');

You obtain the same plot by using the plot commands in step 9 above.

Interactive 2-D Stationary Wavelet Transform Denoising
In this section, we explore a strategy for denoising images based on the 2-D stationary wavelet
analysis using the Wavelet Analyzer app. The basic idea is to average many slightly different discrete
wavelet analyses.

1 Start the Stationary Wavelet Transform Denoising 2-D Tool.

From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Analyzer appears:

Click the SWT Denoising 2-D menu item.
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2 Load data.

At the MATLAB command prompt, type

load noiswom

In the SWT Denoising 2-D tool, select File > Import Image from Workspace. When the
Import from Workspace dialog box appears, select the X variable. Click OK to import the
image.

3 Perform a Stationary Wavelet Decomposition.

Select the haar wavelet from the Wavelet menu, select 4 from the Level menu, and then click
the Decompose Image button.

The tool displays the histograms of the stationary wavelet detail coefficients of the image on the
left of the window. These histograms are organized as follows:

• From the bottom for level 1 to the top for level 4
• On the left horizontal coefficients, in the middle diagonal coefficients, and on the right vertical
coefficients

4 Denoise the image using the Stationary Wavelet Transform.

While a number of options are available for fine-tuning the denoising algorithm, we'll accept the
defaults of fixed form soft thresholding and unscaled white noise. The sliders located to the right
of the window control the level dependent thresholds indicated by the dashed lines running
vertically through the histograms of the coefficients on the left of the window. Click the Denoise
button.
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The result seems to be oversmoothed and the selected thresholds too aggressive. Nevertheless,
the histogram of the residuals is quite good since it is close to a Gaussian distribution, which is
the noise introduced to produce the analyzed image noiswom.mat from a piece of the original
image woman.mat.

5 Selecting a thresholding method.

From the Select thresholding method menu, choose the Penalize low item. The associated
default for the thresholding mode is automatically set to hard; accept it. Use the Sparsity slider
to adjust the threshold value close to 45.5, and then click the denoise button.
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The result is quite satisfactory, although it is possible to improve it slightly.

Select the sym6 wavelet and click the Decompose Image button. Use the Sparsity slider to
adjust the threshold value close to 40.44, and then click the denoise button.

Importing and Exporting Information from the Wavelet Analyzer App
The tool lets you save the denoised image to disk. The toolbox creates a MAT-file in the current folder
with a name you choose.

To save the denoised image from the present denoising process, use the menu File > Save denoised
Image. A dialog box appears that lets you specify a folder and filename for storing the image. Type
the name dnoiswom. After saving the image data to the file dnoiswom.mat, load the variables into
your workspace:

load dnoiswom 
whos

Name Size Bytes Class
X 96x96 73728 double array
map 255x3 6120 double array
valTHR 3x4 96 double array
wname 1x4 8 char array

The denoised image is X and map is the colormap. In addition, the parameters of the denoising
process are available. The wavelet name is contained in wname, and the level dependent thresholds
are encoded in valTHR. The variable valTHR has four columns (the level of the decomposition) and
three rows (one for each detail orientation).
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Shearlet Systems
A shearlet system enables you to create directionally sensitive sparse representations of images with
anisotropic features. Shearlets are used in image processing applications including denoising,
compression, restoration, and feature extraction. Shearlets are also used in statistical learning to
address problems of image classification, inverse scattering problems such as tomography, and data
separation. You can find additional applications at ShearLab [5].

A strength of wavelet analysis for 1-D signals is its ability to efficiently represent smooth functions
that have pointwise discontinuities. However, wavelets do not represent curved singularities, such as
the edge of a disk in an image, as sparsely as they do pointwise discontinuities. Geometric multiscale
analysis is an attempt to design systems capable of efficiently representing curved singularities in
higher dimensional data. In addition to shearlets, other geometric multiscale systems include
curvelets, contourlets, and bandlets.

Guo, Kutyniok, and Labate [1] pioneered the development of the theory of shearlets. They also
developed efficient algorithms for shearlet transforms [4], as have Häuser and Steidl [6]. ShearLab
[5] provides an extensive set of algorithms for processing two- and three-dimensional data using
shearlets.

Like wavelets, a comprehensive theory relates the continuous shearlet transform with the discrete
transform. Also, a multiresolution analysis framework exists for shearlets. As the name suggests,
shearlets have the noteworthy feature of using shears, not rotations, to control directional sensitivity.
This characteristic allows you to create a shearlet system from a single or finite set of generating
functions. Other reasons for the success of shearlets include:

• Shearlets provide optimally sparse approximations of anisotropic features of multivariate data.
• Both compactly supported and bandlimited shearlets exist.
• Shearlet transforms have efficient algorithmic implementations.

Shearlets
Similar to wavelets, shearlets do not have a unique system. Dilation, shearing, and translation

operations generate the shearlets. A dilation can be expressed as a matrix, Aa =
a1/2 0

0 a−1/2
 where

a ∈ ℝ+ . A shear can be expressed as Ss =
1 s
0 1

 where s ∈ ℝ . The variable s parameterizes

orientations.

If the function ψ ∈ L2(ℝ2) satisfies certain (admissibility) conditions, then the set of functions

SH ψ = ψa, s, t = a3/4ψ(SsAa( · − t))

is a continuous shearlet system where a and s are defined as noted earlier, and t ∈ ℝ2 .

If you discretize the dilation, shearing, and translation parameters appropriately, you obtain a
discrete shearlet system:

SH(ψ) = ψ j, k, m = 23 4 jψ SkA2 j · −m : j, k ∈ ℤ, m ∈ ℤ2 .
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The function shearletSystem creates a cone-adapted bandlimited shearlet system. The
implementation of the shearletSystem function follows the approach described in Häuser and
Steidl [6]. The shearlet system is an example of a frame, which you can normalize to create a Parseval
frame. The discrete shearlet transform of a function f ∈ L2(ℝ2) is the inner product of f  with all the
shearlets in the discrete shearlet system f , ψ j, k, m  where ( j, k, m) ∈ ℤ × ℤ × ℤ2 . You use sheart2
to take the discrete shearlet transform of an image. For additional information, see the “References”
on page 3-181.

The following figure shows how a cone-adapted shearlet system partitions the 2-D frequency plane.
The image on the left shows the partition of a cone-adapted real-valued shearlet system with one
scale. The R region in the center is the lowpass part of the system. In addition, the image includes a
horizontal cone shearlet (symmetric in frequency because it is real valued) and a vertical cone
shearlet. The image on the right depicts a system with three scales. The fan-like pattern gives a
shearlet system its directional sensitivity. Note that the number of shearing factors increases as the
frequency support of the shearlet increases. As the support in the frequency domain increases, the
support in the spatial domain decreases.

The spectra of the real-valued shearlets are the same over the positive and negative ξ1, ξ2 supports.
Shearlets in complex-valued shearlet systems partition individually, not in pairs.

Transform Type
Shearlets are either real valued or complex valued in the spatial domain. You specify the transform
type when you use shearletSystem to create the system. Real-valued shearlets have two-sided
frequency spectra. The Fourier transforms of the complex-valued shearlets have support on only one
half of the 2-D frequency space. The Fourier transforms of both types of shearlets are real valued.
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3-D Discrete Wavelet Analysis
This section demonstrates the features of three-dimensional discrete wavelet analysis using the
Wavelet Toolbox software. The toolbox provides these functions for 3-D data analysis. You use the
Wavelet 3-D tool in the Wavelet Analyzer app to perform all tasks except the first task.

• Getting information on the command line functions
• Loading 3-D data
• Analyzing a 3-D data
• Selecting and displaying slices
• Creating a slice movie
• Creating true 3-D display
• Importing and exporting information

Performing 3-D Analysis Using the Command Line
The example wavelet3ddemo and the documentation of the Analysis-Decomposition and Synthesis-
Reconstruction functions show how you can analyze 3-D arrays efficiently using command line
functions dedicated to the 3-D wavelet analysis. For more information, see the function reference
pages.

Analysis-Decomposition Functions

Function Name Purpose
dwt3 Single-level decomposition
wavedec3 Decomposition

Synthesis-Reconstruction Functions

Function Name Purpose
idwt3 Single-level reconstruction
waverec3 Full reconstruction

Performing 3-D Analysis Using the Wavelet Analyzer App
In this section you explore the same 3-D data as in the wavelet3ddemo example, but you use the
Wavelet Analyzer app.

1 Start the 3-D Wavelet Analysis Tool.

From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Analyzer appears.

Click the Wavelet 3-D menu item. The discrete wavelet analysis tool for 3-D data opens.
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2 Load a 3-D array.

At the MATLAB command prompt, type

load wmri

In the Wavelet 3-D tool, select File > Import Data. When the Import from Workspace dialog
box appears, select the X variable. Click OK to import the 3-D data.

3 Analyze the 3-D array. Using the Wavelet and Level menus located in the upper part of the tool,
specify:

• The wavelet families (one per direction X, Y and Z)
• The decomposition level and the wavelet extension mode to be used for the analysis

For this analysis, accept the defaults: db1 wavelet for each direction, decomposition at level 2
and symmetric extension mode (sym).

Click Decompose. After a pause for computation, the Wavelet 3-D tool displays its analysis.
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Review the slices of data and wavelet components in the graphical display. These slices are
orthogonal to the z-direction as indicated by Slice Orientation in the command part of the
window. This option lets you choose the desired slice orientation.

The first row of the graphical display area displays from left to right and for Z = 1:
• The original data slice
• The approximation at level 2 slice (low-pass component APP2)
• The slice which is the sum of all the components from level 1 to level 2, different from the lowpass

one.

The x-labels of the three axes give you the name and the size of the displayed data.

 3-D Discrete Wavelet Analysis

3-185



The next two lines of axes, display the wavelet coefficients at level 2, which is the desired level of the
analysis. In the first line, the first graph contains the coefficients of approximation at level 2. The
remaining seven axes display the seven types of wavelet coefficients at level 2. These coefficients
contain the x-labels of the eight axes and display the name, type and size of the displayed data.

For example, in the third graphic of the bottom line, you can see the Cfs-DAD coefficients at level 2,
which correspond to an array of size 32 x 32 x 7. The name of the DAD coefficients group indicates
that it is obtained using

• The highpass filter in the x-direction (D) for detail
• The lowpass filter in the y-direction (A) for approximation
• The highpass filter in the z-direction (D), leading to the DAD component

You use the Displayed Level in the command part of the window to choose the level of the
displayed component, from 1 to the decomposition level.
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You can modify characteristics of the display using the options in the command part of the
window. Each pair of sliders controls part of graphical array, the original and the reconstructed
slices with the first pair or the coefficients slices with the second pair. Above each slider you can
see the number of slices in the current slice orientation.

Using the slider (or by directly editing the values) of Rec. Z-Slice, choose slice number twelve.
Similarly, choose slice number two using Cfs. Z-Slice.
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The Slice Movie button lets you see a movie of all the slices, first for the reconstructed slices and
then for the coefficients slices. In this case, the movie contains 27 reconstructed images and 7
coefficients images.

3D Display lets you examine the original data and the wavelet components in true 3-D mode.
Click 3D Display and select APP1.

A rotated 3-D view of the approximation at level 1 opens in a new window. Use the sliders in the 3-
D tool to examine the 3-D data.
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Importing and Exporting Information from the Wavelet Analyzer App
You can import information from and export information either to disk or to the workspace using the
Wavelet 3-D graphical tool.

Loading Information into the Wavelet 3-D Tool

To load 3-D data you have constructed in your MATLAB workspace into the Wavelet 3-D tool, save
the 3-D data in a MAT-file, using

M = magic(8); 
X = repmat(M,[1 1 8]); 
save magic3d X  
whos

where M and X are
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Name Size Bytes Class
M 8x8 512 double
X 8x8x8 4096 double

To load this 3-D data into the Wavelet 3-D tool, use the menu option File > Load Data. You then
select the MAT-file to load.

Similarly, you can load information from the workspace using File > Import Data. You then select
the variable to load.

Saving Information to a File

You can save decompositions and approximations from the Wavelet 3-D tool to a file or to the
workspace.

Saving Decompositions

The Wavelet 3-D tool lets you save the entire set of data from a discrete wavelet analysis to a file.
The toolbox creates a MAT-file in the current folder with a name you choose.

1 Open the Wavelet 3-D tool with File > Load Data, and select magic3d to load the 3-D data file.
2 After analyzing your data, save it by using File > Save > Decomposition.
3 In the dialog box that appears, specify a folder and file name for storing the decomposition data.

Type the name dec_magic3d.
4 After saving the decomposition data to the file dec_magic3d.mat, load the variables into your

workspace.

load dec_magic3d 
whos 
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where wdec is

Name Size Bytes Class
wdec 1x1 9182 struct

The variable wdec contains the wavelet decomposition structure.

wdec = 
     sizeINI: [8 8 8] 
       level: 2   
     filters: [1x1 struct] 
      mode: 'sym' 
       dec: {15x1 cell}   
     sizes: [3x3 double]

Saving Approximations

You can process a 3-D data in the Wavelet 3-D tool and then save any desired approximation,
depending on the level chosen for the decomposition.

1 Open the Wavelet 3-D tool and load the file containing the 3-D data to analyze by using
File > Load Data

2 Select magic3d.
3 Select the File > Save > Approximations > Approximation at level 2 menu option.
4 In the dialog box that appears, select a folder and file name for the MAT-file. For this example,

choose the name App2_magic3D.
5 Load the image data into your workspace.

load App2_magic3D 
whos

where x is

Name Size Bytes Class
x 8x8x8 4096 double
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Dual-Tree Complex Wavelet Transforms
This example shows how the dual-tree complex wavelet transform (DTCWT) provides advantages over
the critically sampled DWT for signal, image, and volume processing. The DTCWT is implemented as
two separate two-channel filter banks. To gain the advantages described in this example, you cannot
arbitrarily choose the scaling and wavelet filters used in the two trees. The lowpass (scaling) and
highpass (wavelet) filters of one tree, {h0, h1}, must generate a scaling function and wavelet that are
approximate Hilbert transforms of the scaling function and wavelet generated by the lowpass and
highpass filters of the other tree, {g0, g1}. Therefore, the complex-valued scaling functions and
wavelets formed from the two trees are approximately analytic.

As a result, the DTCWT exhibits less shift variance and more directional selectivity than the critically
sampled DWT with only a 2d redundancy factor for d-dimensional data. The redundancy in the
DTCWT is significantly less than the redundancy in the undecimated (stationary) DWT.

This example illustrates the approximate shift invariance of the DTCWT, the selective orientation of
the dual-tree analyzing wavelets in 2-D and 3-D, and the use of the dual-tree complex discrete wavelet
transform in image and volume denoising.

Near Shift Invariance of the DTCWT

The DWT suffers from shift variance, meaning that small shifts in the input signal or image can cause
significant changes in the distribution of signal/image energy across scales in the DWT coefficients.
The DTCWT is approximately shift invariant.

To demonstrate this on a test signal, construct two shifted discrete-time impulses 128 samples in
length. One signal has the unit impulse at sample 60, while the other signal has the unit impulse at
sample 64. Both signals clearly have unit energy (l2 norm).

kronDelta1 = zeros(128,1);
kronDelta1(60) = 1;
kronDelta2 = zeros(128,1);
kronDelta2(64) = 1;

Set the DWT extension mode to periodic. Obtain the DWT and DTCWT of the two signals down to
level 3 with wavelet and scaling filters of length 14. Extract the level-3 detail coefficients for
comparison.

origmode = dwtmode('status','nodisplay');
dwtmode('per','nodisp')
J = 3;
[dwt1C,dwt1L] = wavedec(kronDelta1,J,'sym7');
[dwt2C,dwt2L] = wavedec(kronDelta2,J,'sym7');
dwt1Cfs = detcoef(dwt1C,dwt1L,3);
dwt2Cfs = detcoef(dwt2C,dwt2L,3);

[dt1A,dt1D] = dualtree(kronDelta1,'Level',J,'FilterLength',14);
[dt2A,dt2D] = dualtree(kronDelta2,'Level',J,'FilterLength',14);
dt1Cfs = dt1D{3};
dt2Cfs = dt2D{3};

Plot the absolute values of the DWT and DTCWT coefficients for the two signals at level 3 and
compute the energy (squared l2 norms) of the coefficients. Plot the coefficients on the same scale.
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The four sample shift in the signal has caused a significant change in the energy of the level-3 DWT
coefficients. The energy in the level-3 DTCWT coefficients has changed by only approximately 3%.

figure
subplot(1,2,1)
stem(abs(dwt1Cfs),'markerfacecolor',[0 0 1])
title({'DWT';['Squared 2-norm = ' num2str(norm(dwt1Cfs,2)^2,3)]},...
    'fontsize',10)
ylim([0 0.4])
subplot(1,2,2)
stem(abs(dwt2Cfs),'markerfacecolor',[0 0 1])
title({'DWT';['Squared 2-norm = ' num2str(norm(dwt2Cfs,2)^2,3)]},...
    'fontsize',10)
ylim([0 0.4])

figure
subplot(1,2,1)
stem(abs(dt1Cfs),'markerfacecolor',[0 0 1])
title({'Dual-tree CWT';['Squared 2-norm = ' num2str(norm(dt1Cfs,2)^2,3)]},...
    'fontsize',10)
ylim([0 0.4])
subplot(1,2,2)
stem(abs(dwt2Cfs),'markerfacecolor',[0 0 1])
title({'Dual-tree CWT';['Squared 2-norm = ' num2str(norm(dt2Cfs,2)^2,3)]},...
    'fontsize',10)
ylim([0 0.4])
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To demonstrate the utility of approximate shift invariance in real data, we analyze an
electrocardiogram (ECG) signal. The sampling interval for the ECG signal is 1/180 seconds. The data
are taken from Percival & Walden [3], p.125 (data originally provided by William Constantine and Per
Reinhall, University of Washington). For convenience, we take the data to start at t=0.

load wecg
dt = 1/180;
t = 0:dt:(length(wecg)*dt)-dt;
figure
plot(t,wecg)
xlabel('Seconds')
ylabel('Millivolts')
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The large positive peaks approximately 0.7 seconds apart are the R waves of the cardiac rhythm.
First, decompose the signal using the critically sampled DWT with the Farras nearly symmetric
filters. Plot the original signal along with the level-2 and level-3 wavelet coefficients. The level-2 and
level-3 coefficients were chosen because the R waves are isolated most prominently in those scales
for the given sampling rate.

figure
J = 6; 
[df,rf] = dtfilters('farras');
[dtDWT1,L1] = wavedec(wecg,J,df(:,1),df(:,2));
details = zeros(2048,3);
details(2:4:end,2) = detcoef(dtDWT1,L1,2);
details(4:8:end,3) = detcoef(dtDWT1,L1,3);
subplot(3,1,1)
stem(t,details(:,2),'Marker','none','ShowBaseline','off')
title('Level 2')
ylabel('mV')
subplot(3,1,2)
stem(t,details(:,3),'Marker','none','ShowBaseline','off')
title('Level 3')
ylabel('mV')
subplot(3,1,3)
plot(t,wecg)
title('Original Signal')
xlabel('Seconds')
ylabel('mV')
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Repeat the above analysis for the dual-tree transform. In this case, just plot the real part of the dual-
tree coefficients at levels 2 and 3.

[dtcplxA,dtcplxD] = dualtree(wecg,'Level',J,'FilterLength',14);
details = zeros(2048,3);
details(2:4:end,2) = dtcplxD{2};
details(4:8:end,3) = dtcplxD{3};
subplot(3,1,1)
stem(t,real(details(:,2)),'Marker','none','ShowBaseline','off')
title('Level 2')
ylabel('mV')
subplot(3,1,2)
stem(t,real(details(:,3)),'Marker','none','ShowBaseline','off')
title('Level 3')
ylabel('mV')
subplot(3,1,3)
plot(t,wecg)
title('Original Signal')
xlabel('Seconds')
ylabel('mV')
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Both the critically sampled and dual-tree wavelet transforms localize an important feature of the ECG
waveform to similar scales

An important application of wavelets in 1-D signals is to obtain an analysis of variance by scale. It
stands to reason that this analysis of variance should not be sensitive to circular shifts in the input
signal. Unfortunately, this is not the case with the critically sampled DWT. To demonstrate this, we
circularly shift the ECG signal by 4 samples, analyze the unshifted and shifted signals with the
critically sampled DWT, and calculate the distribution of energy across scales.

wecgShift = circshift(wecg,4);
[dtDWT2,L2] = wavedec(wecgShift,J,df(:,1),df(:,2));

detCfs1 = detcoef(dtDWT1,L1,1:J,'cells');
apxCfs1 = appcoef(dtDWT1,L1,rf(:,1),rf(:,2),J);
cfs1 = horzcat(detCfs1,{apxCfs1});
detCfs2 = detcoef(dtDWT2,L2,1:J,'cells');
apxCfs2 = appcoef(dtDWT2,L2,rf(:,1),rf(:,2),J);
cfs2 = horzcat(detCfs2,{apxCfs2});

sigenrgy = norm(wecg,2)^2;
enr1 = cell2mat(cellfun(@(x)(norm(x,2)^2/sigenrgy)*100,cfs1,'uni',0));
enr2 = cell2mat(cellfun(@(x)(norm(x,2)^2/sigenrgy)*100,cfs2,'uni',0));
levels = {'D1';'D2';'D3';'D4';'D5';'D6';'A6'};
enr1 = enr1(:);
enr2 = enr2(:);
table(levels,enr1,enr2,'VariableNames',{'Level','enr1','enr2'})
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ans=7×3 table
    Level      enr1      enr2 
    ______    ______    ______

    {'D1'}    4.1994    4.1994
    {'D2'}     8.425     8.425
    {'D3'}    13.381    10.077
    {'D4'}    7.0612    10.031
    {'D5'}    5.4606    5.4436
    {'D6'}    3.1273    3.4584
    {'A6'}    58.345    58.366

Note that the wavelet coefficients at levels 3 and 4 show approximately 3% changes in energy
between the original and shifted signal. Next, we repeat this analysis using the complex dual-tree
discrete wavelet transform.

[dtcplx2A,dtcplx2D] = dualtree(wecgShift,'Level',J,'FilterLength',14);
dtCfs1 = vertcat(dtcplxD,{dtcplxA});
dtCfs2 = vertcat(dtcplx2D,{dtcplx2A});

dtenr1 = cell2mat(cellfun(@(x)(norm(x,2)^2/sigenrgy)*100,dtCfs1,'uni',0));
dtenr2 = cell2mat(cellfun(@(x)(norm(x,2)^2/sigenrgy)*100,dtCfs2,'uni',0));
dtenr1 = dtenr1(:);
dtenr2 = dtenr2(:);
table(levels,dtenr1,dtenr2, 'VariableNames',{'Level','dtenr1','dtenr2'})

ans=7×3 table
    Level     dtenr1    dtenr2
    ______    ______    ______

    {'D1'}    5.3533    5.3619
    {'D2'}    6.2672    6.2763
    {'D3'}    12.155     12.19
    {'D4'}    8.2831     8.325
    {'D5'}      5.81    5.8577
    {'D6'}    3.1768    3.0526
    {'A6'}    58.403    58.384

The dual-tree transform produces a consistent analysis of variance by scale for the original signal and
its circularly shifted version.

Directional Selectivity in Image Processing

The standard implementation of the DWT in 2-D uses separable filtering of the columns and rows of
the image. Use the helper function helperPlotCritSampDWT to plot the LH, HL, and HH wavelets
for Daubechies' least-asymmetric phase wavelet with 4 vanishing moments, sym4.

 helperPlotCritSampDWT
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Note that the LH and HL wavelets have clear horizontal and vertical orientations respectively.
However, the HH wavelet on the far right mixes both the +45 and -45 degree directions, producing a
checkerboard artifact. This mixing of orientations is due to the use of real-valued separable filters.
The HH real-valued separable filter has passbands in all four high frequency corners of the 2-D
frequency plane.

The dual-tree DWT achieves directional selectivity by using wavelets that are approximately analytic,
meaning that they have support on only one half of the frequency axis. In the dual-tree DWT, there
are six subbands for both the real and imaginary parts. The six real parts are formed by adding the
outputs of column filtering followed by row filtering of the input image in the two trees. The six
imaginary parts are formed by subtracting the outputs of column filtering followed by row filtering.

The filters applied to the columns and rows may be from the same filter pair, {h0, h1} or {g0, g1}, or
from different filter pairs, {h0, g1}, {g0, h1}. Use the helper function helperPlotWaveletDTCWT to
plot the orientation of the 12 wavelets corresponding to the real and imaginary parts of the DTCWT.
The top row of the preceding figure shows the real parts of the six wavelets, and the second row
shows the imaginary parts.

helperPlotWaveletDTCWT
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Edge Representation in Two Dimensions

The approximate analyticity and selective orientation of the complex dual-tree wavelets provide
superior performance over the standard 2-D DWT in the representation of edges in images. To
illustrate this, we analyze test images with edges consisting of line and curve singularities in multiple
directions using the critically sampled 2-D DWT and the 2-D complex oriented dual-tree transform.
First, analyze an image of an octagon, which consists of line singularities.

load woctagon
imagesc(woctagon)
colormap gray
title('Original Image')
axis equal
axis off
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Use the helper function helprPlotOctagon to decompose the image down to level 4 and
reconstruct an image approximation based on the level-4 detail coefficients.

helperPlotOctagon(woctagon)
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Next, analyze an octagon with hyperbolic edges. The edges in the hyperbolic octagon are curve
singularities.

load woctagonHyperbolic
figure
imagesc(woctagonHyperbolic)
colormap gray
title('Octagon with Hyperbolic Edges')
axis equal
axis off
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Again, use the helper function helprPlotOctagon to decompose the image down to level 4 and
reconstruct an image approximation based on the level-4 detail coefficients for both the standard 2-D
DWT and the complex oriented dual-tree DWT.

helperPlotOctagon(woctagonHyperbolic)
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Note that the ringing artifacts evident in the 2-D critically sampled DWT are absent in the 2-D
DTCWT of both images. The DTCWT more faithfully reproduces line and curve singularities.

Image Denoising

Because of the ability to isolate distinct orientations in separate subbands, the DTCWT is often able
to outperform the standard separable DWT in applications like image denoising. To demonstrate this,
use the helper function helperCompare2DDenoisingDTCWT. The helper function loads an image
and adds zero-mean white Gaussian noise with σ = 25. For a user-supplied range of thresholds, the
function compares denoising using soft thresholding for the critically sampled DWT, and the DTCWT.
For each threshold value, the root-mean-square (RMS) error and peak signal-to-noise ratio (PSNR)
are displayed.

numex = 3;
helperCompare2DDenoisingDTCWT(numex,0:2:100,'PlotMetrics');
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The DTCWT outperforms the standard DWT in RMS error and PSNR.

Next, obtain the denoised images for a threshold value of 25, which is equal to the standard deviation
of the additive noise.

numex = 3;
helperCompare2DDenoisingDTCWT(numex,25,'PlotImage');
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With a threshold value equal to the standard deviation of the additive noise, the DTCWT provides a
PSNR almost 4 dB higher than the standard 2-D DWT.

Directional Selectivity in 3-D

The ringing artifacts observed with the separable DWT in two dimensions is exacerbated when
extending wavelet analysis to higher dimensions. The DTCWT enables you to maintain directional
selectivity in 3-D with minimal redundancy. In 3-D, there are 28 wavelet subbands in the dual-tree
transform.

To demonstrate the directional selectivity of the 3-D dual-tree wavelet transform, visualize example 3-
D isosurfaces of both 3-D dual-tree and separable DWT wavelets. First, visualize the real and
imaginary parts separately of two dual-tree subbands.

helperVisualize3D('Dual-Tree',28,'separate')
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helperVisualize3D('Dual-Tree',25,'separate')
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The red portion of the isosurface plot indicates the positive excursion of the wavelet from zero, while
blue denotes the negative excursion. You can clearly see the directional selectivity in space of the real
and imaginary parts of the dual-tree wavelets. Now visualize one of the dual-tree subbands with the
real and imaginary plots plotted together as one isosurface.

helperVisualize3D('Dual-Tree',25,'real-imaginary')
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The preceding plot demonstrates that the real and imaginary parts are shifted versions of each other
in space. This reflects the fact that the imaginary part of the complex wavelet is the approximate
Hilbert transform of the real part. Next, visualize the isosurface of a real orthogonal wavelet in 3-D
for comparison.

helperVisualize3D('DWT',7)
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The mixing of orientations observed in the 2-D DWT is even more pronounced in 3-D. Just as in the 2-
D case, the mixing of orientations in 3-D leads to significant ringing, or blocking artifacts. To
demonstrate this, examine the 3-D DWT and DTCWT wavelet details of a spherical volume. The
sphere is 64-by-64-by-64.

load sphr
[A,D] = dualtree3(sphr,2,'excludeL1');
A = zeros(size(A));
sphrDTCWT = idualtree3(A,D);
montage(reshape(sphrDTCWT,[64 64 1 64]),'DisplayRange',[])
title('DTCWT Level 2 Details')
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Compare the preceding plot against the second-level details based on the separable DWT.

sphrDEC = wavedec3(sphr,2,'sym4','mode','per');
sphrDEC.dec{1} = zeros(size(sphrDEC.dec{1}));
for kk = 2:8
    sphrDEC.dec{kk} = zeros(size(sphrDEC.dec{kk}));
end
sphrrecDWT = waverec3(sphrDEC);
figure
montage(reshape(sphrrecDWT,[64 64 1 64]),'DisplayRange',[])
title('DWT Level 2 Details')
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Zoom in on the images in both the DTCWT and DWT montages and you will see how prominent the
blocking artifacts in the DWT details are compared to the DTCWT.

Volume Denoising

Similar to the 2-D case, the directional selectivity of the 3-D DTCWT often leads to improvements in
volume denoising.

To demonstrate this, consider an MRI dataset consisting of 16 slices. Gaussian noise with a standard
deviation of 10 has been added to the original dataset. Display the noisy dataset.

load MRI3D
montage(reshape(noisyMRI,[128 128 1 16]),'DisplayRange',[])
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Note that the original SNR prior to denoising is approximately 11 dB.

20*log10(norm(origMRI(:),2)/norm(origMRI(:)-noisyMRI(:),2))

ans = 11.2997

Denoise the MRI dataset down to level 4 using both the DTCWT and the DWT. Similar wavelet filter
lengths are used in both cases. Plot the resulting SNR as a function of the threshold. Display the
denoised results for both the DTCWT and DWT obtained at the best SNR.

[imrecDTCWT,imrecDWT] = helperCompare3DDenoising(origMRI,noisyMRI);
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figure
montage(reshape(imrecDTCWT,[128 128 1 16]),'DisplayRange',[])
title('DTCWT Denoised Volume')
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figure
montage(reshape(imrecDWT,[128 128 1 16]),'DisplayRange',[])
title('DWT Denoised Volume')
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Restore the original extension mode.

dwtmode(origmode,'nodisplay')

Summary

We have shown that the dual-tree CWT possesses the desirable properties of near shift invariance and
directional selectivity not achievable with the critically sampled DWT. We have demonstrated how
these properties can result in improved performance in signal analysis, the representation of edges in
images and volumes, and image and volume denoising.
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Related Examples
• “Analytic Wavelets Using the Dual-Tree Wavelet Transform” on page 3-220

More About
• “Critically Sampled and Oversampled Wavelet Filter Banks” on page 3-2

 Dual-Tree Complex Wavelet Transforms

3-219



Analytic Wavelets Using the Dual-Tree Wavelet Transform
This example shows how to create approximately analytic wavelets using the dual-tree complex
wavelet transform. The FIR filters in the two filter banks must be carefully constructed in order to
obtain an approximately analytic wavelet transform and derive the benefits of the dual-tree
transform.

Create the zero signal 256 samples in length. Obtain two dual-tree transforms of the zero signal down
to level 5. By default, dualtree uses the default near-symmetric biorthogonal filter pair
nearsym5_7 for level 1, and the orthogonal Q-shift Hilbert wavelet filter pair of length 10 for levels
greater than 1.

x = zeros(256,1);
[a1,d1] = dualtree(x,'Level',5);
[a2,d2] = dualtree(x,'Level',5);

Set a single level-five detail coefficient in each of the two trees to 1 and invert the transform to obtain
the wavelets.

d1{5}(5) = 1;
d2{5}(5) = 1i;
wav1 = idualtree(a1,d1);
wav2 = idualtree(a2,d2);

Form the complex wavelet using the first tree as the real part and the second tree as the imaginary
part. Plot the real and imaginary parts of the wavelet.

analwav = wav1+1i*wav2;
plot(real(analwav))
hold on
plot(imag(analwav),'r')
plot(abs(analwav),'k','linewidth',2)
axis tight
legend('Real part','Imaginary part','Magnitude','Location','Northwest')
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Fourier transform the analytic wavelet and plot the magnitude.

zdft = fft(analwav);
domega = (2*pi)/length(analwav);
omega = 0:domega:(2*pi)-domega;
clf;
plot(omega,abs(zdft))
xlabel('Radians/Sample')
axis tight
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The Fourier transform of the wavelet has support on essentially only half of the frequency axis.
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Multifractal Analysis
This example shows how to use wavelets to characterize local signal regularity. The ability to describe
signal regularity is important when dealing with phenomena that have no characteristic scale. Signals
with scale-free dynamics are widely observed in a number of different application areas including
biomedical signal processing, geophysics, finance, and internet traffic. Whenever you apply some
analysis technique to your data, you are invariably assuming something about the data. For example,
if you use autocorrelation or power spectral density (PSD) estimation, you are assuming that your
data is translation invariant, which means that signal statistics like mean and variance do not change
over time. Signals with no characteristic scale are scale-invariant. This means that the signal
statistics do not change if we stretch or shrink the time axis. Classical signal processing techniques
typically fail to adequately describe these signals or reveal differences between signals with different
scaling behavior. In these cases, fractal analysis can provide unique insights. Some of the following
examples use pwelch for illustration. To execute that code, you must have Signal Processing
Toolbox™.

Power Law Processes

An important class of signals with scale-free dynamics have autocorrelation or power spectral
densities (PSD) that follow a power law. A power-law process has a PSD of the form C |ω|−α for some
positive constant, C, and some exponent α. In some instances, the signal of interest exhibits a power-
law PSD. In other cases, the signal of interest is corrupted by noise with a power-law PSD. These
noises are often referred to as colored. Being able to estimate the exponent from realizations of these
processes has important implications. For one, it allows you to make inferences about the mechanism
generating the data as well as providing empirical evidence to support or reject theoretical
predictions. In the case of an interfering noise with a power-law PSD, it is helpful in designing
effective filters.

Brown noise, or a Brownian process, is one such colored noise process with a theoretical exponent of
α = 2. One way to estimate the exponent of a power law process is to fit a least-squares line to a log-
log plot of the PSD.

load brownnoise;
[Pxx,F] = pwelch(brownnoise,kaiser(1000,10),500,1000,1);
plot(log10(F(2:end)),log10(Pxx(2:end)));
grid on;
xlabel('log10(F)'); ylabel('log10(Pxx)');
title('Log-Log Plot of PSD Estimate')
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Regress the log PSD values on the log frequencies. Note you must ignore zero frequency to avoid
taking the log of zero.

Xpred = [ones(length(F(2:end)),1) log10(F(2:end))];
b = lscov(Xpred,log10(Pxx(2:end)));
y = b(1)+b(2)*log10(F(2:end));
hold on;
plot(log10(F(2:end)),y,'r--');
title(['Estimated Slope is ' num2str(b(2))]);
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Alternatively, you can use both discrete and continuous wavelet analysis techniques to estimate the
exponent. The relationship between the Holder exponent, H, returned by dwtleader and wtmm and α
is this scenario is α = 2H + 1.

[dhbrown,hbrown,cpbrown] = dwtleader(brownnoise);
hexp = wtmm(brownnoise);
fprintf('Wavelet leader estimate is %1.2f\n',-2*cpbrown(1)-1);

Wavelet leader estimate is -1.91

fprintf('WTMM estimate is %1.2f\n',-2*hexp-1);

WTMM estimate is -2.00

In this case, the estimate obtained by fitting a least-squares line to the log of the PSD estimate and
those obtained using wavelet methods are in good agreement.

Multifractal Analysis

There are a number of real-world signals that exhibit nonlinear power-law behavior that depends on
higher-order moments and scale. Multifractal analysis provides a way to describe these signals.
Multifractal analysis consists of determining whether some type of power-law scaling exists for
various statistical moments at different scales. If this scaling behavior is characterized by a single
scaling exponent, or equivalently is a linear function of the moments, the process is monofractal. If
the scaling behavior by scale is a nonlinear function of the moments, the process is multifractal. The
brown noise from the previous section is an example of monofractal process and this is demonstrated
in a later section.

 Multifractal Analysis

3-225



To illustrate how fractal analysis can reveal signal structure not apparent with more classic signal
processing techniques, load RWdata.mat which contains two time series (Ts1 and Ts2) with 8000
samples each. Plot the data.

load RWdata;
figure;
plot([Ts1 Ts2]); grid on;
legend('Ts1','Ts2','Location','NorthEast');
xlabel('Time'); ylabel('Amplitude');

The signals have very similar second order statistics. If you look at the means, RMS values, and
variances of Ts1 and Ts2, the values are almost identical. The PSD estimates are also very similar.

pwelch([Ts1 Ts2],kaiser(1e3,10))
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The autocorrelation sequences decay very slowly for both time series and are not informative for
differentiating the time series.

[xc1,lags] = xcorr(Ts1,300,'coef');
xc2 = xcorr(Ts2,300,'coef');
subplot(2,1,1)
hs1 = stem(lags(301:end),xc1(301:end));
hs1.Marker = 'none';
title('Autocorrelation Sequence of Ts1');
subplot(2,1,2)
hs2 = stem(lags(301:end),xc2(301:end));
hs2.Marker = 'none';
title('Autocorrelation Sequence of Ts2');
xlabel('Lag')
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Even at a lag of 300, the autocorrelations are 0.94 and 0.96 respectively.

The fact that these signals are very different is revealed through fractal analysis. Compute and plot
the multifractal spectra of the two signals. In multifractal analysis, discrete wavelet techniques based
on the so-called wavelet leaders are the most robust.

[dh1,h1,cp1,tauq1] = dwtleader(Ts1);
[dh2,h2,cp2,tauq2] = dwtleader(Ts2);
figure;
hp = plot(h1,dh1,'b-o',h2,dh2,'b-^');
hp(1).MarkerFaceColor = 'b';
hp(2).MarkerFaceColor = 'r';
grid on;
xlabel('h'); ylabel('D(h)');
legend('Ts1','Ts2','Location','NorthEast');
title('Multifractal Spectrum');
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The multifractal spectrum effectively shows the distribution of scaling exponents for a signal.
Equivalently, the multifractal spectrum provides a measure of how much the local regularity of a
signal varies in time. A signal that is monofractal exhibits essentially the same regularity everywhere
in time and therefore has a multifractal spectrum with narrow support. Conversely, A multifractal
signal exhibits variations in signal regularity over time and has a multifractal spectrum with wider
support. From the multifractal spectra shown here, Ts2, appears to be a monofractal signal
characterized by a cluster of scaling exponents around 0.78. On the other hand, Ts1, demonstrates a
wide-range of scaling exponents indicating that it is multifractal. Note the total range of scaling
(Holder) exponents for Ts2 is just 0.14, while it is 4.6 times as big for Ts1. Ts2 is actually an example
of a monofractal fractional Brownian motion (fBm) process with a Holder exponent of 0.8 and Ts1 is a
multifractal random walk.

You can also use the scaling exponent outputs from dwtleader along with the 2nd cumulant to help
classify a process as monofractal vs. multifractal. Recall a monofractal process has a linear scaling
law as a function of the statistical moments, while a multifractal process has a nonlinear scaling law.
dwtleader uses the range of moments from -5 to 5 in estimating these scaling laws. A plot of the
scaling exponents for the fBm and multifractal random walk (MRW) process shows the difference.

plot(-5:5,tauq1,'b-o',-5:5,tauq2,'r-^');
grid on;
xlabel('Q-th Moment'); ylabel('Scaling Exponents');
title('Scaling Exponents');
legend('MRW','fBm','Location','SouthEast');
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The scaling exponents for the fBm process are a linear function of the moments, while the exponents
for the MRW process show a departure from linearity. The same information is summarized by the
1st, 2nd, and 3rd cumulants. The first cumulant is the estimate of the slope, in other words, it
captures the linear behavior. The second cumulant captures the first departure from linearity. You can
think of the second cumulant as the coefficients for a second-order (quadratic) term, while the third
cumulant characterizes a more complicated departure of the scaling exponents from linearity. If you
examine the 2nd and 3rd cumulants for the MRW process, they are 6 and 42 times as large as the
corresponding cumulants for the fBm data. In the latter case, the 2nd and 3rd cumulants are almost
zero as expected.

For comparison, add the multifractal spectrum for the brown noise computed in an earlier example.

hp = plot(h1,dh1,'b-o',h2,dh2,'b-^',hbrown,dhbrown,'r-v');
hp(1).MarkerFaceColor = 'b';
hp(2).MarkerFaceColor = 'r';
hp(3).MarkerFaceColor = 'k';
grid on;
xlabel('h'); ylabel('D(h)');
legend('Ts1','Ts2','brown noise','Location','SouthEast');
title('Multifractal Spectrum');
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Where is the Process Going Next? Persistent and Antipersistent Behavior

Both the fractional Brownian process (Ts2) and the brown noise series are monofractal. However, a
simple plot of the two time series shows that they appear quite different.

subplot(2,1,1)
plot(brownnoise); title('Brown Noise');
grid on; axis tight;
subplot(2,1,2)
plot(Ts2); title('fBm H=0.8'); grid on;
axis tight;
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The fBm data is much smoother than the brown noise. Brown noise, also known as a random walk,
has a theoretical Holder exponent of 0.5. This value forms a boundary between processes with Holder
exponents, H, from 0<H<0.5 and those with Holder exponents in the interval 0.5<H<1. The former
are called antipersistent and exhibit short memory. The latter are called persistent and exhibit long
memory. In antipersistent time series, an increase in value at time t is followed with a decrease in
value at time t+1 with a high probability. Similarly, a decrease in value at time t is typically followed
by an increase in value at time t+1. In other words, the time series tends to always revert to its mean
value. In persistent time series, increases in value tend to be followed by subsequent increases while
decreases in value tend to be followed by subsequent decreases.

To see some real-world examples of antipersistent time series, load and analyze the daily log returns
for the Taiwan Weighted and Seoul Composite stock indices. The daily returns for both indices cover
the approximate period from July, 1997 through April, 2016.

load StockCompositeData;
subplot(2,1,1)
plot(SeoulComposite); title('Seoul Composite Index - 07/1997-04/2016');
ylabel('Log Returns'); grid on;
subplot(2,1,2);
plot(TaiwanWeighted); title('Taiwan Weighted Index - 07/1997-04/2016');
ylabel('Log Returns');
grid on;
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Obtain and plot the multifractal spectra of these two time series.

[dhseoul,hseoul,cpseoul] = dwtleader(SeoulComposite);
[dhtaiwan,htaiwan,cptaiwan] = dwtleader(TaiwanWeighted);
figure;
plot(hseoul,dhseoul,'b-o','MarkerFaceColor','b');
hold on;
plot(htaiwan,dhtaiwan,'r-^','MarkerFaceColor','r');
xlabel('h'); ylabel('D(h)'); grid on;
title('Multifractal Spectrum');
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From the multifractal spectrum, it is clear that both time series are antipersistent. For comparison,
plot the multifractal spectra of the two financial time series along with the brown noise and fBm data
shown earlier.

plot(hbrown,dhbrown,'k-v','MarkerFaceColor','k');
plot(h2,dh2,'b-*','MarkerFaceColor','b');
legend('Seoul Composite','Taiwan Weighted Index','Brown Noise','FBM',...
    'Location','SouthEast');
hold off;
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Determining that a process is antipersistent or persistent is useful in predicting the future. For
example, a time series with long memory that is increasing can be expected to continue increasing.
While a time series that exhibits antipersistence can be expected to move in the opposite direction.

Measuring Fractal Dynamics of Heart Rate Variability

Normal human heart rate variability measured as RR intervals displays multifractal behavior. Further,
reductions in this nonlinear scaling behavior are good predictors of cardiac disease and even
mortality.

As an example of an induced change in the fractal dynamics of heart rate variability, consider a
patient administered prostaglandin E1 due to a severe hypertensive episode. The data is part of
RHRV, an R-based software package for heart rate variability analysis. The authors have kindly
granted permission for its use in this example.

Load and plot the data. The vertical red line marks the beginning of the effect of the prostaglandin E1
on the heart rate and heart rate variability.

load hrvDrug;
plot(hrvDrug); grid on;
hold on;
plot([4642 4642],[min(hrvDrug) max(hrvDrug)],'r','linewidth',2);
hold off;
ylabel('Heart Rate'); xlabel('Sample');
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Split the data into pre-drug and post-drug data sets. Obtain and plot the multifractal spectra of the
two time series.

predrug = hrvDrug(1:4642);
postdrug = hrvDrug(4643:end);
[dhpre,hpre] = dwtleader(predrug);
[dhpost,hpost] = dwtleader(postdrug);
figure;
hl = plot(hpre,dhpre,'b-d',hpost,dhpost,'r-^');
hl(1).MarkerFaceColor = 'b';
hl(2).MarkerFaceColor = 'r';
xlabel('h'); ylabel('D(h)');
grid on;
legend('Predrug','Postdrug');
title('Multifractal Spectrum'); xlabel('h'); ylabel('D(h)');
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The induction of the drug has led to a 50% reduction in the width of the fractal spectrum. This
indicates a significant reduction in the nonlinear dynamics of the heart as measured by heart rate
variability. In this case, the reduction of the fractal dimension was part of a medical intervention. In a
different context, studies on groups of healthy individuals and patients with congestive heart failure
have shown that differences in the multifractal spectra can differentiate these groups. Specifically,
significant reductions in the width of the multifractal spectrum is a marker of cardiac dysfunction.
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Time-Frequency Gallery
This gallery provides you with an overview of the time-frequency analysis features available in Signal
Processing Toolbox and Wavelet Toolbox. The descriptions and usage examples present various
methods that you can use for your signal analysis.

Method Features Invertible Examples
“Short-Time
Fourier Transform
(Spectrogram)” on
page 4-3

• The short-time Fourier
transform (STFT) has fixed
time-frequency resolution.

• The spectrogram is the
magnitude squared of the
STFT.

• stft: Yes
• spectrogram: No

“Example: Whale
Song” on page 4-6

“Continuous
Wavelet Transform
(Scalogram)” on
page 4-8

• The continuous wavelet
transform (CWT) has a
variable time-frequency
resolution.

• The CWT preserves time
shifts and time scalings.

Yes “Example: ECG Signal”
on page 4-9

“Wigner-Ville
Distribution” on
page 4-10

• The Wigner-Ville
distribution (WVD) is
always real.

• Time and frequency
marginal densities
correspond to
instantaneous power and
spectral energy density,
respectively.

• The time resolution of the
WVD is equal to the
number of input samples.

No “Example: Otoacoustic
Emission” on page 4-
11

“Reassignment and
Synchrosqueezing”
on page 4-12

• Reassignment sharpens
localization of spectral
estimates.

• Synchrosqueezing
"condenses" time-
frequency maps around
curves of instantaneous
frequency.

• Both methods are
especially suited to track
and extract time-frequency
ridges

• pspectrum: No
• fsst, wsst: Yes

“Example:
Echolocation Pulse” on
page 4-12

4 Time-Frequency Analysis

4-2



Method Features Invertible Examples
“Constant-Q Gabor
Transform” on
page 4-18

• The constant-Q Gabor
transform (CQT) tiles the
time-frequency plane with
variable-sized windows.

• The windows have
adaptable bandwidth and
sampling density.

• The ratio of center
frequency to bandwidth
(Q-factor) for all windows
is constant.

Yes “Example: Rock Music”
on page 4-19

“Data-Adaptive
Methods and
Multiresolution
Analysis” on page
4-19

• The empirical mode
decomposition (EMD)
decomposes signals into
intrinsic mode functions.

• The variational mode
decomposition (VMD)
decomposes a signal into a
small number of
narrowband intrinsic mode
functions.

• The empirical wavelet
transform (EWT)
decomposes signals into
multiresolution analysis
(MRA) components.

• The Hilbert-Huang
transform (HHT) computes
the instantaneous
frequency of each
empirical mode.

• The tunable Q-factor
wavelet transform (TQWT)
creates an MRA with a
user-specified Q-factor.

• The maximal overlap
discrete wavelet transform
(MODWT) partitions a
signal's energy across
detail and scaling
coefficients.

No “Example: Bearing
Vibration” on page 4-
20

Short-Time Fourier Transform (Spectrogram)
Description

• The short-time Fourier transform is a linear time-frequency representation useful in the analysis of
nonstationary multicomponent signals.
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• The short-time Fourier transform is invertible.
• The spectrogram is the magnitude squared of the STFT.
• You can compute the cross-spectrogram of two signals to look for similarities in time-frequency

space.
• The persistence spectrum of a signal is a time-frequency view that shows the percentage of the

time that a given frequency is present in a signal. The persistence spectrum is a histogram in
power-frequency space. The longer a particular frequency persists in a signal as the signal
evolves, the higher its time percentage and thus the brighter or "hotter" its color in the display.

Potential Applications

The applications of this time-frequency method include, but are not limited to:

• Audio signal processing: Fundamental frequency estimation, cross synthesis, spectral envelope
extraction, time-scale modification, time-stretching, and pitch shifting. (See “Phase Vocoder with
Different Synthesis and Analysis Windows” (Signal Processing Toolbox) for more details.)

• Crack detection: Detect cracks in aluminum plates using dispersion curves of ultrasonic Lamb
waves.

• Sensor array processing: Sonar exploration, geophysical exploration, and beamforming.
• Digital communications: Detection of frequency hopping signal.

How to Use

• stft computes the short-time Fourier transform. To invert the short-time Fourier transform, use
the istft function.

• dlstft computes the deep learning short-time Fourier transform. You must have Deep Learning
Toolbox™ installed.

• pspectrum or spectrogram computes the spectrogram.
• xspectrogram computes the cross-spectrogram of two signals.
• You can also use the spectrogram view in Signal Analyzer to view the spectrogram of a signal.
• Use the persistence spectrum option in pspectrum or Signal Analyzer to identify signals hidden

in other signals.

Example: Pulses and Oscillations

Generate a signal sampled at 5 kHz for 4 seconds. The signal consists of a set of pulses of decreasing
duration separated by regions of oscillating amplitude and fluctuating frequency with an increasing
trend.

fs = 5000;
t = 0:1/fs:4-1/fs;

x = 10*besselj(0,1000*(sin(2*pi*(t+2).^3/60).^5));

Compute and plot the short-time Fourier transform of the signal. Window the signal with a 200-
sample Kaiser window with shape factor β = 30.

stft(x,fs,'Window',kaiser(200,30))
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Example: Audio Signal with Decreasing Chirps

Load an audio signal that contains two decreasing chirps and a wideband splatter sound.

load splat

Set the overlap length to 96 samples. Plot the short-time Fourier transform.

stft(y,Fs,'OverlapLength',96)
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Example: Whale Song

Load a file that contains audio data from a Pacific blue whale, sampled at 4 kHz. The file is from the
library of animal vocalizations maintained by the Cornell University Bioacoustics Research Program.
The time scale in the data is compressed by a factor of 10 to raise the pitch and make the calls more
audible.

[w,fs] = audioread('bluewhale.wav');

Compute the spectrogram of the whale song with an overlap percentage equal to eighty percent. Set
the minimum threshold for the spectrogram to -50 dB.

pspectrum(w,fs,'spectrogram','Leakage',0.2,'OverlapPercent',80,'MinThreshold',-50)
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Example: Persistence Spectrum of Transient Signal

Load an interference narrowband signal embedded within a broadband signal.

load TransientSig

Compute the persistence spectrum of the signal. Both signal components are clearly visible.

pspectrum(x,fs,'persistence', ...
    'FrequencyLimits',[100 290],'TimeResolution',1)
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Continuous Wavelet Transform (Scalogram)
Description

• The wavelet transform is a linear time-frequency representation that preserves time shifts and
time scalings.

• The continuous wavelet transform is good at detecting transients in nonstationary signals, and for
signals in which instantaneous frequency grows rapidly.

• The CWT is invertible.
• The CWT tiles the time-frequency plane with variable-sized windows. The window automatically

widens in time, making it suitable for low-frequency phenomena, and narrows for high frequency
phenomena.

Potential Applications

The applications of this time-frequency method include, but are not limited to:

• Electrocardiograms (ECG): The most clinically useful information of the ECG signal is found in the
time intervals between its consecutive waves and amplitudes defined by its features. The wavelet
transform breaks down the ECG signal into scales, making it easier to analyze the ECG signal in
different frequency ranges easier to analyze.

• Electroencephalogram (EEG): Raw EEG signals suffer from poor spatial resolution, low signal-to-
noise ratio, and artifacts. Continuous wavelet decomposition of a noisy signal concentrates
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intrinsic signal information in a few wavelet coefficients having large absolute values without
modifying the random distribution of noise. Therefore, denoising can be achieved by thresholding
the wavelet coefficients.

• Signal demodulation: Demodulate extended binary phase shift keying (EBPSK) using an adaptive
wavelet construction method.

• Deep learning: The CWT can be used to create time-frequency representations that can be used to
train a convolutional neural network. “Classify Time Series Using Wavelet Analysis and Deep
Learning” on page 13-69 shows how to classify ECG signals using scalograms and transfer
learning.

How to Use

• cwt computes the continuous wavelet transform and displays the scalogram. Alternatively, create
a CWT filter bank using cwtfilterbank and apply the wt function. Use this method to run in
parallel applications or when computing the transform for several functions in a loop.

• icwt inverts the continuous wavelet transform.
• Signal Analyzer has a scalogram view to visualize the CWT of a time series.

Example: ECG Signal

Load a noisy ECG waveform sampled at 360 Hz.

load ecg
Fs = 360;

Compute the continuous wavelet transform.

cwt(ecg,Fs)
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The ECG data is taken from the MIT-BIH Arrhythmia Database [2].

Wigner-Ville Distribution
Description

• The Wigner-Ville distribution (WVD) is a quadratic energy density computed by correlating the
signal with a time and frequency translated and complex-conjugated version of itself.

• The Wigner-Ville distribution is always real even if the signal is complex.
• Time and frequency marginal densities correspond to instantaneous power and spectral energy

density, respectively.
• The instantaneous frequency and group delay can be evaluated using local first-order moments of

the Wigner distribution.
• The time resolution of the WVD is equal to the number of input samples.
• The Wigner distribution can locally assume negative values.

Potential Applications

The applications of this time-frequency method include, but are not limited to:

• Otoacoustic emissions (OAEs): OAEs are narrowband oscillatory signals emitted by the cochlea
(inner ear), and their presence is indicative of normal hearing.
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• Quantum mechanics: Quantum corrections to classical statistical mechanics, model electron
transport, and calculate static and dynamic properties of many-body quantum systems.

How to Use

• wvd computes the Wigner-Ville distribution.
• xwvd computes the cross Wigner-Ville distribution of two signals. See “Use Cross Wigner-Ville

Distribution to Estimate Instantaneous Frequency” for more details.

Example: Otoacoustic Emission

Load a data file containing otoacoustic emission data sampled at 20 kHz. The emission is produced by
a stimulus beginning at 25 milliseconds and ending at 175 milliseconds.

load dpoae
Fs = 20e3;

Compute the smoothed-pseudo Wigner Ville distribution of the otoacoustic data. The convenience plot
isolates the emission frequency at roughly the expected value 1.2 kHz.

wvd(dpoaets,Fs,'smoothedPseudo',kaiser(511,10),kaiser(511,10),'NumFrequencyPoints',4000,'NumTimePoints',3990)

For more details on otoacoustic emissions, see "Determining Exact Frequency Through the Analytic
CWT" in “CWT-Based Time-Frequency Analysis” on page 10-27.
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Reassignment and Synchrosqueezing
Description

• Reassignment sharpens the localization of spectral estimates and produces spectrograms that are
easier to read and interpret. The technique relocates each spectral estimate to the center of
energy of its bin instead of the bin's geometric center. It provides exact localization for chirps and
impulses.

• The Fourier synchrosqueezed transform starts from the short-time Fourier transform and
"squeezes" its values so that they concentrate around curves of instantaneous frequency in the
time-frequency plane.

• The wavelet synchrosqueezed transform reassigns the signal energy in frequency.
• Both the Fourier synchrosqueezed transform and the wavelet synchrosqueezed transform are

invertible.
• The reassigned and synchrosqueezing methods are especially suited to track and extract time-

frequency ridges.

Potential Applications

The applications of this time-frequency method include, but are not limited to:

• Audio signal processing: Synchrosqueezing transform (SST) was originally introduced in the
context of audio signal analysis.

• Seismic data: Analysis of seismic data to find oil and gas traps. Synchrosqueezing can also detect
deep-layer weak signals that are usually smeared in seismic data.

• Oscillations in power systems: A steam turbine and electric generator can have mechanical
subsynchronous oscillation (SSO) modes between the various turbine stages and the generator.
The frequency of the SSO is generally between 5 Hz and 45 Hz, and the mode frequencies are
often close to each other. The antinoise ability and time-frequency resolution of WSST improves
the readability of the time-frequency view.

• Deep learning: Synchrosqueezed transforms can be used to extract time-frequency features and
fed into a network that classifies time-series data. “Waveform Segmentation Using Deep Learning”
(Signal Processing Toolbox) shows how fsst outputs can be fed into an LSTM network that
classifies ECG signals.

How to Use

• Use the 'reassigned' option in spectrogram, set the 'Reassigned' argument to true in
pspectrum, or check the Reassign box in the spectrogram view of Signal Analyzer to compute
reassigned spectrograms.

• fsst computes the Fourier synchrosqueezed transform. Use the ifsst function to invert the
Fourier synchrosqueezed transform. (See “Fourier Synchrosqueezed Transform of Speech Signal”
(Signal Processing Toolbox) for reconstruction of speech signals using ifsst.)

• wsst computes the wavelet synchrosqueezed transform. Use the iwsst function to invert the
wavelet synchrosqueezed transform. (See “Inverse Synchrosqueezed Transform of Chirp” for
reconstruction of a quadratic chirp using iwsst.)

Example: Echolocation Pulse

Load an echolocation pulse emitted by a big brown bat (Eptesicus Fuscus). The sampling interval is 7
microseconds.
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load batsignal
Fs = 1/DT;

Compute the reassigned spectrogram of the signal.

subplot(2,1,1)
pspectrum(batsignal,Fs,'spectrogram','TimeResolution',280e-6, ...
    'OverlapPercent',85,'MinThreshold',-45,'Leakage',0.9)
subplot(2,1,2)
pspectrum(batsignal,Fs,'spectrogram','TimeResolution',280e-6, ...
    'OverlapPercent',85,'MinThreshold',-45,'Leakage',0.9,'Reassign',true)

Thanks to Curtis Condon, Ken White, and Al Feng of the Beckman Center at the University of Illinois
for the bat data and permission to use it in this example [3].

Example: Speech Signals

Load a file containing the word "strong," spoken by a woman and by a man. The signals are sampled
at 8 kHz. Concatenate them into a single signal.

load Strong
x = [her' him'];

Compute the synchrosqueezed Fourier transform of the signal. Window the signal using a Kaiser
window with shape factor β = 20.

fsst(x,Fs,kaiser(256,20),'yaxis')
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Example: Synthetic Seismic Data

Load the synthetic seismic data sampled at 100 Hz for 1 second.

load SyntheticSeismicData

Compute the wavelet synchrosqueezed transform of the seismic data using the bump wavelet and 30
voices per octave.

wsst(x,Fs,'bump','VoicesPerOctave',30,'ExtendSignal',true)
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The seismic signal is generated using the two sinusoids mentioned in "Time-Frequency Analysis of
Seismic Data Using Synchrosqueezing Transform" by Ping Wang, Jinghuai Gao, and Zhiguo Wang [4].

Example: Earthquake Vibration

Load acceleration measurements recorded on the first floor of a three story test structure under
earthquake conditions. The measurements are sampled at 1 kHz.

load quakevib
Fs = 1e3;

Compute the wavelet synchrosqueezed transform of the acceleration measurements. You are
analyzing vibration data that exhibit a cyclic behavior. The synchrosqueezed transform allows you to
isolate the three frequency components, separated by roughly 11 Hz. The main vibration frequency is
at 5.86 Hz, and the equispaced frequency peaks suggest that they are harmonically related. The
cyclic behavior of the vibrations is also visible.

wsst(gfloor1OL,Fs,'bump','VoicesPerOctave',48)
ylim([0 35])
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Example: Kobe Earthquake Data

Load seismograph data recorded during the 1995 Kobe earthquake. The data has a sample rate of 1
Hz.

load kobe
Fs = 1;

Compute the wavelet synchrosqueezed transform that isolates the different frequency components of
the seismic data.

wsst(kobe,Fs,'bump','VoicesPerOctave',48)
ylim([0 300])
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The data are seismograph (vertical acceleration, nm/sq.sec) measurements recorded at Tasmania
University, Hobart, Australia on 16 January 1995 beginning at 20:56:51 (GMT) and continuing for 51
minutes at 1 second intervals [5].

Example: Subsynchronous Oscillation in Power Systems

Load the subsynchronous oscillation data of a Power System.

load OscillationData

Compute the wavelet synchrosqueezed transform using the bump wavelet and 48 voices per octave.
The four mode frequencies are at 15 Hz, 20 Hz, 25 Hz and 32 Hz. Notice that the energies of the
modes at 15 Hz and 20 Hz decrease with time, whereas the energy of the modes at 25 Hz and 32 Hz
increase gradually over time.

wsst(x,Fs,'bump','VoicesPerOctave',48)
ylim([10 50])
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This synthetic subsynchronous oscillation data was generated using the equation defined by Zhao et
al in "Application of Synchrosqueezed Wavelet Transforms for Extraction of the Oscillatory
Parameters of Subsynchronous Oscillation in Power Systems" [6].

Constant-Q Gabor Transform
Description

• The constant-Q nonstationary Gabor transform uses windows with different center frequencies
and bandwidths such that the ratio of center frequency to bandwidth, the Q factor, remains
constant.

• The constant-Q Gabor transform enables the construction of stable inverses, yielding perfect
signal reconstruction.

• In frequency space, the windows are centered at logarithmically spaced center frequencies.

Potential Applications

The applications of this time-frequency method include, but are not limited to:

• Audio signal processing: The fundamental frequencies of the tones in music are geometrically
spaced. The frequency resolution of the human auditory system is approximately constant-Q,
making this technique appropriate for music signal processing.
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How to Use

• cqt computes the constant-Q Gabor transform.
• icqt inverts the constant-Q Gabor transform.

Example: Rock Music

Load an audio file containing a fragment of Rock music with vocals, drums, and guitar. The signal has
a sample rate of 44.1 kHz.

load drums

Set the frequency range over which the CQT has a logarithmic frequency response to be the
minimum allowable frequency to 2 kHz. Perform the CQT of the signal using 20 bins per octave.

minFreq = fs/length(audio);
maxFreq = 2000;
cqt(audio,'SamplingFrequency',fs,'BinsPerOctave',20,'FrequencyLimits',[minFreq maxFreq])

Data-Adaptive Methods and Multiresolution Analysis
Description

• The empirical mode decomposition decomposes the signals into intrinsic mode functions which
form a complete and nearly orthogonal basis for the original signal.
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• The variational mode decomposition decomposes a signal into a small number of narrowband
intrinsic mode functions. The method simultaneously calculates all the mode waveforms and their
central frequencies by optimizing a constrained variational problem.

• The empirical wavelet transform decomposes the signals into multiresolution analysis (MRA)
components. The method uses an adaptable wavelet subdivision scheme that automatically
determines the empirical wavelet and scaling filters and preserves energy.

• The Hilbert-Huang transform computes the instantaneous frequency of each intrinsic mode
function.

• The maximal overlap discrete wavelet transform (MODWT) partitions a signal's energy across
detail and scaling coefficients. The MODWT is a nondecimated discrete wavelet transform useful
for applications that require a shift-invariant transform. You can obtain multiscale variance and
correlation estimates, and invert the transform.

• The tunable Q-factor wavelet transform provides a Parseval frame decomposition where energy is
partitioned among components, as well as perfect reconstruction of the signal. The tunable Q-
factor wavelet transform is a technique that creates an MRA with a user-specified Q-factor. The Q-
factor is the ratio of the center frequency to the bandwidth of the filters used in the transform.

• These methods combined are useful for analyzing nonlinear and nonstationary signals.

Potential Applications

The applications of this time-frequency method include, but are not limited to:

• Physiological signal processing: Analyze human EEG response to transcranial magnetic
stimulation (TMS) of the brain cortex.

• Structural applications: Locate anomalies that appear as cracks, delamination, or stiffness loss in
beams and plates.

• System identification: Isolate modal damping ratios of structures with closely spaced modal
frequencies.

• Ocean engineering: Identify transient electromagnetic disturbances caused by humans in
underwater electromagnetic environments.

• Solar physics: Extract periodic components of sunspot data.
• Atmospheric turbulence: Observe stable boundary layer to separate turbulent and nonturbulent

motions.
• Epidemiology: Assess traveling speed of communicative diseases such as Dengue fever.

How to Use

• emd computes the empirical mode decomposition.
• vmd computes the variational mode decomposition.
• ewt computes the empirical wavelet transform.
• hht computes the Hilbert Huang spectrum of an empirical mode decomposition.
• modwt computes the maximal overlap discrete wavelet transform. To obtain the MRA analysis, use

modwtmra.
• tqwt computes the tunable Q-factor wavelet transform. To obtain the MRA analysis, use tqwtmra.

Example: Bearing Vibration

Load the vibration signal from a defective bearing generated in the “Compute Hilbert Spectrum of
Vibration Signal” (Signal Processing Toolbox) example. The signal is sampled at a rate 10 kHz.
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load bearingVibration

Compute the first five intrinsic mode functions (IMFs) of the signal. Plot the Hilbert spectrum of the
first and third empirical modes. The first mode reveals increasing wear due to high-frequency impacts
on the bearing's outer race. The third mode shows a resonance occurring halfway through the
measurement process that caused the defect in the bearing.

imf = emd(y,'MaxNumIMF',5,'Display',0);
subplot(2,1,1)
hht(imf(:,1),fs)
subplot(2,1,2)
hht(imf(:,3),fs,'FrequencyLimits',[0 100])
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Wavelet Packets

• “About Wavelet Packet Analysis” on page 5-2
• “1-D Wavelet Packet Analysis” on page 5-5
• “2-D Wavelet Packet Analysis” on page 5-14
• “Importing and Exporting from Wavelet Analyzer App” on page 5-18
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• “Introduction to Object-Oriented Features” on page 5-38
• “Objects in the Wavelet Toolbox Software” on page 5-39
• “Examples Using Wavelet Packet Tree Objects” on page 5-40
• “Description of Objects in the Wavelet Toolbox Software” on page 5-48
• “Build Wavelet Tree Objects” on page 5-53
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About Wavelet Packet Analysis
Wavelet Toolbox software contains graphical tools and command line functions that let you

• Examine and explore characteristics of individual wavelet packets
• Perform wavelet packet analysis of 1-D and 2-D data
• Use wavelet packets to compress and remove noise from signals and images

This chapter takes you step-by-step through examples that teach you how to use the Wavelet Packet
1-D and Wavelet Packet 2-D graphical tools. The last section discusses how to transfer information
from the graphical tools into your disk, and back again.

Note All the graphical user interface tools described in this chapter let you import information from
and export information to either disk or workspace.

Because of the inherent complexity of packing and unpacking complete wavelet packet decomposition
tree structures, we recommend using the Wavelet Packet 1-D and Wavelet Packet 2-D graphical
tools for performing exploratory analyses.

The command line functions are also available and provide the same capabilities. However, it is most
efficient to use the command line only for performing batch processing.

Note For more background on the wavelet packets, you can see the section “Wavelet Packets” on
page 5-23.

Some object-oriented programming features are used for wavelet packet tree structures. For more
detail, refer to “Introduction to Object-Oriented Features” on page 5-38.

This chapter takes you through the features of 1-D and 2-D wavelet packet analysis using the Wavelet
Toolbox software. You'll learn how to

• Load a signal or image
• Perform a wavelet packet analysis of a signal or image
• Compress a signal
• Remove noise from a signal
• Compress an image
• Show statistics and histograms

The toolbox provides these functions for wavelet packet analysis. For more information, see the
reference pages. The reference entries for these functions include examples showing how to perform
wavelet packet analysis via the command line.

Some more advanced examples mixing command line and app functions can be found in the section
“Examples Using Wavelet Packet Tree Objects” on page 5-40.
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Analysis-Decomposition Functions

Function Name Purpose
wpcoef Wavelet packet coefficients
wpdec and wpdec2 Full decomposition
wpsplt Decompose packet

Synthesis-Reconstruction Functions

Function Name Purpose
wprcoef Reconstruct coefficients
wprec and wprec2 Full reconstruction
wpjoin Recompose packet

Decomposition Structure Utilities

Function Name Purpose
besttree Find best tree
bestlevt Find best level tree
entrupd Update wavelet packets entropy
get Get WPTREE object fields contents
read Read values in WPTREE object fields
wenergy Entropy
wp2wtree Extract wavelet tree from wavelet packet tree
wpcutree Cut wavelet packet tree

Denoising and Compression

Function Name Purpose
ddencmp Default values for denoising and compression
wpbmpen Penalized threshold for wavelet packet denoising
wpdencmp Denoising and compression using wavelet packets
wpthcoef Wavelet packets coefficients thresholding
wthrmngr Threshold settings manager

In the wavelet packet framework, compression and denoising ideas are exactly the same as those
developed in the wavelet framework. The only difference is that wavelet packets offer a more complex
and flexible analysis, because in wavelet packet analysis, the details as well as the approximations are
split.
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A single wavelet packet decomposition gives a lot of bases from which you can look for the best
representation with respect to a design objective. This can be done by finding the “best tree” based
on an entropy criterion.

Denoising and compression are interesting applications of wavelet packet analysis. The wavelet
packet denoising or compression procedure involves four steps:

1 Decomposition

For a given wavelet, compute the wavelet packet decomposition of signal x at level N.
2 Computation of the best tree

For a given entropy, compute the optimal wavelet packet tree. Of course, this step is optional.
The graphical tools provide a Best Tree button for making this computation quick and easy.

3 Thresholding of wavelet packet coefficients

For each packet (except for the approximation), select a threshold and apply thresholding to
coefficients.

The graphical tools automatically provide an initial threshold based on balancing the amount of
compression and retained energy. This threshold is a reasonable first approximation for most
cases. However, in general you will have to refine your threshold by trial and error so as to
optimize the results to fit your particular analysis and design criteria.

The tools facilitate experimentation with different thresholds, and make it easy to alter the
tradeoff between amount of compression and retained signal energy.

4 Reconstruction

Compute wavelet packet reconstruction based on the original approximation coefficients at level
N and the modified coefficients.

In this example, we'll show how you can use 1-D wavelet packet analysis to compress and to denoise
a signal.
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1-D Wavelet Packet Analysis

In this section...
“Starting the Wavelet Packet 1-D Tool” on page 5-5
“Importing a Signal” on page 5-5
“Analyzing a Signal” on page 5-6
“Computing the Best Tree” on page 5-7
“Compressing a Signal Using Wavelet Packets” on page 5-8
“De-Noising a Signal Using Wavelet Packets” on page 5-10

We now turn to the Wavelet Packet 1-D tool to analyze a synthetic signal that is the sum of two
linear chirps.

Starting the Wavelet Packet 1-D Tool
1 From the MATLAB prompt, type waveletAnalyzer. The Wavelet Analyzer appears.

Click the Wavelet Packet 1-D menu item.

Importing a Signal
1 At the MATLAB command prompt, type

load sumlichr;

2 In the Wavelet Packets 1-D tool, select File > Import from Workspace > Import Signal.
When the Import from Workspace dialog box appears, select the sumlichr variable. Click OK
to import the data.

The sumlichr signal is loaded into the Wavelet Packet 1-D tool.
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Analyzing a Signal
1 Make the appropriate settings for the analysis. Select the db2 wavelet, level 4, entropy

threshold, and for the threshold parameter type 1. Click the Analyze button.

The available entropy types are listed below.

Type Description
Shannon Nonnormalized entropy involving the logarithm of the squared

value of each signal sample — or, more formally,

−∑si
2log(si

2) .

Threshold The number of samples for which the absolute value of the signal
exceeds a threshold ε.

Norm The concentration in lp norm with 1 ≤ p.
Log Energy The logarithm of “energy,” defined as the sum over all samples:

∑ log(si
2) .
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Type Description
SURE (Stein's Unbiased Risk
Estimate)

A threshold-based method in which the threshold equals

2loge nlog2(n)

where n is the number of samples in the signal.
User An entropy type criterion you define in a file.

For more information about the available entropy types, user-defined entropy, and threshold
parameters, see the wentropy reference page and “Choosing the Optimal Decomposition” on page 5-
31.

Note Many capabilities are available using the command area on the right of the Wavelet Packet 1-
D window.

Computing the Best Tree
Because there are so many ways to reconstruct the original signal from the wavelet packet
decomposition tree, we select the best tree before attempting to compress the signal.

1 Click the Best Tree button.

After a pause for computation, the Wavelet Packet 1-D tool displays the best tree. Use the top
and bottom sliders to spread nodes apart and pan over to particular areas of the tree,
respectively.

Observe that, for this analysis, the best tree and the initial tree are almost the same. One branch
at the far right of the tree was eliminated.
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Compressing a Signal Using Wavelet Packets
Selecting a Threshold for Compression

1 Click the Compress button.

The Wavelet Packet 1-D Compression window appears with an approximate threshold value
automatically selected.

The leftmost graph shows how the threshold (vertical black dotted line) has been chosen
automatically (1.482) to balance the number of zeros in the compressed signal (blue curve that
increases as the threshold increases) with the amount of energy retained in the compressed
signal (purple curve that decreases as the threshold increases).

This threshold means that any signal element whose value is less than 1.482 will be set to zero
when we perform the compression.
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Threshold controls are located to the right (see the red box in the figure above). Note that the
automatic threshold of 1.482 results in a retained energy of only 81.49%. This may cause
unacceptable amounts of distortion, especially in the peak values of the oscillating signal.
Depending on your design criteria, you may want to choose a threshold that retains more of the
original signal's energy.

2 Adjust the threshold by typing 0.8938 in the text field opposite the threshold slider, and then
press the Enter key.

The value 0.8938 is a number that we have discovered through trial and error yields more
satisfactory results for this analysis.

After a pause, the Wavelet Packet 1-D Compression window displays new information.

Note that, as we have reduced the threshold from 1.482 to 0.8938,

• The vertical black dotted line has shifted to the left.
• The retained energy has increased from 81.49% to 90.96%.
• The number of zeros (equivalent to the amount of compression) has decreased from 81.55% to

75.28%.

Compressing a Signal

1 Click the Compress button.

The Wavelet Packet 1-D tool compresses the signal using the thresholding criterion we
selected.

The original (red) and compressed () signals are displayed superimposed. Visual inspection
suggests the compression quality is quite good.

Looking more closely at the compressed signal, we can see that the number of zeros in the wavelet
packets representation of the compressed signal is about 75.3%, and the retained energy about 91%.
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If you try to compress the same signal using wavelets with exactly the same parameters, only 89% of
the signal energy is retained, and only 59% of the wavelet coefficients set to zero. This illustrates the
superiority of wavelet packets for performing compression, at least on certain signals.

You can demonstrate this to yourself by returning to the main Wavelet Packet 1-D window,
computing the wavelet tree, and then repeating the compression.

De-Noising a Signal Using Wavelet Packets
We now use the Wavelet Packet 1-D tool to analyze a noisy chirp signal. This analysis illustrates the
use of Stein's Unbiased Estimate of Risk (SURE) as a principle for selecting a threshold to be used for
de-noising.

This technique calls for setting the threshold T to

T = 2loge nlog2(n)

where n is the length of the signal.

A more thorough discussion of the SURE criterion appears in “Choosing the Optimal Decomposition”
on page 5-31. For now, suffice it to say that this method works well if your signal is normalized in
such a way that the data fit the model x(t) = f(t) + e(t), where e(t) is a Gaussian white noise with zero
mean and unit variance.

If you've already started the Wavelet Packet 1-D tool and it is active on your computer's desktop,
skip ahead to step 3.

Starting the Wavelet Packet 1–D Tool

1 From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Analyzer appears.

Click the Wavelet Packet 1-D menu item.

The tool appears on the desktop.
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Importing a Signal
2 At the MATLAB command prompt, type

load noischir;

In the Wavelet Packet 1-D tool, select File > Import from Workspace > Import Signal.
When the Import from Workspace dialog box appears, select the sumlichr variable. Click OK
to import the data

Note You can use File > Load > Signal to load a signal by navigating to its location.
3 The signal's length is 1024. This means we should set the SURE criterion threshold equal to

sqrt(2.*log(1024.*log2(1024))), or 4.2975.

Analyzing a Signal
4 Make the appropriate settings for the analysis. Select the db2 wavelet, level 4, entropy type

sure, and threshold parameter 4.2975. Click the Analyze button.
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There is a pause while the wavelet packet analysis is computed.

Note Many capabilities are available using the command area on the right of the Wavelet
Packet 1-D window. Some of them are used in the sequel. For a more complete description, see
“Wavelet Packet Tool Features (1-D and 2-D)” on page A-9.

Computing the Best Tree and Performing De-Noising
5 Click the Best Tree button.

Computing the best tree makes the de-noising calculations more efficient.

6 Click the De-noise button. This brings up the Wavelet Packet 1-D De-Noising window.
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7 Click the De-noise button located at the center right side of the Wavelet Packet 1-D De-
Noising window.

The results of the de-noising operation are quite good, as can be seen by looking at the thresholded
coefficients. The frequency of the chirp signal increases quadratically over time, and the thresholded
coefficients essentially capture the quadratic curve in the time-frequency plane.

You can also use the wpdencmp function to perform wavelet packet de-noising or compression from
the command line.
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2-D Wavelet Packet Analysis
In this section...
“Starting the Wavelet Packet 2-D Tool” on page 5-14
“Compressing an Image Using Wavelet Packets” on page 5-15

In this section, we employ the Wavelet Packet 2-D tool to analyze and compress an image of a
fingerprint. This is a real-world problem: the Federal Bureau of Investigation (FBI) maintains a large
database of fingerprints — about 30 million sets of them. The cost of storing all this data runs to
hundreds of millions of dollars.

“The FBI uses eight bits per pixel to define the shade of gray and stores 500 pixels per inch, which
works out to about 700,000 pixels and 0.7 megabytes per finger to store finger prints in electronic
form.” (Wickerhauser, see the reference [Wic94] p. 387, listed in “References”).

“The technique involves a 2-D DWT, uniform scalar quantization (a process that truncates, or
quantizes, the precision of the floating-point DWT output) and Huffman entropy coding (i.e., encoding
the quantized DWT output with a minimal number of bits).” (Brislawn, see the reference [Bris95] p.
1278, listed in “References”).

By turning to wavelets, the FBI has achieved a 15:1 compression ratio. In this application, wavelet
compression is better than the more traditional JPEG compression, as it avoids small square artifacts
and is particularly well suited to detect discontinuities (lines) in the fingerprint.

Note that the international standard JPEG 2000 will include the wavelets as a part of the compression
and quantization process. This points out the present strength of the wavelets.

Starting the Wavelet Packet 2-D Tool
1 From the MATLAB prompt, type waveletAnalyzer. The Wavelet Analyzer appears.

Click the Wavelet Packet 2-D menu item.

Importing an Image

At the MATLAB command prompt, type
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load detfingr;

In the Wavelet Packet 2-D tool, select File > Import from Workspace > Import Image.
When the Import from Workspace dialog box appears, select the X variable. Click OK to import
the fingerprint image.

Analyzing an Image
2 Make the appropriate settings for the analysis. Select the haar wavelet, level 3, and entropy type

shannon. Click the Analyze button.

Note Many capabilities are available using the command area on the right of the Wavelet
Packet 2-D window.

3 Click the Best Tree button to compute the best tree before compressing the image.

Compressing an Image Using Wavelet Packets
1 Click the Compress button to bring up the Wavelet Packet 2-D Compression window. Select

the Bal. sparsity-norm (sqrt) option from the Select thresholding method menu.

Notice that the default threshold (7.125) provides about 64% compression while retaining
virtually all the energy of the original image. Depending on your criteria, it may be worthwhile
experimenting with more aggressive thresholds to achieve a higher degree of compression.
Recall that we are not doing any quantization of the image, merely setting specific coefficients to
zero. This can be considered a precompression step in a broader compression system.
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2 Alter the threshold: type the number 30 in the text field opposite the threshold slider located on
the right side of the Wavelet Packet 2-D Compression window. Then press the Enter key.

Setting all wavelet packet coefficients whose value falls below 30 to zero yields much better
results. Note that the new threshold achieves around 92% of zeros, while still retaining nearly
98% of the image energy.

3 Click the Compress button to start the compression.

You can see the result obtained by wavelet packet coefficients thresholding and image
reconstruction. The visual recovery is correct, but not perfect. The compressed image, shown
side by side with the original, shows some artifacts.

4 Click the Close button located at the bottom of the Wavelet Packet 2-D Compression window.
Update the synthesized image by clicking Yes when the dialog box appears.

Take this opportunity to try out your own compression strategy. Adjust the threshold value, the
entropy function, and the wavelet, and see if you can obtain better results.

Hint The bior6.8 wavelet is better suited to this analysis than is haar, and can lead to a better
compression ratio. When a biorthogonal wavelet is used, then instead of “Retained energy” the
information displayed is “Energy ratio.” For more information, see “Compression Scores” on page 6-
64.
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Before concluding this analysis, it is worth turning our attention to the “colored coefficients for
terminal nodes plot” and considering the best tree decomposition for this image.

This plot is shown in the lower right side of the Wavelet Packet 2-D tool. The plot shows us which
details have been decomposed and which have not. Larger squares represent details that have not
been broken down to as many levels as smaller squares. Consider, for example, this level 2
decomposition pattern:

Looking at the pattern of small and large squares in the fingerprint analysis shows that the best tree
algorithm has apparently singled out the diagonal details, often sparing these from further
decomposition. Why is this?

If we consider the original image, we realize that much of its information is concentrated in the sharp
edges that constitute the fingerprint's pattern. Looking at these edges, we see that they are
predominantly oriented horizontally and vertically. This explains why the best tree algorithm has
“chosen” not to decompose the diagonal details — they do not provide very much information.
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Importing and Exporting from Wavelet Analyzer App
The Wavelet Packet 1-D and Wavelet Packet 2-D tools let you import information from and export
information to your disk.

If you adhere to the proper file formats, you can

• Save decompositions as well as synthesized signals and images from the wavelet packet graphical
tools to disk

• Load signals, images, and 1-D and 2-D decompositions from disk into the Wavelet Packet 1-D
and Wavelet Packet 2-D graphical tools

Saving Information to Disk
Using specific file formats, the graphical tools let you save synthesized signals or images, as well as
1-D or 2-D wavelet packet decomposition structures. This feature provides flexibility and allows you
to combine command line and graphical interface operations.

Saving Synthesized Signals

You can process a signal in the Wavelet Packet 1-D tool, and then save the processed signal to a
MAT-file.

For example, load the example analysis:

File > Example Analysis > db1 – depth: 2 – ent: shannon > sumsin

and perform a compression or denoising operation on the original signal. When you close the
Wavelet Packet 1-D Denoising or Wavelet Packet 1-D Compression window, update the
synthesized signal by clicking Yes in the dialog box.

Then, from the Wavelet Packet 1-D tool, select the File > Save > Synthesized Signal menu
option.

A dialog box appears allowing you to select a folder and filename for the MAT-file. For this example,
choose the name synthsig.

To load the signal into your workspace, simply type

load synthsig
whos

Name Size Bytes Class
synthsig 1x1000 8000 double array
valTHR 1x1 8 double array
wname 1x3 6 char array

The synthesized signal is given by synthsig. In addition, the parameters of the denoising or
compression process are given by the wavelet name (wname) and the global threshold (valTHR).

valTHR
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valTHR =
    1.9961

Saving Synthesized Images

You can process an image in the Wavelet Packet 2-D tool, and then save the processed image to a
MAT-file (with extension mat or other).

For example, load the example analysis:

File > Example Analysis > db1 – depth: 1 – ent: shannon > woman

and perform a compression on the original image. When you close the Wavelet Packet 2-D
Compression window, update the synthesized image by clicking Yes in the dialog box that appears.

Then, from the Wavelet 2-D tool, select the File > Save > Synthesized Image menu option.

A dialog box appears allowing you to select a folder and filename for the MAT-file. For this example,
choose the name wpsymage.

To load the image into your workspace, simply type

load wpsymage
whos

Name Size Bytes Class
X 256x256 524288 double array
map 255x3 6120 double array
valTHR 1x1 8 double array
wname 1x3 6 char array

The synthesized image is given by X. The variable map contains the associated colormap. In addition,
the parameters of the denoising or compression process are given by the wavelet name (wname) and
the global threshold (valTHR).

Saving 1-D Decomposition Structures

The Wavelet Packet 1-D tool lets you save an entire wavelet packet decomposition tree and related
data to your disk. The toolbox creates a MAT-file in the current folder with a name you choose,
followed by the extension wp1 (wavelet packet 1-D).

Open the Wavelet Packet 1-D tool and load the example analysis:

File > Example Analysis > db1 – depth: 2 – ent: shannon > sumsin

To save the data from this analysis, use the menu option File > Save Decomposition.

A dialog box appears that lets you specify a folder and file name for storing the decomposition data.
Type the name wpdecex1d.

After saving the decomposition data to the file wpdecex1d.wp1, load the variables into your
workspace.

load wpdecex1d.wp1 -mat
whos 
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Name Size Bytes Class
data_name 1x6 12 char array
tree_struct 1x1 11176 wptree object
valTHR 0x0 0 double array

The variable tree_struct contains the wavelet packet tree structure. The variable data_name
contains the data name and valTHR contains the global threshold, which is currently empty since the
synthesized signal does not exist.

Saving 2-D Decomposition Structures

The file format, variables, and conventions are exactly the same as in the 1-D case except for the
extension, which is wp2 (wavelet packet 2-D). The variables saved are the same as with the 1-D case,
with the addition of the colormap matrix map:

Name Size Bytes Class
data_name 1x5 10 char array
map 255x3 6120 double array
tree_struct 1x1 527400 wptree object
valTHR 1x1 8 double array

Save options are also available when performing denoising or compression inside the Wavelet
Packet 1-D and Wavelet Packet 2-D tools.

In the Wavelet Packet Denoising windows, you can save the denoised signal or image and the
decomposition. The same holds true for the Wavelet Packet Compression windows.

This way, you can save directly many different trials from inside the Denoising and Compression
windows without going back to the main Wavelet Packet windows during a fine-tuning process.

Note When saving a synthesized signal (1-D), a synthesized image (2-D) or a decomposition to a
MAT-file, the extension of this file is free. The mat extension is not necessary.

Loading Information into the Graphical Tools
You can load signals, images, or 1-D and 2-D wavelet packet decompositions into the graphical
interface tools. The information you load may have been previously exported from the graphical
interface, and then manipulated in the workspace, or it may have been information you generated
initially from the command line.

In either case, you must observe the strict file formats and data structures used by the graphical
tools, or else errors will result when you try to load information.

Loading Signals

To load a signal you've constructed in your MATLAB workspace into the Wavelet Packet 1-D tool,
save the signal in a MAT-file (with extension mat or other).

For instance, suppose you've designed a signal called warma and want to analyze it in the Wavelet
Packet 1-D tool.
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save warma warma

The workspace variable warma must be a vector.

sizwarma = size(warma)

sizwarma =
           1        1000

To load this signal into the Wavelet Packet 1-D tool, use the menu option File > Load Signal.

A dialog box appears that lets you select the appropriate MAT-file to be loaded.

Note The first 1-D variable encountered in the file is considered the signal. Variables are inspected in
alphabetical order.

Loading Images

This toolbox supports only indexed images. An indexed image is a matrix containing only integers
from 1 to n, where n is the number of colors in the image.

This image may optionally be accompanied by a n-by-3 matrix called map. This is the colormap
associated with the image. When MATLAB displays such an image, it uses the values of the matrix to
look up the desired color in this colormap. If the colormap is not given, the Wavelet Packet 2-D
graphical tool uses a monotonic colormap with max(max(X))–min(min(X))+1 colors.

To load an image you've constructed in your MATLAB workspace into the Wavelet Packet 2-D tool,
save the image (and optionally, the variable map) in a MAT-file (with extension mat or other).

For instance, suppose you've created an image called brain and want to analyze it in the Wavelet
Packet 2-D tool. Type

X = brain;
map = pink(256);
save myfile X map

To load this image into the Wavelet Packet 2-D tool, use the menu option File > Load Image.

A dialog box appears that lets you select the appropriate MAT-file to be loaded.

Note The first 2-D variable encountered in the file (except the variable map, which is reserved for the
colormap) is considered the image. Variables are inspected in alphabetical order.

Caution The graphical tools allow you to load an image that does not contain integers from 1 to n.
The computations will be correct since they act directly on the matrix, but the display of the image
will be strange. The values less than 1 will be evaluated as 1, the values greater than n will be
evaluated as n, and a real value within the interval [1,n] will be evaluated as the closest integer.

Note that the coefficients, approximations, and details produced by wavelet packets decomposition
are not indexed image matrices. To display these images in a suitable way, the Wavelet Packet 2-D
tool follows these rules:
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• Reconstructed approximations are displayed using the colormap map. The same holds for the
result of the reconstruction of selected nodes.

• The coefficients and the reconstructed details are displayed using the colormap map applied to a
rescaled version of the matrices.

Loading Wavelet Packet Decomposition Structures

You can load 1-D and 2-D wavelet packet decompositions into the graphical tools providing you have
previously saved the decomposition data in a MAT-file of the appropriate format.

While it is possible to edit data originally created using the graphical tools and then exported, you
must be careful about doing so. Wavelet packet data structures are complex, and the graphical tools
do not do any consistency checking. This can lead to errors if you try to load improperly formatted
data.

1-D data file contains the following variables:

Variable Status Description
tree_struct Required Object specifying the tree structure
data_name Optional Character vector specifying the name of the decomposition
valTHR Optional Global threshold (can be empty if neither compression nor

denoising has been done)

These variables must be saved in a MAT-file (with extension wp1 or other).

2-D data file contains the following variables:

Variable Status Description
tree_struct Required Object specifying the tree structure
data_name Optional Character vector specifying the name of the decomposition
map Optional Image map
valTHR Optional Global threshold (can be empty if neither compression nor

denoising has been done)

These variables must be saved in a MAT-file (with extension wp2 or other).

To load the properly formatted data, use the menu option File > Load Decomposition Structure
from the appropriate tool, and then select the desired MAT-file from the dialog box that appears.

The Wavelet Packet 1-D or 2-D graphical tool then automatically updates its display to show the
new analysis.

Note When loading a signal (1-D), an image (2-D), or a decomposition (1-D or 2-D) from a MAT-file,
the extension of this file is free. The mat extension is not necessary.
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Wavelet Packets
In this section...
“From Wavelets to Wavelet Packets” on page 5-23
“Wavelet Packets in Action: An Introduction” on page 5-24
“Building Wavelet Packets” on page 5-26
“Wavelet Packet Atoms” on page 5-29
“Organizing the Wavelet Packets” on page 5-30
“Choosing the Optimal Decomposition” on page 5-31
“Some Interesting Subtrees” on page 5-34
“Wavelet Packets 2-D Decomposition Structure” on page 5-37
“Wavelet Packets for Compression and Denoising” on page 5-37

The wavelet packet method is a generalization of wavelet decomposition that offers a richer signal
analysis.

Wavelet packet atoms are waveforms indexed by three naturally interpreted parameters: position,
scale (as in wavelet decomposition), and frequency.

For a given orthogonal wavelet function, we generate a library of bases called wavelet packet bases.
Each of these bases offers a particular way of coding signals, preserving global energy, and
reconstructing exact features. The wavelet packets can be used for numerous expansions of a given
signal. We then select the most suitable decomposition of a given signal with respect to an entropy-
based criterion.

There exist simple and efficient algorithms for both wavelet packet decomposition and optimal
decomposition selection. We can then produce adaptive filtering algorithms with direct applications
in optimal signal coding and data compression.

From Wavelets to Wavelet Packets
In the orthogonal wavelet decomposition procedure, the generic step splits the approximation
coefficients into two parts. After splitting we obtain a vector of approximation coefficients and a
vector of detail coefficients, both at a coarser scale. The information lost between two successive
approximations is captured in the detail coefficients. Then the next step consists of splitting the new
approximation coefficient vector; successive details are never reanalyzed.

In the corresponding wavelet packet situation, each detail coefficient vector is also decomposed into
two parts using the same approach as in approximation vector splitting. This offers the richest
analysis: the complete binary tree is produced as shown in the following figure.
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Wavelet Packet Decomposition Tree at Level 3

The idea of this decomposition is to start from a scale-oriented decomposition, and then to analyze
the obtained signals on frequency subbands.

Wavelet Packets in Action: An Introduction
The following simple examples illustrate certain differences between wavelet analysis and wavelet
packet analysis.

Wavelet Packet Spectrum

The spectral analysis of wide-sense stationary signals using the Fourier transform is well-established.
For nonstationary signals, there exist local Fourier methods such as the short-time Fourier transform
(STFT). See “Short-Time Fourier Transform” for a brief description.

Because wavelets are localized in time and frequency, it is possible to use wavelet-based counterparts
to the STFT for the time-frequency analysis of nonstationary signals. For example, it is possible to
construct the scalogram (wscalogram) based on the continuous wavelet transform (CWT). However,
a potential drawback of using the CWT is that it is computationally expensive.

The discrete wavelet transform (DWT) permits a time-frequency decomposition of the input signal,
but the degree of frequency resolution in the DWT is typically considered too coarse for practical
time-frequency analysis.

As a compromise between the DWT- and CWT-based techniques, wavelet packets provide a
computationally-efficient alternative with sufficient frequency resolution. You can use wpspectrum to
perform a time-frequency analysis of your signal using wavelet packets.

The following examples illustrate the use of wavelet packets to perform a local spectral analysis. The
following examples also use spectrogram from the Signal Processing Toolbox software as a
benchmark to compare against the wavelet packet spectrum. If you do not have the Signal Processing
Toolbox software, you can simply run the wavelet packet spectrum examples.

Wavelet packet spectrum of a sine wave.

fs = 1000; % sampling rate
t = 0:1/fs:2; % 2 secs at 1kHz sample rate
y = sin(256*pi*t); % sine of period 128
level = 6;
wpt = wpdec(y,level,'sym8');
[Spec,Time,Freq] = wpspectrum(wpt,fs,'plot');

If you have the Signal Processing Toolbox software, you can compute the short-time Fourier
transform.
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figure;
windowsize = 128;
window = hanning(windowsize);
nfft = windowsize;
noverlap = windowsize-1;
[S,F,T] = spectrogram(y,window,noverlap,nfft,fs);
imagesc(T,F,log10(abs(S)))
set(gca,'YDir','Normal')
xlabel('Time (secs)')
ylabel('Freq (Hz)')
title('Short-time Fourier Transform spectrum')

Sum of two sine waves with frequencies of 64 and 128 hertz.

fs = 1000;
t = 0:1/fs:2;
y = sin(128*pi*t) + sin(256*pi*t); % sine of periods 64 and 128.
level = 6;
wpt = wpdec(y,level,'sym8');
[Spec,Time,Freq] = wpspectrum(wpt,fs,'plot');

If you have the Signal Processing Toolbox software, you can compute the short-time Fourier
transform.

figure;
windowsize = 128;
window = hanning(windowsize);
nfft = windowsize;
noverlap = windowsize-1;
[S,F,T] = spectrogram(y,window,noverlap,nfft,fs);
imagesc(T,F,log10(abs(S)))
set(gca,'YDir','Normal')
xlabel('Time (secs)')
ylabel('Freq (Hz)')
title('Short-time Fourier Transform spectrum')

Signal with an abrupt change in frequency from 16 to 64 hertz at two seconds.

fs = 500;
t = 0:1/fs:4;
y = sin(32*pi*t).*(t<2) + sin(128*pi*t).*(t>=2);
level = 6;
wpt = wpdec(y,level,'sym8');
[Spec,Time,Freq] = wpspectrum(wpt,fs,'plot');

If you have the Signal Processing Toolbox software, you can compute the short-time Fourier
transform.

figure;
windowsize = 128;
window = hanning(windowsize);
nfft = windowsize;
noverlap = windowsize-1;
[S,F,T] = spectrogram(y,window,noverlap,nfft,fs);
imagesc(T,F,log10(abs(S)))
set(gca,'YDir','Normal')
xlabel('Time (secs)')
ylabel('Freq (Hz)')
title('Short-time Fourier Transform spectrum')
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Wavelet packet spectrum of a linear chirp.

fs = 1000;
t = 0:1/fs:2;
y = sin(256*pi*t.^2);
level = 6;
wpt = wpdec(y,level,'sym8');
[Spec,Time,Freq] = wpspectrum(wpt,fs,'plot');

If you have the Signal Processing Toolbox software, you can compute the short-time Fourier
transform.

figure;
windowsize = 128;
window = hanning(windowsize);
nfft = windowsize;
noverlap = windowsize-1;
[S,F,T] = spectrogram(y,window,noverlap,nfft,fs);
imagesc(T,F,log10(abs(S)))
set(gca,'YDir','Normal')
xlabel('Time (secs)')
ylabel('Freq (Hz)')
title('Short-time Fourier Transform spectrum')

Wavelet packet spectrum of quadratic chirp.

y = wnoise('quadchirp',10);
len = length(y);
t = linspace(0,5,len);
fs = 1/t(2);
level = 6;
wpt = wpdec(y,level,'sym8');
[Spec,Time,Freq] = wpspectrum(wpt,fs,'plot');

If you have the Signal Processing Toolbox software, you can compute the short-time Fourier
transform.

windowsize = 128;
window = hanning(windowsize);
nfft = windowsize;
noverlap = windowsize-1;
imagesc(T,F,log10(abs(S)))
set(gca,'YDir','Normal')
xlabel('Time (secs)')
ylabel('Freq (Hz)')
title('Short-time Fourier Transform spectrum')

Building Wavelet Packets
The computation scheme for wavelet packets generation is easy when using an orthogonal wavelet.
We start with the two filters of length 2N, where h(n) and g(n), correspond to the wavelet.

Now by induction let us define the following sequence of functions:

(Wn(x), n = 0, 1, 2, ...)

by
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W2n(x) = 2 ∑
k = 0

2N − 1
h(k)Wn(2x− k)

W2n + 1(x) = 2 ∑
k = 0

2N − 1
g(k)Wn(2x− k)

where W0(x) = φ(x) is the scaling function and W1(x) = ψ(x) is the wavelet function.

For example for the Haar wavelet we have

N = 1, h(0) = h(1) = 1
2

and

g(0) = − g(1) = 1
2

The equations become

W2n(x) = Wn(2x) + Wn(2x− 1)

and

W2n + 1(x) = Wn(2x)−Wn(2x− 1)

W0(x) = φ(x) is the Haar scaling function and W1(x) = ψ(x) is the Haar wavelet, both supported
in [0, 1]. Then we can obtain W2n by adding two 1/2-scaled versions of Wn with distinct supports
[0,1/2] and [1/2,1] and obtain W2n+1 by subtracting the same versions of Wn.

For n = 0 to 7, we have the W-functions shown in the figure “Haar Wavelet Packets” on page 5-28.

 Wavelet Packets

5-27



Haar Wavelet Packets

This can be obtained using the following command:

[wfun,xgrid] = wpfun('db1',7,5);

which returns in wfun the approximate values of Wn for n = 0 to 7, computed on a 1/25 grid of the
support xgrid.

Starting from more regular original wavelets and using a similar construction, we obtain smoothed
versions of this system of W-functions, all with support in the interval [0, 2N–1]. The figure “db2
Wavelet Packets” on page 5-29 presents the system of W-functions for the original db2 wavelet.
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db2 Wavelet Packets

Wavelet Packet Atoms
Starting from the functions (Wn(x), n ∈ N) and following the same line leading to orthogonal wavelets,
we consider the three-indexed family of analyzing functions (the waveforms):

(W j, n, k(x) = 2− j/2Wn(2− jx− k)

where n∊N and (j,k)∊Z2.

As in the wavelet framework, k can be interpreted as a time-localization parameter and j as a scale
parameter. So what is the interpretation of n?

The basic idea of the wavelet packets is that for fixed values of j and k, Wj,n,k analyzes the fluctuations
of the signal roughly around the position 2j· k, at the scale 2j and at various frequencies for the
different admissible values of the last parameter n.

In fact, examining carefully the wavelet packets displayed in “Haar Wavelet Packets” on page 5-28
and “db2 Wavelet Packets” on page 5-29, the naturally ordered Wn for n = 0, 1, ..., 7, does not match
exactly the order defined by the number of oscillations. More precisely, counting the number of zero
crossings (up-crossings and down-crossings) for the db1 wavelet packets, we have the following.

Natural order n 0 1 2 3 4 5 6 7
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Number of zero crossings for
db1 Wn

2 3 5 4 9 8 6 7

So, to restore the property that the main frequency increases monotonically with the order, it is
convenient to define the frequency order obtained from the natural one recursively.

Natural order n 0 1 2 3 4 5 6 7
Frequency order r(n) 0 1 3 2 6 7 5 4

As can be seen in the previous figures, Wr(n)(x) “oscillates” approximately n times.

To analyze a signal (the chirp of Example 2 for instance), it is better to plot the wavelet packet
coefficients following the frequency order from the low frequencies at the bottom to the high
frequencies at the top, rather than naturally ordered coefficients.

When plotting the coefficients, the various options related to the “Frequency” or “Natural” order
choice are available using the Wavelet Analyzer app.

These options are also available from command-line mode when using the wpviewcf function.

Organizing the Wavelet Packets
The set of functions Wj,n = (Wj,n,k(x),k∊Z) is the (j,n) wavelet packet. For positive values of integers
j and n, wavelet packets are organized in trees. The tree in the figure “Wavelet Packets Organized in
a Tree; Scale j Defines Depth and Frequency n Defines Position in the Tree” on page 5-30 is created
to give a maximum level decomposition equal to 3. For each scale j, the possible values of parameter
n are 0, 1, ..., 2j–1.

Wavelet Packets Organized in a Tree; Scale j Defines Depth and Frequency n Defines
Position in the Tree

The notation Wj,n, where j denotes scale parameter and n the frequency parameter, is consistent with
the usual depth-position tree labeling.

We have W0, 0 = (ϕ(x− k), k ∈ Z), and W1, 1 = (ψ( x
2 − k), k ∈ Z).
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It turns out that the library of wavelet packet bases contains the wavelet basis and also several other
bases. Let us have a look at some of those bases. More precisely, let V0 denote the space (spanned by
the family W0,0) in which the signal to be analyzed lies; then (Wd,1; d ≥ 1) is an orthogonal basis of V0.

For every strictly positive integer D, (WD,0, (Wd,1; 1 ≤ d ≤ D)) is an orthogonal basis of V0.

We also know that the family of functions {(Wj+1,2n), (Wj+1,2n+1)} is an orthogonal basis of the space
spanned by Wj,n, which is split into two subspaces: Wj+1,2n spans the first subspace, and Wj+1,2n+1 the
second one.

This last property gives a precise interpretation of splitting in the wavelet packet organization tree,
because all the developed nodes are of the form shown in the figure “Wavelet Packet Tree: Split and
Merge” on page 5-31.

Wavelet Packet Tree: Split and Merge

It follows that the leaves of every connected binary subtree of the complete tree correspond to an
orthogonal basis of the initial space.

For a finite energy signal belonging to V0, any wavelet packet basis will provide exact reconstruction
and offer a specific way of coding the signal, using information allocation in frequency scale
subbands.

Choosing the Optimal Decomposition
Based on the organization of the wavelet packet library, it is natural to count the decompositions
issued from a given orthogonal wavelet.

A signal of length N = 2L can be expanded in α different ways, where α is the number of binary
subtrees of a complete binary tree of depth L. As a result, α ≥ 2N/2 (see [Mal98] page 323).

As this number may be very large, and since explicit enumeration is generally unmanageable, it is
interesting to find an optimal decomposition with respect to a convenient criterion, computable by an
efficient algorithm. We are looking for a minimum of the criterion.

Functions verifying an additivity-type property are well suited for efficient searching of binary-tree
structures and the fundamental splitting. Classical entropy-based criteria match these conditions and
describe information-related properties for an accurate representation of a given signal. Entropy is a
common concept in many fields, mainly in signal processing. Let us list four different entropy criteria
(see [CoiW92]); many others are available and can be easily integrated (type help wentropy). In the
following expressions s is the signal and (si) are the coefficients of s in an orthonormal basis.

The entropy E must be an additive cost function such that E(0) = 0 and

E(s) = ∑iE(si)
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• The (nonnormalized) Shannon entropy

E1(si) = − si
2log(si

2)

so

E1(s) = − ∑isi
2log(si

2)

with the convention 0log(0) = 0.
• The concentration in lp norm with 1 ℜ ≤ p

E2(si) = si
p

so

E2(s) = ∑i si
p = s p

p

• The logarithm of the “energy” entropy

E3(si) = log(si
2)

so

E3(s) = ∑i log(si
2)

with the convention log(0) = 0.
• The threshold entropy

E4(si) = 1 if si > ε and 0 elsewhere, so E4(s) = # {i such that si > ε} is the number of time
instants when the signal is greater than a threshold ε.

These entropy functions are available using the wentropy file.

Example 1: Compute Various Entropies
1 Generate a signal of energy equal to 1.

s = ones(1,16)*0.25;
2 Compute the Shannon entropy of s.

e1 = wentropy(s,'shannon')
    e1 = 2.7726

3 Compute the l1.5 entropy of s, equivalent to norm(s,1.5)1.5.

e2 = wentropy(s,'norm',1.5)
    e2 = 2

4 Compute the “log energy” entropy of s.

e3 = wentropy(s,'log energy')
    e3 = -44.3614

5 Compute the threshold entropy of s using a threshold value of 0.24.

e4 = wentropy(s,'threshold', 0.24)
    e4 = 16
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Example 2: Minimum-Entropy Decomposition

This simple example illustrates the use of entropy to determine whether a new splitting is of interest
to obtain a minimum-entropy decomposition.

1 We start with a constant original signal. Two pieces of information are sufficient to define and to
recover the signal (i.e., length and constant value).

w00 = ones(1,16)*0.25;
2 Compute entropy of original signal.

e00 = wentropy(w00,'shannon')
    e00 = 2.7726

3 Then split w00 using the haar wavelet.

[w10,w11] = dwt(w00,'db1');
4 Compute entropy of approximation at level 1.

e10 = wentropy(w10,'shannon')
    e10 = 2.0794

The detail of level 1, w11, is zero; the entropy e11 is zero. Due to the additivity property the
entropy of decomposition is given by e10+e11=2.0794. This has to be compared to the initial
entropy e00=2.7726. We have e10 + e11 < e00, so the splitting is interesting.

5 Now split w10 (not w11 because the splitting of a null vector is without interest since the entropy
is zero).

[w20,w21] = dwt(w10,'db1');
6 We have w20=0.5*ones(1,4) and w21 is zero. The entropy of the approximation level 2 is

e20 = wentropy(w20,'shannon')
    e20 = 1.3863

Again we have e20 + 0 < e10, so splitting makes the entropy decrease.
7 Then

[w30,w31] = dwt(w20,'db1');
e30 = wentropy(w30,'shannon')
    e30 = 0.6931

[w40,w41] = dwt(w30,'db1')
    w40 = 1.0000
    w41 = 0

e40 = wentropy(w40,'shannon')
    e40 = 0

In the last splitting operation we find that only one piece of information is needed to reconstruct
the original signal. The wavelet basis at level 4 is a best basis according to Shannon entropy
(with null optimal entropy since e40+e41+e31+e21+e11 = 0).

8 Perform wavelet packets decomposition of the signal s defined in example 1.

t = wpdec(s,4,'haar','shannon');

 Wavelet Packets

5-33



The wavelet packet tree in “Entropy Values” on page 5-34 shows the nodes labeled with original
entropy numbers.

Entropy Values
9 Compute the best tree.

bt = besttree(t);

The best tree is shown in the following figure. In this case, the best tree corresponds to the
wavelet tree. The nodes are labeled with optimal entropy.

Optimal Entropy Values

Some Interesting Subtrees
Using wavelet packets requires tree-related actions and labeling. The implementation of the user
interface is built around this consideration. For more information on the technical details, see the
reference pages.

The complete binary tree of depth D corresponding to a wavelet packet decomposition tree developed
at level D is denoted by WPT.

We have the following interesting subtrees.

Decomposition Tree Subtree Such That the Set of Leaves Is a Basis
Wavelet packets decomposition tree Complete binary tree: WPT of depth D
Wavelet packets optimal decomposition tree Binary subtree of WPT
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Decomposition Tree Subtree Such That the Set of Leaves Is a Basis
Wavelet packets best-level tree Complete binary subtree of WPT
Wavelet decomposition tree Left unilateral binary subtree of WPT of depth D
Wavelet best-basis tree Left unilateral binary subtree of WPT

We deduce the following definitions of optimal decompositions, with respect to an entropy criterion E.

Decompositions Optimal Decomposition Best-Level Decomposition
Wavelet packet decompositions Search among 2D trees Search among D trees
Wavelet decompositions Search among D trees Search among D trees

For any nonterminal node, we use the following basic step to find the optimal subtree with respect to
a given entropy criterion E (where Eopt denotes the optimal entropy value).

Entropy Condition Action on Tree and on Entropy Labeling
E(node) ≤ ∑

c child of node
Eopt(c)

If (node≠root), merge and set Eopt(node) = E(node)
E(node) > ∑

c child of node
Eopt(c) Split and set Eopt(node) = ∑

c child of node
Eopt(c)

with the natural initial condition on the reference tree, Eopt(t) = E(t) for each terminal node t.

Reconstructing a Signal Approximation from a Node

You can use the function wprcoef to reconstruct an approximation to your signal from any node in
the wavelet packet tree. This is true irrespective of whether you are working with a full wavelet
packet tree, or a subtree determined by an optimality criterion. Use wpcoef if you want to extract
the wavelet packet coefficients from a node without reconstructing an approximation to the signal.

Load the noisy Doppler signal.

load noisdopp

Compute the wavelet packet decomposition down to level 5 using the sym4 wavelet. Use the
periodization mode.

dwtmode('per');
T = wpdec(noisdopp,5,'sym4');
plot(T)

Plot the binary wavelet packet tree and click on the (4,1) doublet (node 16).
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Extract the wavelet packet coefficients from node 16.

wpc = wpcoef(T,16);
% wpc is length 64

Obtain an approximation to the signal from node 16.

rwpc = wprcoef(T,16);
% rwpc is length 1024
plot(noisdopp,'k'); hold on;
plot(rwpc,'b','linewidth',2);
axis tight;

Determine the optimum binary wavelet packet tree.

Topt = besttree(T);
% plot the best tree
plot(Topt)

Reconstruct an approximation to the signal from the (3,0) doublet (node 7).

rsig = wprcoef(Topt,7);
% rsig is length 1024
plot(noisdopp,'k'); hold on;
plot(rsig,'b','linewidth',2);
axis tight;
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If you know which doublet in the binary wavelet packet tree you want to extract, you can determine
the node corresponding to that doublet with depo2ind.

For example, to determine the node corresponding to the doublet (3,0), enter:

Node = depo2ind(2,[3 0]);

Wavelet Packets 2-D Decomposition Structure
Exactly as in the wavelet decomposition case, the preceding 1-D framework can be extended to image
analysis. Minor direct modifications lead to quaternary tree-related definitions. An example is shown
the following figure for depth 2.

Quaternary Tree of Depth 2

Wavelet Packets for Compression and Denoising
In the wavelet packet framework, compression and denoising ideas are identical to those developed
in the wavelet framework. The only new feature is a more complete analysis that provides increased
flexibility. A single decomposition using wavelet packets generates a large number of bases. You can
then look for the best representation with respect to a design objective, using the besttree with an
entropy function.
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Introduction to Object-Oriented Features
In the Wavelet Toolbox software, some object-oriented programming features are used for wavelet
packet tree structures.

You may want to skip this appendix, if you prefer to use the command line functions and Wavelet
Analyzer app without knowing about the underlying objects and classes. But, it is useful for Save and
Load actions where objects are involved.

This appendix lets you understand the objects used in the toolbox, use some functions that are not
fully documented in the reference pages, and extend the toolbox functionality using the predefined
tree structures and some object programming features.

It is helpful to be familiar with the basic MATLAB object-oriented language and terminology.
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Objects in the Wavelet Toolbox Software
Four classes of objects are defined in the Wavelet Toolbox software.

The hierarchical organization of these objects is described in the following scheme:

Only the Wavelet Packet tools (1-D and 2-D) use the previous objects. More precisely, WPTREE
objects are used to build wavelet packets.

A short description of this hierarchy of objects follows.

The WTBO class is an abstract class. Any object in the toolbox is parented by a WTBO object and
would inherit the methods and fields of the WTBO class.

The NTREE class is dedicated to tree manipulation (node labels, node splitting, node merging, ...),
and it is also an abstract class. The main methods are

• nodejoin, which recomposes nodes
• nodesplt, which decomposes nodes
• wtreemgr, which lets you access most of tree and node information (order, depth, terminal nodes,

ascendants of a node, ...)

In fact, the wtreemgr method is not used directly, but you can use the functions treeord,
treedpth, leaves, nodeasc, ..., and the method get.

The DTREE class is dedicated to trees with associated data: vectors or matrices.

This class is also an abstract class and some methods have to be overloaded.

The aim of the WPTREE class is to manage wavelet packets 1-D and 2-D.

Some methods of the DTREE class have been overloaded, for example: split, merge, and recons.

Most of the methods are specific to the class WPTREE; for example: bestlevt, besttree, and
wp2wtree.

By typing help wavelet you can see the available methods in the Tree Management Utilities and
Wavelets Packets Algorithms sections.
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Examples Using Wavelet Packet Tree Objects
You can use command line functions, the Wavelet Analyzer app, or you can mix both of them to work
with wavelet packet trees (WPTREE objects). The most useful commands are

• plot, drawtree, and readtree, which let you plot and get a wavelet packet tree
• wpjoin and wpsplt, which let you change a wavelet packet tree structure
• get, read, and write, which let you read and write coefficients or information in a wavelet

packet tree

We can see some of these features in the following examples.

• “plot and wpviewcf” on page 5-40
• “drawtree and readtree” on page 5-42
• “Change Terminal Node Coefficients” on page 5-44
• “Thresholding Wavelet Packets” on page 5-45

plot and wpviewcf
load noisbump
x = noisbump;
t = wpdec(x,3,'db2');
fig = plot(t);

Click on node 7.
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Change Node Action from Visualize to Split-Merge and merge the second node.

% From the command line, you can get the new tree.
newt = plot(t,'read',fig);

% The first argument of the plot function in the last command
% is dummy. Then the general syntax is:
%    newt = plot(DUMMY,'read',fig);
% where DUMMY is any object parented by an NTREE object.
% DUMMY can be any object constructor name, which returns
% an object parented by an NTREE object. For example:
%    newt = plot(ntree,'read',fig);
%    newt = plot(dtree,'read',fig);
%    newt = plot(wptree,'read',fig);

% From the command line you can modify the new tree,
% then plot it.
newt = wpjoin(newt,3);
fig2 = plot(newt);

% Change Node Label from Depth_position to Index and
% click the node (3). You get the following figure.
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% Using plot(newt,fig), the plot is done in the figure fig,
% which already contains a tree object.

% You can see the colored wavelet packets coefficients using
% from the command line, the wpviewcf function (type help
% wpviewcf for more information).
wpviewcf(newt,1)

% You get the following plot, which contains the terminal nodes
% colored coefficients.

drawtree and readtree
load noisbump
x = noisbump;
t = wpdec(x,3,'db2');
fig = drawtree(t);

% The last command creates a GUI. 
% The same GUI can be obtained using waveletAnalyzer and:
% - clicking the Wavelet Packet 1-D button,
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% - loading the signal noisbump,
% - choosing the level and the wavelet
% - clicking the decomposition button. 
% You get the following figure.

% From the app, you can modify the tree. 
% For example, change Node label from Depth_Position to Index, 
% change Node Action from Visualize to Split_Merge and 
% merge the node 2. 
% You get the following figure.

% From the command line, you can get the new tree.
newt = readtree(fig);

% From the command line you can modify the new tree;
% then plot it in the same figure.
newt = wpjoin(newt,3);
drawtree(newt,fig);
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You can mix previous commands. The GUI associated with the plot command is simpler and quicker,
but more actions and information are available using portions of the Wavelet Analyzer app related to
wavelet packets.

The methods associated with WPTREE objects let you do more complicated actions.

Namely, using read and write methods, you can change terminal node coefficients.

Let's illustrate this point with the following “funny” example.

Change Terminal Node Coefficients
load gatlin2
t = wpdec2(X,1,'haar');
plot(t);
% Change Node Label from Depth_position to Index and
% click the node (0). You get the following figure.

% Now modify the coefficients of the four terminal nodes.
newt = t;
NBcols = 40;
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for node = 1:4
  cfs = read(t,'data',node);
  tmp = cfs(1:end,1:NBcols);
  cfs(1:end,1:NBcols) = cfs(1:end,end-NBcols+1:end);
  cfs(1:end,end-NBcols+1:end) = tmp;
  newt = write(newt,'data',node,cfs);
end
plot(newt)

% Change Node Label from Depth_position to Index and
% click on the node (0). You get the following figure.

You can use this method for a more useful purpose. Let's see a denoising example.

Thresholding Wavelet Packets
load noisbloc
x = noisbloc;
t = wpdec(x,3,'sym4');
plot(t);
% Change Node Label from Depth_position to Index and
% click the node (0). You get the following plot.
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% Global thresholding.
t1 = t;
sorh = 'h';
thr = wthrmngr('wp1ddenoGBL','penalhi',t);
cfs = read(t,'data');
cfs = wthresh(cfs,sorh,thr);
t1  = write(t1,'data',cfs);
plot(t1)

% Change Node Label from Depth_position to Index and
% click the node (0). You get the following plot.

% Node by node thresholding. 
t2 = t;
sorh = 's';
thr(1) = wthrmngr('wp1ddenoGBL','penalhi',t);
thr(2) = wthrmngr('wp1ddenoGBL','sqtwologswn',t);
tn  = leaves(t);
for k=1:length(tn)
  node = tn(k);
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  cfs = read(t,'data',node);
  numthr = rem(node,2)+1;
  cfs = wthresh(cfs,sorh,thr(numthr));
  t2 = write(t2,'data',node,cfs);
end
plot(t2)

% Change Node Label from Depth_position to Index and
% click the node (0). You get the following plot.
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Description of Objects in the Wavelet Toolbox Software
The following sections describe the objects in the Wavelet Toolbox software:

• “WTBO Object” on page 5-48
• “NTREE Object” on page 5-48
• “DTREE Object” on page 5-49
• “WPTREE Object” on page 5-50

WTBO Object
Class WTBO (Wavelet Toolbox Object) -- Parent class: none

Fields

wtboInfo Object information (Not used)
ud Userdata field

Methods

wtbo Constructor for the class WTBO.
get Get WTBO object field contents.
set Set WTBO object field contents.

Comments

Since any object in the toolbox is parented by a WTBO object, you can associate your own data to an
object using the 'ud' field, and then access it.

If Obj is an object (parented by a WTBO object), use

Obj = set(Obj,'ud',MyData)

to define the data.

To retrieve the data, use

MyData = get(O,'ud') 

NTREE Object
Class NTREE (New Tree) -- Parent class: WTBO

Fields

wtbo Parent object
order Tree order
depth Tree depth
spsch Split scheme for nodes
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tn Column vector with terminal nodes indices

Methods

ntree Constructor for the class NTREE.
findactn Find active nodes.
get Get NTREE object field contents.
nodejoin Recompose node(s).
nodesplt Split (decompose) node(s).
plot Plot NTREE object.
set Set NTREE object field contents.
tlabels Labels for the nodes of a tree.
wtreemgr Manager for NTREE object.

Private
locnumcn Local number for a child node
tabofasc Table of ascendants of nodes

DTREE Object
Class DTREE (Data Tree) -- Parent class: NTREE

Fields

ntree Parent object
allNI All Nodes Information
terNI Terminal Nodes Information

Fields Description

allNI is a NBnodes-by-3 array such that

allNI(N,:) = [ind,size(1,1),size(1,2)]

• ind = index of the node N
• size = size of data associated with the node N

terNI is a 1-by-2 cell array such that

• terNI{1} is an NB_TerminalNodes-by-2 array such that

• terNI{1}(N,:) is the size of coefficients associated with the N-th terminal node. The nodes
are numbered from left to right and from top to bottom. The root index is 0.

• terNI{2} is a row vector containing the previous coefficients stored row-wise in the above
specified order.
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Methods

dtree Constructor for the class DTREE.

expand Expand data tree.
fmdtree Field manager for DTREE object.
nodejoin Recompose node.
nodesplt Split (decompose) node.
rnodcoef Reconstruct node coefficients.

defaninf Define node information (all nodes).
get Get DTREE object field contents.
plot Plot DTREE object.
read Read values in DTREE object fields.
set Set DTREE object field contents.
write Write values in DTREE object fields.

merge Merge (recompose) the data of a node.
recons Reconstruct node coefficients.
split Split (decompose) the data of a terminal node.

Comments

• After the constructor, the first set of methods (between line separators) might not be overloaded
(or only with great care). The second set of methods can be overloaded. The third set of methods
must be overloaded to recompose, reconstruct, or decompose nodes data.

• The method nodejoin calls the method merge, the method nodesplt calls the method split,
and the method rnodcoef calls the method recons.

• To define nodes information, you must overload the method defaninf. For each node N, the basic
information is given by

allNI(N,1:3): [index,size(1,1),size(1,2)];

You can add other information by adding columns to allNI.

See the WPTREE object method for an example.
• If the method get is not overloaded, using the DTREE get method you can get some object field

contents (but not all).

For example, if T is parented by a DTREE object of order 2 and if 'Tfield' is a field of T, whose
content is Tval, [a,b] = get(t,'order','Tfield') returns a = 2 and b = 'errorWTBX'.
Nevertheless, using a nondocumented method you can get the right values. Namely:
[a,b] = getwtbo(t,'order','Tfield') returns a = 2 and b=Tval.

WPTREE Object
Class WPTREE (Wavelet Packet Tree) -- Parent class: DTREE
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Fields

dtree Parent object
wavInfo Structure (wavelet information)
entInfo Structure (entropy information)

Fields Description

wavInfo

wavName Wavelet Name
Lo_D Low Decomposition filter
Hi_D High Decomposition filter
Lo_R Low Reconstruction filter
Hi_R High Reconstruction filter

entInfo

entName Entropy Name
entPar Entropy Parameter

allNI Array(nbnode,5)     (field of the dtree parent object)

[ind,size,ent,ento]

ind Index
size Size of data
ent Entropy
ento Optimal Entropy

Methods
Constructor

Method Description
wptree Constructor for the class WPTREE

Methods That Overload Those of DTREE Class

Method Description
defaninf Define node information (all nodes).
get Get WPTREE object field contents.
merge Merge (recompose) the data of a node.
read Read values in WPTREE object fields.
recons Reconstruct wavelet packet coefficients.
set Set WPTREE object field contents.
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Method Description
split Split (decompose) the data of a terminal node.
tlabels Labels for the nodes of a wavelet packet tree.
write Write values in WPTREE object fields.

Proper Methods of WPTREE Class

Method Description
bestlevt Best level of a wavelet packet tree.
besttree Best wavelet packet tree.
entrupd Entropy update (wavelet packet tree).
wp2wtree Extract wavelet tree from wavelet packet tree.
wpcoef Wavelet packet coefficients.
wpcutree Cut wavelet packet tree.
wpjoin Recompose wavelet packet.
wpplotcf Plot wavelet packets colored coefficients.
wprcoef Reconstruct wavelet packet coefficients.
wprec Wavelet packet reconstruction 1-D.
wprec2 Wavelet packet reconstruction 2-D.
wpsplt Split (decompose) wavelet packet.
wpthcoef Wavelet packet coefficients thresholding.
wpviewcf Plot wavelet packets colored coefficients.
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Build Wavelet Tree Objects
The following sections explain how to extend the toolbox with new objects through four examples.

• “Building a Wavelet Tree Object (WTREE)” on page 5-53
• “Building a Right Wavelet Tree Object (RWVTREE)” on page 5-60
• “Building a Wavelet Tree Object (WVTREE)” on page 5-66
• “Building a Wavelet Tree Object (EDWTTREE)” on page 5-73

Building a Wavelet Tree Object (WTREE)
This example creates a new class of objects: WTREE.

Starting from the class DTREE and overloading the methods split and merge, we define a wavelet
tree class.

To plot a WTREE, the DTREE plot method is used.

The definition of the new class is described below.

Class WTREE (parent class: DTREE)

Fields

dtree Parent object
dwtMode DWT extension mode
wavInfo Structure (wavelet information)

wavInfo Structure information

wavName Wavelet Name
Lo_D Low Decomposition filter
Hi_D High Decomposition filter
Lo_R Low Reconstruction filter
Hi_R High Reconstruction filter

Methods

wtree Constructor for the class WTREE.
merge Merge (recompose) the data of a node.
split Split (decompose) the data of a terminal node.

Working With Wavelet Tree Objects (WTREE)
1-D Object

Load a signal.
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load noisbloc
x = noisbloc;

Define the level and the wavelet.

lev = 3;
wav = 'db2';

Create the wavelet tree.

t = wtree(x,lev,wav);

Plot the wavelet tree. The approximations are labeled in yellow and the details are labeled in red. The
detail nodes cannot be split.

plot(t)

Change Node Label from Visualize to Split-Merge, and then click node (7), to get this figure:
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Change Node Action from Visualize to Split-Merge, and merge node (3). Then change Node
Action from Split-Merge to Visualize, and click node (3) to get this figure:
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2-D Object

Load an image.

load woman

Define the level and the wavelet.

lev = 2;
wav = 'db2';

Create the wavelet tree.

t = wtree(X,lev,wav);

Plot the tree.

plot(t)
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Change Node Label from Depth_Position to Index. Click the node (5). You get the following plot.
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Click the node (2). You obtain the following plot.
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Change Node Action from Visualize to Split-Merge. Split the node (5). Change Node Action from
Split-Merge to Visualize. Click the node (21). You obtain the following plot.
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Building a Right Wavelet Tree Object (RWVTREE)
This example creates a new class of objects: RWVTREE.

We define a right wavelet tree class starting from the class WTREE and overloading the methods
split, merge, and plot (inherited from DTREE).

The plot method shows how to add Node Labels.

The definition of the new class is described below.

Class RWVTREE (parent class: WTREE)

Fields

dummy Not used
wtree Parent object
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Methods

rwvtree Constructor for the class RWVTREE.
merge Merge (recompose) the data of a node.
plot Plot RWVTREE object.
split Split (decompose) the data of a terminal node.

Working With Right Wavelet Tree Objects (RWVTREE)
1-D Object

Load a signal.

load noisbloc
x = noisbloc;

Define the level and the wavelet.

lev = 3;
wav = 'db2';

Create the wavelet tree.

t = rwvtree(x,lev,wav);

Plot the tree. The approximations are labeled in yellow and the details are labeled in red. The detail
nodes cannot be split.

plot(t)
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Change Node Action from Visualize to Split-Merge. Merge the node (6). Change Node Action
from Split-Merge to Visualize. Click the node (6). You obtain the following plot.
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2-D Object

Load an image.

load woman

Define the level and the wavelet.

lev = 2;
wav = 'db2';

Create the wavelet tree.

t = wtree(X,lev,wav);

Plot the tree.

plot(t)
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Click the node (2,0). You get the following plot.
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Change Node Action from Visualize to Split-Merge. Split the node (2,0). Change Node Action
from Split-Merge to Visualize. Click the node (3,0). You obtain the following plot.
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Building a Wavelet Tree Object (WVTREE)
This example creates a new class of objects: WVTREE.

We define a wavelet tree class starting from the class WTREE and overloading the methods get,
plot, and recons (all inherited from DTREE).

The split and merge methods of the class WTREE are used.

The plot method shows how to add Node Labels and Node Actions.

The definition of the new class is described below.

Class WVTREE (parent class: WTREE)

Fields

dummy Not used
wtree Parent object
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Methods

wvtree Constructor for the class WVTREE.
get Get WVTREE object field contents.
plot Plot WVTREE object.
recons Reconstruct node coefficients.

Working With Wavelet Tree Objects (WVTREE)
1-D Object

Load the signal.

 load noisbloc
 x = noisbloc;

Define the level and the wavelet.

lev = 3;
wav = 'db2';

Create the wavelet tree.

t = wvtree(x,lev,wav);

Plot the tree. The approximations are labeled in yellow and the details are labeled in red. The detail
nodes cannot be split.

 plot(t)
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Change Node Action from Visualize to Split-Merge. Merge the node (3). Change Node Action
from Split-Merge to Reconstruct. Click the node (3). You obtain the following plot.
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2-D Object

Load an image.

load woman

Define the level and the wavelet.

lev = 2;
wav = 'db1';

Create the wavelet tree.

t = wvtree(X,lev,wav);

Plot the tree.

plot(t)
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Click the node (5). You get the following plot.
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Click the node (2). You obtain the following plot.
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Change Node Action from Visualize to Split-Merge. Split the node (5). Change Node Action from
Split-Merge to Reconstruct. Click the node (21). You obtain the following plot.
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Building a Wavelet Tree Object (EDWTTREE)
This example creates a new class of objects: EDWTTREE.

We define an ε-DWT tree class starting from the class DTREE and overloading the methods merge,
plot, recons, and split.

For more information on the ε-DWT, see the section “ε-Decimated DWT” on page 3-57.

The plot method shows how to add Node Labels, Node Actions, and Tree Actions.

The definition of the new class is described below.

Class EDWTTREE (parent class: DTREE)

Fields

dtree Parent object
dwtMode DWT extension mode
wavInfo Structure (wavelet information)
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Fields Description

wavInfo

wavName Wavelet Name
Lo_D Low Decomposition filter
Hi_D High Decomposition filter
Lo_R Low Reconstruction filter
Hi_R High Reconstruction filter

Methods

edwttree Constructor for the class EDWTTREE.
merge Merge (recompose) the data of a node.
plot Plot EDWTTREE object.
recons Reconstruct node coefficients.
split Split (decompose) the data of a terminal node.

Working With Wavelet Tree Object (EDWTTREE)
Load the signal.

load noisbloc
x = noisbloc;

Define the level and the wavelet.

lev = 2;
wav = 'haar';

Create the wavelet tree.

t = edwttree(x,lev,wav);

Plot the tree. The approximations are labeled in yellow and the details are labeled in red. The detail
nodes cannot be split. The title of the figure contains the DWT extension mode used ('per' in the
present example) and the name of the denoising method.

plot(t)
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Click the node (0). You obtain the following plot.
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Change Node Action from Visualize to Split-Merge. Split the nodes (5) and (20).
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Select Tree Action: De-noise. Click the node (0). You obtain the following plot.
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Denoising, Nonparametric Function
Estimation, and Compression

6



Wavelet Denoising and Nonparametric Function Estimation

In this section...
“Denoising Methods” on page 6-3
“Soft or Hard Thresholding” on page 6-5
“Dealing with Unscaled Noise and Nonwhite Noise” on page 6-6
“Wavelet Denoising in Action” on page 6-7
“Extension to Image Denoising” on page 6-11
“1-D Wavelet Variance Adaptive Thresholding” on page 6-13
“Wavelet Denoising Analysis Measurements” on page 6-16

The Wavelet Toolbox provides a number of functions for the estimation of an unknown function
(signal or image) in noise. You can use these functions to denoise signals and as a method for
nonparametric function estimation.

The most general 1-D model for this is

s(n) = f(n) + σe(n)

where n = 0,1,2,...N-1. The e(n) are Gaussian random variables distributed as N(0,1). The variance of
the σe(n) is σ2.

In practice, s(n) is often a discrete-time signal with equal time steps corrupted by additive noise and
you are attempting to recover that signal.

More generally, you can view s(n) as an N-dimensional random vector

f (0) + σe(0)
f (1) + σe(1)
f (2) + σe(2)

.

.

.
f (N − 1) + σe(N − 1)

=

f (0)
f (1)
f (2)

.

.

.
f (N − 1)

+

σe(0)
σe(1)
σe(2)

.

.

.
σe(N − 1)

In this general context, the relationship between denoising and regression is clear.

You can replace the N-by-1 random vector by N-by-M random matrices to obtain the problem of
recovering an image corrupted by additive noise.

You can obtain a 1-D example of this model with the following code.

load cuspamax;
y = cuspamax+0.5*randn(size(cuspamax));
plot(y); hold on;
plot(cuspamax,'r','linewidth',2);
axis tight;
legend('f(n)+\sigma e(n)','f(n)', 'Location', 'NorthWest');
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For a broad class of functions (signals, images) that possess certain smoothness properties, wavelet
techniques are optimal or near optimal for function recovery.

Specifically, the method is efficient for families of functions f that have only a few nonzero wavelet
coefficients. These functions have a sparse wavelet representation. For example, a smooth function
almost everywhere, with only a few abrupt changes, has such a property.

The general wavelet–based method for denoising and nonparametric function estimation is to
transform the data into the wavelet domain, threshold the wavelet coefficients, and invert the
transform.

You can summarize these steps as:

1 Decompose

Choose a wavelet and a level N. Compute the wavelet decomposition of the signal s down to level
N.

2 Threshold detail coefficients

For each level from 1 to N, threshold the detail coefficients.
3 Reconstruct

Compute wavelet reconstruction using the original approximation coefficients of level N and the
modified detail coefficients of levels from 1 to N.

Denoising Methods
The Wavelet Toolbox supports a number of denoising methods. Four denoising methods are
implemented in the thselect. Each method corresponds to a tptr option in the command

thr = thselect(y,tptr)

which returns the threshold value.
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Option Denoising Method
'rigrsure' Selection using principle of Stein's Unbiased Risk Estimate (SURE)
'sqtwolog' Fixed form (universal) threshold equal to

2ln(N)

with N the length of the signal.
'heursure' Selection using a mixture of the first two options
'minimaxi' Selection using minimax principle

• Option 'rigrsure' uses for the soft threshold estimator a threshold selection rule based on
Stein's Unbiased Estimate of Risk (quadratic loss function). You get an estimate of the risk for a
particular threshold value t. Minimizing the risks in t gives a selection of the threshold value.

• Option 'sqtwolog' uses a fixed form threshold yielding minimax performance multiplied by a
small factor proportional to log(length(s)).

• Option 'heursure' is a mixture of the two previous options. As a result, if the signal-to-noise
ratio is very small, the SURE estimate is very noisy. So if such a situation is detected, the fixed
form threshold is used.

• Option 'minimaxi' uses a fixed threshold chosen to yield minimax performance for mean square
error against an ideal procedure. The minimax principle is used in statistics to design estimators.
Since the denoised signal can be assimilated to the estimator of the unknown regression function,
the minimax estimator is the option that realizes the minimum, over a given set of functions, of the
maximum mean square error.

The following example shows the denoising methods for a 1000-by-1 N(0,1) vector. The signal here is

f (n) + e(n) e(n) N(0, 1)

with f(n) = 0.

rng default;
sig = randn(1e3,1);
thr_rigrsure = thselect(sig,'rigrsure')
thr_univthresh = thselect(sig,'sqtwolog')
thr_heursure = thselect(sig,'heursure')
thr_minimaxi = thselect(sig,'minimaxi')
histogram(sig);
h = findobj(gca,'Type','patch');
set(h,'FaceColor',[0.7 0.7 0.7],'EdgeColor','w');
hold on;
plot([thr_rigrsure thr_rigrsure], [0 300],'linewidth',2);
plot([thr_univthresh thr_univthresh], [0 300],'r','linewidth',2);
plot([thr_minimaxi thr_minimaxi], [0 300],'k','linewidth',2);
plot([-thr_rigrsure -thr_rigrsure], [0 300],'linewidth',2);
plot([-thr_univthresh -thr_univthresh], [0 300],'r','linewidth',2);
plot([-thr_minimaxi -thr_minimaxi], [0 300],'k','linewidth',2);
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For Stein's Unbiased Risk Estimate (SURE) and minimax thresholds, approximately 3% of coefficients
are retained. In the case of the universal threshold, all values are rejected.

We know that the detail coefficients vector is the superposition of the coefficients of f and the
coefficients of e, and that the decomposition of e leads to detail coefficients, which are standard
Gaussian white noises.

After you use thselect to determine a threshold, you can threshold each level of a . This second
step can be done using wthcoef, directly handling the wavelet decomposition structure of the
original signal s.

Soft or Hard Thresholding
Hard and soft thresholding are examples of shrinkage rules. After you have determined your
threshold, you have to decide how to apply that threshold to your data.

The simplest scheme is hard thresholding. Let T denote the threshold and x your data. The hard
thresholding is

η(x) =
x x ≥ T
0 x < T

The soft thresholding is

η(x) =
x− T x > T
0 x ≤ T
x + T x < − T

You can apply your threshold using the hard or soft rule with wthresh.

y = linspace(-1,1,100);
thr = 0.4;
ythard = wthresh(y,'h',thr);
ytsoft = wthresh(y,'s',thr);
subplot(131);
plot(y); title('Original Data');
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subplot(132);
plot(ythard,'*'); title('Hard Thresholding');
subplot(133);
plot(ytsoft,'*'); title('Soft Thresholding');

Dealing with Unscaled Noise and Nonwhite Noise
Usually in practice the basic model cannot be used directly. We examine here the options available to
deal with model deviations in the main denoising function wdenoise.

The simplest use of wdenoise is

sd = wdenoise(s)

which returns the denoised version sd of the original signal s obtained by using default settings for
parameters including wavelet, denoising method, and soft or hard thresholding. Any of the default
settings can be changed:

sd = wdenoise(s,n,'DenoisingMethod',tptr,'Wavelet',wav,...
     'ThresholdRule',sorh,'NoiseEstimate',scal)

which returns the denoised version sd of the original signal s obtained using the tptr denoising
method. Other parameters needed are sorh, scal, and wname. The parameter sorh specifies the
thresholding of details coefficients of the decomposition at level n of s by the wavelet called wav. The
remaining parameter scal is to be specified. It corresponds to the method of estimating variance of
noise in the data.

Option Noise Estimate Method
'LevelIndependent' 'LevelIndependent' estimates the variance of the noise based

on the finest-scale (highest-resolution) wavelet coefficients.
'LevelDependent' 'LevelDependent' estimates the variance of the noise based on

the wavelet coefficients at each resolution level.

For a more general procedure, the wdencmp function performs wavelet coefficients thresholding for
both denoising and compression purposes, while directly handling 1-D and 2-D data. It allows you to
define your own thresholding strategy selecting in
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 xd = wdencmp(opt,x,wav,n,thr,sorh,keepapp);

where

• opt = 'gbl' and thr is a positive real number for uniform threshold.
• opt = 'lvd' and thr is a vector for level dependent threshold.
• keepapp = 1 to keep approximation coefficients, as previously and
• keepapp = 0 to allow approximation coefficients thresholding.
• x is the signal to be denoised and wav, n, sorh are the same as above.

Wavelet Denoising in Action
We begin the examples of 1-D denoising methods with the first example credited to Donoho and
Johnstone.

Blocks Signal Thresholding

First set a signal-to-noise ratio (SNR) and set a random seed.

sqrt_snr = 4;
init = 2055615866;

Generate an original signal xref and a noisy version x by adding standard Gaussian white noise. Plot
both signals.

[xref,x] = wnoise(1,11,sqrt_snr,init);
subplot(2,1,1)
plot(xref)
axis tight
title('Original Signal')
subplot(2,1,2)
plot(x)
axis tight
title('Noisy Signal')
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Denoise the noisy signal using soft heuristic SURE thresholding on detail coefficients obtained from
the wavelet decomposition of x using the sym8 wavelet. Use the default settings of wdenoise for the
remaining parameters. Compare with the original signal.

xd = wdenoise(x,'Wavelet','sym8','DenoisingMethod','SURE','ThresholdRule','Soft');
figure
subplot(2,1,1)
plot(xref)
axis tight
title('Original Signal')
subplot(2,1,2)
plot(xd)
axis tight
title('Denoised Signal')
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Since only a small number of large coefficients characterize the original signal, the method performs
very well.

Electrical Signal Denoising

When you suspect a non-white noise, thresholds must be rescaled by a level-dependent estimation of
the level noise. As a second example, let us try the method on the highly perturbed part of an
electrical signal.

First load the electrical signal and select a segment from it. Plot the segment.

load leleccum
indx = 2000:3450;
x = leleccum(indx);
figure
plot(indx,x)
axis tight
title('Original Signal')
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Denoise the signal using the db3 wavelet and a three-level wavelet decomposition and soft fixed form
thresholding. To deal with the non-white noise, use level-dependent noise size estimation. Compare
with the original signal.

xd = wdenoise(x,3,'Wavelet','db3',...
    'DenoisingMethod','UniversalThreshold',...
    'ThresholdRule','Soft',...
    'NoiseEstimate','LevelDependent');
figure
subplot(2,1,1)
plot(indx,x)
axis tight
title('Original Signal')
subplot(2,1,2)
plot(indx,xd)
axis tight
title('Denoised Signal')
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The result is quite good in spite of the time heterogeneity of the nature of the noise after and before
the beginning of the sensor failure around time 2410.

Extension to Image Denoising
The denoising method described for the 1-D case applies also to images and applies well to
geometrical images. A direct translation of the 1-D model is

s(i, j) = f (i, j) + σ e(i, j)

where e is a white Gaussian noise with unit variance.

The 2-D denoising procedure has the same three steps and uses 2-D wavelet tools instead of 1-D
tools. For the threshold selection, prod(size(s)) is used instead of length(s) if the fixed form
threshold is used.

Note that except for the "automatic" 1-D denoising case, 2-D denoising and compression are
performed using wdencmp. To illustrate 2-D denoising, load an image and create a noisy version of it.
For purposes of reproducibility, set the random seed.

init = 2055615866;
rng(init);
load woman
img = X;
imgNoisy = img + 15*randn(size(img));

 Wavelet Denoising and Nonparametric Function Estimation

6-11



Use ddencmp to find the denoising values. In this case, fixed form threshold is used with estimation
of level noise, thresholding is soft and the approximation coefficients are kept.

[thr,sorh,keepapp] = ddencmp('den','wv',imgNoisy);
thr

thr = 107.9838

thr is equal to estimated_sigma*sqrt(log(prod(size(img)))).

Denoise the noisy image using the global threshold option. Display the results.

imgDenoised = wdencmp('gbl',imgNoisy,'sym4',2,thr,sorh,keepapp);
figure
colormap(pink(255))
sm = size(map,1);
subplot(2,2,1)
image(wcodemat(img,sm))
title('Original Image')
subplot(2,2,2)
image(wcodemat(imgNoisy,sm))
title('Noisy Image')
subplot(2,2,3)
image(wcodemat(imgDenoised,sm))
title('Denoised Image')

The denoised image compares well with the original image.
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1-D Wavelet Variance Adaptive Thresholding
The idea is to define level by level time-dependent thresholds, and then increase the capability of the
denoising strategies to handle nonstationary variance noise models.

More precisely, the model assumes (as previously) that the observation is equal to the interesting
signal superimposed on noise

s(n) = f (n) + σ e(n)

But the noise variance can vary with time. There are several different variance values on several time
intervals. The values as well as the intervals are unknown.

Let us focus on the problem of estimating the change points or equivalently the intervals. The
algorithm used is based on an original work of Marc Lavielle about detection of change points using
dynamic programming (see [Lav99] in “References”).

Let us generate a signal from a fixed-design regression model with two noise variance change points
located at positions 200 and 600. For purposes of reproducibility, set the random seed.

init = 2055615866;
rng(init);

x = wnoise(1,10);
bb = randn(1,length(x));
cp1 = 200;
cp2 = 600;
x = x+[bb(1:cp1),bb(cp1+1:cp2)/4,bb(cp2+1:end)];
plot(x)
title('Noisy Signal')
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The aim of this example is to recover the two change points from the signal x.

Step 1. Recover a noisy signal by suppressing an approximation. First perform a single-level wavelet
decomposition using the db3 wavelet. Then reconstruct the detail at level 1.

wname = 'db3';
lev = 1;
[c,l] = wavedec(x,lev,wname);
det = wrcoef('d',c,l,wname,1);
figure
plot(det)
title('Level 1 Detail')
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The reconstructed detail at level 1 recovered at this stage is almost signal free. It captures the main
features of the noise from a change points detection viewpoint if the interesting part of the signal has
a sparse wavelet representation. To remove almost all the signal, we replace the biggest values by the
mean.

Step 2. To remove almost all the signal, replace 2% of biggest values by the mean.

x = sort(abs(det));
v2p100 = x(fix(length(x)*0.98));
ind = find(abs(det)>v2p100);
det(ind) = mean(det);

Step 3. Use the wvarchg function to estimate the change points with the following parameters:

• The minimum delay between two change points is d = 10.
• The maximum number of change points is 5.

[cp_est,kopt,t_est] = wvarchg(det,5)

cp_est = 1×2

   259   611

kopt = 2

t_est = 6×6
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        1024           0           0           0           0           0
         612        1024           0           0           0           0
         259         611        1024           0           0           0
         198         259         611        1024           0           0
         198         235         259         611        1024           0
         198         235         260         346         611        1024

Two change points and three intervals are proposed. Since the three interval variances for the noise
are very different the optimization program detects easily the correct structure. The estimated
change points are close to the true change points: 200 and 600.

Step 4. (Optional) Replace the estimated change points.

For 2 ≤ i ≤ 6, t_est(i,1:i-1) contains the i-1 instants of the variance change points, and since
kopt is the proposed number of change points, then

cp_est = t_est(kopt+1,1:kopt);

You can replace the estimated change points by computing:

for k=1:5
    cp_New = t_est(k+1,1:k)
end

cp_New = 612

cp_New = 1×2

   259   611

cp_New = 1×3

   198   259   611

cp_New = 1×4

   198   235   259   611

cp_New = 1×5

   198   235   260   346   611

Wavelet Denoising Analysis Measurements
The following measurements and settings are useful for analyzing wavelet signals and images:

• M S E — Mean square error (MSE) is the squared norm of the difference between the data and
the signal or image approximation divided by the number of elements.

• Max Error — Maximum absolute squared deviation in the signal or image approximation.
• L2-Norm Ratio — Ratio of the squared L2-norm of the signal or image approximation to the input

signal or image. For images, the image is reshaped as a column vector before taking the L2-norm
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• P S N R — Peak signal-to-noise ratio (PSNR) in decibels. PSNR is meaningful only for data
encoded in terms of bits per sample or bits per pixel.

• B P P — Bits per pixel ratio (BPP), which is the compression ratio (Comp. Ratio) multiplied by 8,
assuming one byte per pixel (8 bits).

• Comp Ratio — Compression ratio, which is the number of elements in the compressed image
divided by the number of elements in the original image expressed as a percentage.
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Wavelet Denoising
This example shows how to use wavelets to denoise signals and images. Because wavelets localize
features in your data to different scales, you can preserve important signal or image features while
removing noise. The basic idea behind wavelet denoising, or wavelet thresholding, is that the wavelet
transform leads to a sparse representation for many real-world signals and images. What this means
is that the wavelet transform concentrates signal and image features in a few large-magnitude
wavelet coefficients. Wavelet coefficients which are small in value are typically noise and you can
"shrink" those coefficients or remove them without affecting the signal or image quality. After you
threshold the coefficients, you reconstruct the data using the inverse wavelet transform.

Denoise a Signal

To illustrate wavelet denoising, create a noisy "bumps" signal. In this case you have both the original
signal and the noisy version.

rng default;
[X,XN] = wnoise('bumps',10,sqrt(6));
subplot(211)
plot(X); title('Original Signal');
AX = gca;
AX.YLim = [0 12];
subplot(212)
plot(XN); title('Noisy Signal');
AX = gca;
AX.YLim = [0 12];
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Denoise the signal down to level 4 using wdenoise with default settings. wdenoise uses the
decimated wavelet transform. Plot the result along with the original signal.

xd = wdenoise(XN,4);
figure;
plot(X,'r')
hold on;
plot(xd)
legend('Original Signal','Denoised Signal','Location','NorthEastOutside')
axis tight;
hold off;

You can also denoise the signal using the undecimated wavelet transform. Denoise the signal again
down to level 4 using the undecimated wavelet transform. Plot the result along with the original
signal.

xdMODWT = wden(XN,'modwtsqtwolog','s','mln',4,'sym4');
figure;
plot(X,'r')
hold on;
plot(xdMODWT)
legend('Original Signal','Denoised Signal','Location','NorthEastOutside')
axis tight;
hold off;
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You see that in both cases, wavelet denoising has removed a considerable amount of the noise while
preserving the sharp features in the signal. This is a challenge for Fourier-based denoising. In
Fourier-based denoising, or filtering, you apply a lowpass filter to remove the noise. However, when
the data has high-frequency features such as spikes in a signal or edges in an image, the lowpass
filter smooths these out.

You can also use wavelets to denoise signals in which the noise is nonuniform. Import and examine a
portion of a signal showing electricity consumption over time.

load leleccum; 
indx = 2000:3450;
x = leleccum(indx);
plot(x)
grid on;
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The signal appears to have more noise after approximately sample 500. Accordingly, you want to use
different thresholding in the initial part of the signal. You can use cmddenoise to determine the
optimal number of intervals to denoise and denoise the signal. In this example, use the 'db3' wavelet
and decompose the data down to level 3.

[SIGDEN,~,thrParams,~,BestNbOfInt] = cmddenoise(x,'db3',3);

Display the number of intervals and the sample values that delimit the intervals.

BestNbOfInt

BestNbOfInt = 2

thrParams{1}(:,1:2)

ans = 2×2

           1         412
         412        1451

Two intervals were identified. The sample marking the boundary between the two segments is 412. If
you plot the signal and mark the two signal segments, you see that the noise does appear different
before and after sample 412.

plot(x)
hold on;
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plot([412 412],[100 550],'r')
hold off;

Plot the denoised signal.

plot(SIGDEN)
title('Denoised Signal')
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Denoise an Image

You can also use wavelets to denoise images. In images, edges are places where the image brightness
changes rapidly. Maintaining edges while denoising an image is critically important for perceptual
quality. While traditional lowpass filtering removes noise, it often smooths edges and adversely
affects image quality. Wavelets are able to remove noise while preserving the perceptually important
features.

Load a noisy image. Denoise the image using wdenoise2 with default settings. By default,
wdenoise2 uses the biorthogonal wavelet bior4.4. To display the original and denoised images, do
not provide any output arguments.

load('jump.mat')
wdenoise2(jump)
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Note that edges in the image are not smoothed out by the denoising process.

See Also
wdenoise | wdenoise2
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Denoise a Signal with the Wavelet Signal Denoiser
This example shows how to use the Wavelet Signal Denoiser app to denoise a real-valued 1-D signal.
You can create and compare multiple versions of a denoised signal with the app and export the
desired denoised signal to your MATLAB® workspace. To reproduce the denoised signal in your
workspace, or to apply the same denoising parameters to other data, you can generate and edit a
MATLAB script. This example illustrates one possible workflow.

Import Data into the App

Load data into the MATLAB workspace. The .mat file contains a clean version and a noisy version of
a signal. Plot both versions of the signal.

load fdata
plot(fNoisy,'b-')
hold on
plot(fClean,'r-','LineWidth',2)
legend('Noisy Signal','Clean Signal')
hold off
grid on

Open the Wavelet Signal Denoiser app. From the MATLAB Toolstrip, open the Apps tab and under
Signal Processing and Communications, click Wavelet Signal Denoiser. You can also start the
app by typing waveletSignalDenoiser at the MATLAB command prompt.

Load the noisy signal from the workspace into the app by clicking Import in the toolstrip. From the
list of workspace variables that can be loaded into the app, select fNoisy and click Import.
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The app imports the noisy signal and immediately denoises it using default parameters.
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Examine Imported Data

Examine the fNoisy plot. The app plots the original signal, fNoisy, the denoised signal, fNoisy1,
and the coarse scale approximation of the signal, Approximation.

1. The Denoised Signals pane lists all versions of the denoised signal. The list currently contains
only the signal that the app created using a default name, fNoisy1.

• You can change the default name by right-clicking it, choosing Rename from the pop-up menu,
entering the new name in the dialog box, and pressing the Enter key.

• You can delete a denoised signal by right-clicking its name and choosing Delete from the pop-up
menu. You can also delete the selected denoised signal by clicking Delete in the toolstrip.

2. The Current Wavelet Parameters pane lists the denoising parameters applied to create
fNoisy1.
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3. Zoom and pan a region of interest. First, place the cursor over the plot to reveal a floating palette.

 Then select the desired action from the palette.

• When you select to either zoom in or out, the mouse wheel controls the zoom.

4. Toggle what signals are visible in the Denoised Signals plot by:

• Clicking Signals ▼ in the toolstrip and using the drop-down menu to toggle the visibility of the
original and denoised signal plots.

• Clicking individual signals in the plot legend.

5. Examine the Coefficients plot.

The coefficients in red are used to reconstruct the denoised signal. The Current Wavelet
Parameters pane indicates that a 9-level wavelet decomposition was used to denoise the signal.
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Zoom and pan a region of interest. First, place the cursor over the plot to reveal a floating palette.
Then select the desired action from the palette.

• When you select to either zoom in or out, the mouse wheel controls the zoom and not the
scrollbar.

• When you zoom in, zoom out, or pan in the D1 coefficients level, the zoom is applied to all levels.

Modify Denoising Parameters

Click the Wavelet tab. Use this toolstrip to adjust and apply denoising parameters for the selected
denoised signal.

The values listed are the parameters used to create the denoised signal, fNoisy1. To modify the
values of these settings, working from left to right in the toolstrip:

1. In the Wavelet dropdown menu, choose the Daubechies wavelet family, db. Because of this action:

• The Number dropdown field changes to 1. Change the value to 2.
• In the status bar, text appears in the Denoised Signals plot, stating that there are pending

wavelet parameter changes. This text appears whenever you have any pending changes to a
signal. The text in the status bar disappears when you either apply the changes by using the
Denoise button, or navigate away from the signal to another signal.

2. From the Method dropdown menu, select Universal Threshold.

3. To define a 10-level wavelet decomposition, change the value of Level to 10.

4. By changing the Method to Universal Threshold, the Rule setting changed automatically
from Median to Soft. Change the setting to Hard.

5. Click Level-Dependent.

6. Apply the new values for these settings by clicking Denoise.

The Current Wavelet Parameters pane updates with the new parameters used to denoise the
signal, and the app replots the denoised signal, fNoisy1.
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Note: All parameters are contextual. Possible values for one parameter can depend on the currently
selected value of another parameter. You cannot make an incompatible selection. For example, when
the denoising method is FDR, there is only possible thresholding rule: hard. In this instance, no other
values are listed in the Rule dropdown menu.

Duplicate a Denoised Signal and Compare Approximations

If you like a particular denoised signal but want to explore more denoising parameters, you can
duplicate it. You can then modify the parameters for the duplicate, without losing the original
parameters.

1. From the Denoised Signals pane, select fNoisy1. Then on the toolstrip, from the Signal
Denoiser tab, click Duplicate.

• The duplicate signal, fNoisy1Copy, appears highlighted in Denoised Signals.
• The denoising parameters for the duplicate are listed in Current Wavelet Parameters.
• The duplicate is plotted as a thick line in the Denoised Signals plot. The plot legend updates to

include the duplicate.

2. On the Wavelet tab, change the Level to 2, and then click Denoise. The app denoises the signal
using a two-level wavelet decomposition. In addition, the app:
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• Recalculates and plots the approximation for the duplicate.
• Updates the Coefficients plot to show the levels for the duplicate.

Because fNoisy1Copy is highlighted, its approximation is plotted. The app always plots the
approximation for the currently selected denoised signal. You can demonstrate this behavior as
follows. In the plot legend, click fNoisy1 and fNoisy1Copy. The names of both denoised signals
fade, and the two signals are no longer plotted. Only the original signal and approximation plots are
visible.

The dashed line in the plot represents the approximation. Because fNoisy1Copy is highlighted in the
Denoised Signals list, the approximation plotted is the result of a two-level wavelet decomposition.
The approximation is relatively noisy. Now select fNoisy1 in the list. The approximation of a 10-level
wavelet decomposition is different.
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Restore Original Parameters

You can always return to using the original default parameters by adding a new denoised signal.
From the toolstrip, on the Signal Denoiser tab, click Add.

• The added denoised signal, fNoisy3, appears highlighted in the Denoised Signals list. The
default denoising parameters are listed in Current Wavelet Parameters.

• The new denoised signal is plotted as a thick line. The approximation is calculated and plotted as
well. The plot legend updates to include fNoisy3.

Export Results

If you want to apply the same denoising parameters to other data, you can use the app to generate a
script that reproduces the selected denoised signal. You can then modify and save the script for your
own purposes. To do further analysis, you can export a denoised signal to your workspace.

Export Script

Click fNoisy3 in Denoised Signals. On the Signal Denoiser tab of the toolstrip, from the Export ▼
menu, select Generate MATLAB Script. An untitled script opens in your MATLAB Editor with the
following executable code:
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fNoisy3 = wdenoise(fNoisy,9, ...
    Wavelet='sym4', ...
    DenoisingMethod='Bayes', ...
    ThresholdRule='Median', ...
    NoiseEstimate='LevelIndependent');

The wdenoise input arguments are populated with the values used to create fNoisy3. Save the
script and then run. This will create the variable fNoisy3 in your workspace.

Load the file fdataTS. The file contains noisy data of 100 time series. Each time series has 4096 data
points. The data is contained in a type TimeTable variable called fdataTS.

load fdataTS

To apply the denoising parameters to fdataTS, edit the script by replacing fNoisy with fdataTS
and fNoisy3 with fdataTSclean. Then run the script.

fdataTSclean = wdenoise(fdataTS,9, ...
    Wavelet='sym4', ...
    DenoisingMethod='Bayes', ...
    ThresholdRule='Median', ...
    NoiseEstimate='LevelIndependent');

Compare the 15th noisy time series with its denoised version.

subplot(2,1,1)
plot(fdataTS.Time,fdataTS.fTS15)
title('Original Time Series')
grid on
subplot(2,1,2)
plot(fdataTSclean.Time,fdataTSclean.fTS15)
title('Denoised Time Series')
grid on
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Export Denoised Signal

Click fNoisy3 in Denoised Signals. Then on the toolstrip, from the Signal Denoiser tab, click the
green check mark on Export ▼. Since fNoisy3 already exists in your workspace, you can force the
export and overwrite the workspace variable. Alternatively, you can cancel the export, rename either
the denoised signal in the app or the workspace variable, and export again. Text appears in the status
bar appears confirming the signal is exported. Selecting a different denoised signal or importing a
new signal will clear the text from the status bar.

Because you have the clean signal in your workspace, calculate the sign-to-noise ratio of the denoised
signal.

snrWavelet = -20*log10(norm(abs(fClean-fNoisy3))/norm(fClean))

snrWavelet = 35.9623

If you have Signal Processing Toolbox™, denoise the signal using a moving average filter and
Savitzky-Golay filter and compute the SNR of each denoised signal.

fmv = smoothdata(fNoisy,'movmean',25);
snrMovingAverage = -20*log10(norm(abs(fClean-fmv))/norm(fClean))

snrMovingAverage = 26.0040

fsg = smoothdata(fNoisy,'sgolay',25);
snrSavitskyGolay = -20*log10(norm(abs(fClean-fsg))/norm(fClean))
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snrSavitskyGolay = 28.8932

You achieve superior results denoising with the sym4 wavelet.

See Also
Functions
wdenoise | wdenoise2

Apps
Wavelet Signal Denoiser

More About
• “Wavelet Denoising” on page 6-18
• “Smoothing Nonuniformly Sampled Data” on page 12-41
• “Translation Invariant Wavelet Denoising with Cycle Spinning” on page 6-36
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Translation Invariant Wavelet Denoising with Cycle Spinning
Cycle spinning compensates for the lack of shift invariance in the critically-sampled wavelet
transform by averaging over denoised cyclically-shifted versions of the signal or image. The
appropriate inverse circulant shift operator is applied to the denoised signal/image and the results
are averaged together to obtain the final denoised signal/image.

There are N unique cyclically-shifted versions of a signal of length, N. For an M-by-N image, there are
MN versions. This makes using all possible shifted versions computationally prohibitive. However, in
practice, good results can be obtained by using a small subset of the possible circular shifts.

The following example shows how you use wdenoise and circshift to denoise a 1-D signal using
cycle spinning. For denoising grayscale and RGB images, wdenoise2 supports cycle spinning.

1-D Cycle Spinning
This example shows how to denoise a 1-D signal using cycle spinning and the shift-variant orthogonal
nonredundant wavelet transform. The example compares the results of the two denoising methods.

Create a noisy 1-D bumps signal with a signal-to-noise ratio of 6. The signal-to-noise ratio is defined

as 
N | | X | | 2

2
σ  where N is the length of the signal, | | X | | 2

2 is the squared L2 norm, and σ2 is the
variance of the noise.

rng default
[X,XN] = wnoise('bumps',10,sqrt(6));
subplot(2,1,1)
plot(X)
title('Original Signal')
subplot(2,1,2)
plot(XN)
title('Noisy Signal')
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Denoise the signal using cycle spinning with 15 shifts, 7 to the left and 7 to the right, including the
zero-shifted signal. Use wdenoise with default settings. By default, wdenoise uses Daubechies'
least-asymmetric wavelet with four vanishing moments, sym4. Denoising is down to the minimum of
floor(log2(N)) and wmaxlev(N,'sym4') where N is the number of samples in the data.

ydenoise = zeros(length(XN),15);
for nn = -7:7
    yshift = circshift(XN,[0 nn]);
    [yd,cyd] = wdenoise(yshift);
    ydenoise(:,nn+8) = circshift(yd,[0, -nn]);
end
ydenoise = mean(ydenoise,2);

Denoise the signal using wdenoise. Compare with the cycle spinning results.

xd = wdenoise(XN);
subplot(2,1,1)
plot(ydenoise,'b','linewidth',2)
hold on
plot(X,'r')
axis([1 1024 -10 10])
legend('Denoised Signal','Original Signal','Location','SouthEast')
ylabel('Amplitude')
title('Cycle Spinning Denoising')
hold off
subplot(2,1,2)
plot(xd,'b','linewidth',2)
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hold on
plot(X,'r')
axis([1 1024 -10 10])
legend('Denoised Signal','Original Signal','Location','SouthEast')
xlabel('Sample')
ylabel('Amplitude')
title('Standard Orthogonal Denoising')
hold off

absDiffDWT = norm(X-xd,2)

absDiffDWT = 12.4248

absDiffCycleSpin = norm(X-ydenoise',2)

absDiffCycleSpin = 10.6124

Cycle spinning with only 15 shifts has reduced the approximation error.

See Also
Functions
wdenoise | wdenoise2

Apps
Wavelet Signal Denoiser
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1-D Adaptive Thresholding of Wavelet Coefficients
This section takes you through the features of local thresholding of wavelet coefficients for 1-D
signals or data. This capability is available through Wavelet Analyzer app:

• Wavelet Denoising 1-D
• Wavelet Compression 1-D
• SWT Denoising 1-D
• Regression Estimation 1-D
• Density Estimation 1-D

This tool allows you to define, level by level, time-dependent (x-axis-dependent) thresholds, and then
increase the capability of the denoising strategies handling nonstationary variance noise. More
precisely, the model assumes that the observation is equal to the interesting signal superimposed on
noise. The noise variance can vary with time. There are several different variance values on several
time intervals. The values as well as the intervals are unknown. This section will use one of Wavelet
Analyzer app tools (SWT Denoising 1-D) to illustrate this capability. The behavior of all the above-
mentioned tools is similar.

1-D Local Thresholding Using the Wavelet Analyzer App
1 From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Analyzer appears.

Click the SWT Denoising 1-D menu item.

The discrete stationary wavelet transform denoising tool for 1-D signals appears.
2 Load data.

At the MATLAB command prompt, type
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load nblocr1;

In the SWT Denoising 1-D tool, select File > Import from Workspace. When the Import
from Workspace dialog box appears, select the nblocr1 variable. Click OK to import the noisy
blocks signal with two change points in the noise variance located at positions 200 and 600.

3 Perform signal decomposition.

Select the db1 wavelet from the Wavelet menu and select 5 from the Level menu, and then click
the Decompose Signal button. After a pause for computation, the tool displays the stationary
wavelet approximation and detail coefficients of the decomposition.

Accept the defaults of Fixed form soft thresholding and Unscaled white noise. Click the
Denoise button.

The result is quite satisfactory, but seems to be oversmoothed when the signal is irregular.

Select hard for the thresholding mode instead of soft, and then click the Denoise button.
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The result is not satisfactory. The denoised signal remains noisy before position 200 and after
position 700. This illustrates the limits of the classical denoising strategies. In addition, the
residuals obtained during the last trials clearly suggest to try a local thresholding strategy.

4 Generate interval-dependent thresholds.

Click the Int. dependent threshold Settings button located at the bottom of the thresholding
method frame. A new window titled Int. Dependent Threshold Settings for figure ... appears.
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Click the Generate button. After a pause for computation, the tool displays the default intervals
associated with adapted thresholds.

Three intervals are proposed. Since the variances for the three intervals are very different, the
optimization program easily detects the correct structure. Nevertheless, you can visualize the
intervals proposed for a number of intervals from 1 to 6 using the Select Number of Intervals
menu (which replaces the Generate button). Using the default intervals automatically
propagates the interval delimiters and associated thresholds to all levels.

Denoise with Interval-Dependent Thresholds

Click the Close button in the Int. Dependent Threshold Settings for ... window. When the Update
thresholds dialog box appears, click Yes. The SWT Denoising 1-D main window is updated. The
sliders located to the right of the window control the level and interval dependent thresholds. For a
given interval, the threshold is indicated by yellow dotted lines running horizontally through the
graphs on the left of the window. The red dotted lines running vertically through the graphs indicate
the interval delimiters. Next click the Denoise button.
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Modifying Interval Dependent Thresholds

The thresholds can be increased to keep only the highest values of the wavelet coefficients at each
level. Do this by dragging the yellow lines directly on the graphs on the left of the window, or using
the View Axes button (located at the bottom of the screen near the Close button), which allows you
to see each axis in full size. Another way is to edit the thresholds by selecting the interval number
located near the sliders and typing the desired value.

Note that you can also change the interval limits by holding down the left mouse button over the
vertical dotted red lines, and dragging them.

You can also define your own interval dependent strategy. Click the Int. dependent threshold
settings button. The Int. Dependent Threshold Settings for ... window appears again. We shall
explore this window for a little while. Click the Delete button, so that the interval delimiters
disappear. Double click the left mouse button to define new interval delimiters; for example at
positions 300 and 500 and adjust the thresholds manually. Each level must be considered separately
using the Level menu for adjusting the thresholds. The current interval delimiters can be propagated
to all levels by clicking the Propagate button. So click the Propagate button. Adjust the thresholds
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for each level, one by one. At the end, click the Close button of the Int. Dependent Threshold
settings for ... window. When the Update thresholds dialog box appears, click Yes. Then click the
denoise button.

Note that

• By double-clicking again on an interval delimiter with the left mouse button, you delete it.
• You can move the interval delimiters (vertical red dotted lines) and the threshold levels (horizontal

yellow dotted lines) by holding down the left mouse button over these lines and dragging them.
• The maximum number of interval delimiters at each level is 10.

Examples of Denoising with Interval Dependent Thresholds.

From the File menu, choose the Example Analysis > Noisy Signals - Interval Dependent Noise
Variance > option. From the drop down men, choose with haar at level 4 ---> Elec.
consumption — 3 intervals. The proposed items contain, in addition to the usual information,
the “true” number of intervals. You can then experiment with various signals for which local
thresholding is needed.

Importing and Exporting Information from the Wavelet Analyzer App
The tool lets you save the denoised signal to disk. The toolbox creates a MAT-file in the current folder
with a name you choose.

To save the denoised signal from the present denoising process, use the menu option File > Save
denoised Signal. A dialog box appears that lets you specify a folder and filename for storing the
signal. Type the name dnelec. After saving the signal data to the file dnelec.mat, load the variables
into your workspace:
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load dnelec  
whos

Name Size Bytes Class
dnelec 1x2000 16000 double array
thrParams 1x4 656 cell array
wname 1x4 8 char array

The denoised signal is given by dnelec. In addition, the parameters of the denoising process are
given by the wavelet name contained in wname:

wname

wname =  
      haar

and the level dependent thresholds contained in thrParams, which is a cell array of length 4 (the
level of the decomposition). For i from 1 to 4, thrParams{i} is an array nbintx3 (where nbint is
the number of intervals, here 3), and each row contains the lower and upper bounds of the interval of
thresholding and the threshold value. For example, for level 1,

thrParams{1}
ans = 
    1.0e+03 * 

    0.0010 0.0980 0.0060 
    0.0980 1.1240 0.0204
    1.1240 2.0000 0.0049
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Multivariate Wavelet Denoising
This section demonstrates the features of multivariate denoising provided in the Wavelet Toolbox
software. The toolbox includes the wmulden function and a Wavelet Analyzer app . This section also
describes the command-line and app methods and includes information about transferring signal and
parameter information between the disk and the app.

This multivariate wavelet denoising problem deals with models of the form X(t) = F(t) + e(t), where
the observation X is p-dimensional, F is the deterministic signal to be recovered, and e is a spatially
correlated noise signal. This kind of model is well suited for situations for which such additive,
spatially correlated noise is realistic.

Multivariate Wavelet Denoising — Command Line
This example uses noisy test signals. In this section, you will

• Load a multivariate signal.
• Display the original and observed signals.
• Remove noise by a simple multivariate thresholding after a change of basis.
• Display the original and denoised signals.
• Improve the obtained result by retaining less principal components.
• Display the number of retained principal components.
• Display the estimated noise covariance matrix.

1 Load a multivariate signal by typing the following at the MATLAB prompt:

load ex4mwden 
whos

Name Size Bytes Class
covar 4x4 128 double array
x 1024x4 32768 double array
x_orig 1024x4 32768 double array

Usually, only the matrix of data x is available. Here, we also have the true noise covariance
matrix (covar) and the original signals (x_orig). These signals are noisy versions of simple
combinations of the two original signals. The first one is “Blocks” which is irregular, and the
second is “HeavySine,” which is regular except around time 750. The other two signals are the
sum and the difference of the two original signals. Multivariate Gaussian white noise exhibiting
strong spatial correlation is added to the resulting four signals, which leads to the observed data
stored in x.

2 Display the original and observed signals by typing

kp = 0; 
for i = 1:4  
    subplot(4,2,kp+1), plot(x_orig(:,i)); axis tight;
    title(['Original signal ',num2str(i)]) 
    subplot(4,2,kp+2), plot(x(:,i)); axis tight;
    title(['Observed signal ',num2str(i)])
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    kp = kp + 2; 
end

The true noise covariance matrix is given by

covar

covar =
    1.0000    0.8000    0.6000    0.7000
    0.8000    1.0000    0.5000    0.6000
    0.6000    0.5000    1.0000    0.7000
    0.7000    0.6000    0.7000    1.0000

3 Remove noise by simple multivariate thresholding.

The denoising strategy combines univariate wavelet denoising in the basis where the estimated
noise covariance matrix is diagonal with noncentered Principal Component Analysis (PCA) on
approximations in the wavelet domain or with final PCA.

First, perform univariate denoising by typing the following to set the denoising parameters:

level = 5; 
wname = 'sym4'; 
tptr  = 'sqtwolog'; 
sorh  = 's';

Then, set the PCA parameters by retaining all the principal components:

npc_app = 4; 
npc_fin = 4;
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Finally, perform multivariate denoising by typing
x_den = wmulden(x, level, wname, npc_app, npc_fin, tptr, sorh);

4 Display the original and denoised signals by typing

kp = 0; 
for i = 1:4   
    subplot(4,3,kp+1), plot(x_orig(:,i)); 
    set(gca,'xtick',[]); axis tight;
    title(['Original signal ',num2str(i)])
    subplot(4,3,kp+2), plot(x(:,i)); set(gca,'xtick',[]);
    axis tight; 
    title(['Observed signal ',num2str(i)]) 
    subplot(4,3,kp+3), plot(x_den(:,i)); set(gca,'xtick',[]);
    axis tight;  
    title(['denoised signal ',num2str(i)]) 
    kp = kp + 3;
end

5 Improve the first result by retaining fewer principal components.

The results are satisfactory. Focusing on the two first signals, note that they are correctly
recovered, but the result can be improved by taking advantage of the relationships between the
signals, leading to an additional denoising effect.

To automatically select the numbers of retained principal components by Kaiser's rule (which
keeps the components associated with eigenvalues exceeding the mean of all eigenvalues), type

npc_app = 'kais'; 
npc_fin = 'kais';
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Perform multivariate denoising again by typing

[x_den, npc, nestco] = wmulden(x, level, wname, npc_app, ...  
     npc_fin, tptr, sorh);

6 Display the number of retained principal components.

The second output argument gives the numbers of retained principal components for PCA for
approximations and for final PCA.

npc

npc = 
    2     2

As expected, since the signals are combinations of two initial ones, Kaiser's rule automatically
detects that only two principal components are of interest.

7 Display the estimated noise covariance matrix.

The third output argument contains the estimated noise covariance matrix:

nestco

nestco = 
    1.0784    0.8333    0.6878    0.8141
    0.8333    1.0025    0.5275    0.6814
    0.6878    0.5275    1.0501    0.7734
    0.8141    0.6814    0.7734    1.0967

As you can see by comparing with the true matrix covar given previously, the estimation is
satisfactory.

8 Display the original and final denoised signals by typing

kp = 0; 
for i = 1:4   
    subplot(4,3,kp+1), plot(x_orig(:,i)); 
    set(gca,'xtick',[]); axis tight;  
    title(['Original signal ',num2str(i)]); set(gca,'xtick',[]);
    axis tight; 
    subplot(4,3,kp+2), plot(x(:,i)); set(gca,'xtick',[]);
    axis tight; 
    title(['Observed signal ',num2str(i)]) 
    subplot(4,3,kp+3), plot(x_den(:,i)); set(gca,'xtick',[]);  
    axis tight;
    title(['denoised signal ',num2str(i)]) 
    kp = kp + 3;
end
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The results are better than those previously obtained. The first signal, which is irregular, is still
correctly recovered, while the second signal, which is more regular, is denoised better after this
second stage of PCA.

Multivariate Wavelet Denoising Using the Wavelet Analyzer App
This section explores a denoising strategy for multivariate signals using the Wavelet Analyzer app.

1 Start the Multivariate Denoising Tool by first opening the Wavelet Analyzer app. Type
waveletAnalyzer at the command line.

2 Click Multivariate Denoising to open the Multivariate Denoising portion of the app.
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3 Load data.

At the MATLAB command prompt, type

load ex4mwden

In the Multivariate Denoising tool, select File > Import from Workspace. When the Import
from Workspace dialog box appears, select the x variable. Click OK to import the noisy
multivariate signal. The signal is a matrix containing four columns, where each column is a signal
to be denoised.

These signals are noisy versions from simple combinations of the two original signals. The first
one is “Blocks” which is irregular and the second is “HeavySine” which is regular except around
time 750. The other two signals are the sum and the difference between the original signals.
Multivariate Gaussian white noise exhibiting strong spatial correlation is added to the resulting
four signals.

The following example illustrates the two different aspects of the proposed denoising method.
First, perform a convenient change of basis to cope with spatial correlation and denoise in the
new basis. Then, use PCA to take advantage of the relationships between the signals, leading to
an additional denoising effect.

4 Perform a wavelet decomposition and diagonalize the noise covariance matrix.

Use the displayed default values for the Wavelet, the DWT Extension Mode, and the
decomposition Level, and then click Decompose and Diagonalize. The tool displays the
wavelet approximation and detail coefficients of the decomposition of each signal in the original
basis.

Select Noise Adapted Basis to display the signals and their coefficients in the noise-adapted
basis.
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To see more information about this new basis, click More on Noise Adapted Basis. A new
figure displays the robust noise covariance estimate matrix and the corresponding eigenvectors
and eigenvalues.

Eigenvectors define the change of basis, and eigenvalues are the variances of uncorrelated
noises in the new basis.

The multivariate denoising method proposed below is interesting if the noise covariance matrix is
far from diagonal exhibiting spatial correlation, which, in this example, is the case.

5 denoise the multivariate signal.

A number of options are available for fine-tuning the denoising algorithm. However, we will use
the defaults: fixed form soft thresholding, scaled white noise model, and the proposed numbers of
retained principal components. In this case, the default values for PCA lead to retaining all the
components.

Select Original Basis to return to the original basis and then click Denoise.
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The results are satisfactory. Both of the two first signals are correctly recovered, but they can be
improved by getting more information about the principal components. Click More on Principal
Components.

A new figure displays information to select the numbers of components to keep for the PCA of
approximations and for the final PCA after getting back to the original basis. You can see the
percentages of variability explained by each principal component and the corresponding cumulative
plot. Here, it is clear that only two principal components are of interest.

Close the More on Principal Components window. Select 2 as the Nb. of PC for APP. Select 2 as
the Nb. of PC for final PCA, and then click denoise.

The results are better than those previously obtained. The first signal, which is irregular, is still
correctly recovered. The second signal, which is more regular, is denoised better after this second
stage of PCA. You can get more information by clicking Residuals.

Importing and Exporting from the Wavelet Analyzer App
The tool lets you save denoised signals to disk by creating a MAT-file in the current folder with a
name of your choice.

To save the signal denoised in the previous section,

1 Select File > Save denoised Signals.
2 Select Save denoised Signals and Parameters. A dialog box appears that lets you specify a

folder and filename for storing the signal.
3 Type the name s_ex4mwden and click OK to save the data.
4 Load the variables into your workspace:

load s_ex4mwdent
whos
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Name Size Bytes Class
DEN_Params 1x1 430 struct array
PCA_Params 1x1 1536 struct array
x 1024x4 32768 struct array

The denoised signals are in matrix x. The parameters (PCA_Params and DEN_Params) of the two-
stage denoising process are also available.

• PCA_Params are the change of basis and PCA parameters:

PCA_Params

PCA_Params =  
    NEST: {[4x4 double]  [4x1 double]  [4x4 double]}
     APP: {[4x4 double]  [4x1 double]  [2]}
     FIN: {[4x4 double]  [4x1 double]  [2]}

PCA_Params.NEST{1} contains the change of basis matrix. PCA_Params.NEST{2} contains the
eigenvalues, and PCA_Params.NEST{3} is the estimated noise covariance matrix.

PCA_Params.APP{1} contains the change of basis matrix, PCA_Params.APP{2} contains the
eigenvalues, and PCA_Params.APP{3} is the number of retained principal components for
approximations.

The same structure is used for PCA_Params.FIN for the final PCA.

• DEN_Params are the denoising parameters in the diagonal basis:

DEN_Params

DEN_Params =   
     thrVAL: [4.8445 2.0024 1.1536 1.3957 0] 
    thrMETH: 'sqtwolog' 
    thrTYPE: 's'

The thresholds are encoded in thrVAL. For j from 1 to 5, thrVAL(j) contains the value used to
threshold the detail coefficients at level j. The thresholding method is given by thrMETH and the
thresholding mode is given by thrTYPE.
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Wavelet Multiscale Principal Components Analysis
This section demonstrates the features of multiscale principal components analysis provided in the
Wavelet Toolbox software. The toolbox includes the wmspca function and a Wavelet Analyzer app.
This section describes the command-line and app methods, and information about transferring signal
and parameter information between the disk and the app.

The aim of multiscale PCA is to reconstruct, starting from a multivariate signal and using a simple
representation at each resolution level, a simplified multivariate signal. The multiscale principal
components generalizes the normal PCA of a multivariate signal represented as a matrix by
performing a PCA on the matrices of details of different levels simultaneously. A PCA is also
performed on the coarser approximation coefficients matrix in the wavelet domain as well as on the
final reconstructed matrix. By selecting the numbers of retained principal components, interesting
simplified signals can be reconstructed.

Since you can perform multiscale PCA either from the command line or using the app, this section
has subsections covering each method.

Multiscale Principal Components Analysis — Command Line
This example uses noisy test signals. In this section, you will:

• Load a multivariate signal.
• Perform a simple multiscale PCA.
• Display the original and simplified signals.
• Improve the obtained result by retaining less principal components.

1 Load a multivariate signal by typing at the MATLAB prompt:

load ex4mwden  
whos

Name Size Bytes Class
covar 4x4 128 double array
x 1024x4 32768 double array
x_orig 1024x4 32768 double array

The data stored in matrix x comes from two test signals, Blocks and HeavySine, and from their
sum and difference, to which multivariate Gaussian white noise has been added.

2 Perform a simple multiscale PCA.

The multiscale PCA combines noncentered PCA on approximations and details in the wavelet
domain and a final PCA. At each level, the most significant principal components are selected.

First, set the wavelet parameters:

level= 5; 
wname = 'sym4';

Then, automatically select the number of retained principal components using Kaiser's rule by
typing
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npc = 'kais';

Finally, perform multiscale PCA:

[x_sim, qual, npc] = wmspca(x ,level, wname, npc); 
3 Display the original and simplified signals:

kp = 0; 
for i = 1:4  
    subplot(4,2,kp+1), plot(x (:,i)); set(gca,'xtick',[]);
    axis tight; 
    title(['Original signal ',num2str(i)]) 
    subplot(4,2,kp+2), plot(x_sim(:,i)); set(gca,'xtick',[]);
    axis tight; 
    title(['Simplified signal ',num2str(i)]) 
    kp = kp + 2;
end

The results from a compression perspective are good. The percentages reflecting the quality of
column reconstructions given by the relative mean square errors are close to 100%.

qual

qual =  

   98.0545   93.2807   97.1172   98.8603
4 Improve the first result by retaining fewer principal components.

The results can be improved by suppressing noise, because the details at levels 1 to 3 are
composed essentially of noise with small contributions from the signal. Removing the noise leads
to a crude, but large, denoising effect.

The output argument npc contains the numbers of retained principal components selected by
Kaiser's rule:

npc  

npc =   
     1     1     1     1     1     2     2
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For d from 1 to 5, npc(d) is the number of retained noncentered principal components (PCs) for
details at level d. The number of retained noncentered PCs for approximations at level 5 is
npc(6), and npc(7) is the number of retained PCs for final PCA after wavelet reconstruction. As
expected, the rule keeps two principal components, both for the PCA approximations and the
final PCA, but one principal component is kept for details at each level.

To suppress the details at levels 1 to 3, update the npc argument as follows:

npc(1:3) = zeros(1,3);

npc  

npc = 
0     0     0     1     1     2     2

Then, perform multiscale PCA again:

[x_sim, qual, npc] = wmspca(x, level, wname, npc); 
5 Display the original and final simplified signals:

kp = 0; 
for i = 1:4  
    subplot(4,2,kp+1), plot(x (:,i)); set(gca,'xtick',[]);
    axis tight; 
    title(['Original signal ',num2str(i)]); set(gca,'xtick',[]);
    axis tight;  
    subplot(4,2,kp+2), plot(x_sim(:,i)); set(gca,'xtick',[]);
    axis tight;  
    title(['Simplified signal ',num2str(i)]) 
    kp = kp + 2;
end

As shown, the results are improved.
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Multiscale Principal Components Analysis Using the Wavelet Analyzer
App
This section explores multiscale PCA using the Wavelet Analyzer app.

1 Open the Wavelet Analyzer app by typing waveletAnalyzer at the command line.

2 Click Multiscale Princ. Comp. Analysis to open the Multiscale Principal Components Analysis
tool in the app.

3 Load data.

At the MATLAB command prompt, type

load ex4mwden

In the Multiscale Princ. Comp. Analysis tool, select File > Import from Workspace. When
the Import from Workspace dialog box appears, select the x variable. Click OK to import the
multivariate signal. The signal is a matrix containing four columns, where each column is a signal
to be simplified.
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These signals are noisy versions from simple combinations of the two original signals, Blocks and
HeavySine and their sum and difference, each with added multivariate Gaussian white noise.

4 Perform a wavelet decomposition and diagonalize each coefficients matrix.

Use the default values for the Wavelet, the DWT Extension Mode, and the decomposition
Level, and then click Decompose and Diagonalize. The tool displays the wavelet
approximation and detail coefficients of the decomposition of each signal in the original basis.

To get more information about the new bases allowed for performing a PCA for each scale, click
More on Adapted Basis. A new figure displays the corresponding eigenvectors and eigenvalues
for the matrix of the detail coefficients at level 1.

You can change the level or select the coarser approximations or the reconstructed matrix to
investigate the different bases. When you finish, click Close.

5 Perform a simple multiscale PCA.
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The initial values for PCA lead to retaining all the components. Select Kaiser from the Provide
default using drop-down list, and click Apply.

The results are good from a compression perspective.
6 Improve the obtained result by retaining fewer principal components.

The results can be improved by suppressing the noise, because the details at levels 1 to 3 are
composed essentially of noise with small contributions from the signal, as you can see by careful
inspection of the detail coefficients. Removing the noise leads to a crude, but large, denoising
effect.

For D1, D2 and D3, select 0 as the Nb. of non-centered PC and click Apply.

The results are better than those previously obtained. The first signal, which is irregular, is still
correctly recovered, while the second signal, which is more regular, is denoised better after this
second stage of PCA. You can get more information by clicking Residuals.

Importing and Exporting from the Wavelet Analyzer App
The Multiscale Principal Components Analysis tool lets you save the simplified signals to disk. The
toolbox creates a MAT-file in the current folder with a name of your choice.

To save the simplified signals from the previous section:
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1 Select File > Save Simplified Signals.
2 Select Save Simplified Signals and Parameters. A dialog box appears that lets you specify a

folder and file name for storing the signal.
3 Type the name s_ex4mwden and click OK to save the data.
4 Load the variables into your workspace:

load s_ex4mwden 
whos

Name Size Bytes Class
PCA_Params 1x7 2628 struct array
x 1024x4 32768 double array

The simplified signals are in matrix x. The parameters of multiscale PCA are available in
PCA_Params:

PCA_Params

PCA_Params =  
1x7 struct array with fields:
    pc
    variances
    npc

PCA_Params is a structure array of length d+2 (here, the maximum decomposition level d=5) such
that PCA_Params(d).pc is the matrix of principal components. The columns are stored in
descending order of the variances. PCA_Params(d).variances is the principal component
variances vector, and PCA_Params(d).npc is the vector of selected numbers of retained principal
components.

 Wavelet Multiscale Principal Components Analysis

6-61



Wavelet Data Compression
The compression features of a given wavelet basis are primarily linked to the relative scarceness of
the wavelet domain representation for the signal. The notion behind compression is based on the
concept that the regular signal component can be accurately approximated using the following
elements: a small number of approximation coefficients (at a suitably chosen level) and some of the
detail coefficients.

Like denoising, the compression procedure contains three steps:

1 Decompose

Choose a wavelet, choose a level N. Compute the wavelet decomposition of the signal s at level
N.

2 Threshold detail coefficients

For each level from 1 to N, a threshold is selected and hard thresholding is applied to the detail
coefficients.

3 Reconstruct

Compute wavelet reconstruction using the original approximation coefficients of level N and the
modified detail coefficients of levels from 1 to N.

The difference of the denoising procedure is found in step 2. There are two compression approaches
available. The first consists of taking the wavelet expansion of the signal and keeping the largest
absolute value coefficients. In this case, you can set a global threshold, a compression performance,
or a relative square norm recovery performance.

Thus, only a single parameter needs to be selected. The second approach consists of applying visually
determined level-dependent thresholds.

Let us examine two real-life examples of compression using global thresholding, for a given and
unoptimized wavelet choice, to produce a nearly complete square norm recovery for a signal (see
“Signal Compression” on page 6-63) and for an image (see “Image Compression” on page 6-64).

% Load electrical signal and select a part. 
load leleccum; indx = 2600:3100; 
x = leleccum(indx);
% Perform wavelet decomposition of the signal. 
n = 3; w = 'db3'; 
[c,l] = wavedec(x,n,w);
% Compress using a fixed threshold. 
thr = 35; 
keepapp = 1;
[xd,cxd,lxd,perf0,perfl2] = ...
   wdencmp('gbl',c,l,w,n,thr,'h',keepapp);
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Signal Compression

The result is quite satisfactory, not only because of the norm recovery criterion, but also on a visual
perception point of view. The reconstruction uses only 15% of the coefficients.

% Load original image. 
load woman; x = X(100:200,100:200); 
nbc = size(map,1);

% Wavelet decomposition of x. 
n = 5; w = 'sym2'; [c,l] = wavedec2(x,n,w);

% Wavelet coefficients thresholding. 
thr = 20; 
keepapp = 1;
[xd,cxd,lxd,perf0,perfl2] = ...
                 wdencmp('gbl',c,l,w,n,thr,'h',keepapp);
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Image Compression

If the wavelet representation is too dense, similar strategies can be used in the wavelet packet
framework to obtain a sparser representation. You can then determine the best decomposition with
respect to a suitably selected entropy-like criterion, which corresponds to the selected purpose
(denoising or compression).

Compression Scores
When compressing using orthogonal wavelets, the Retained energy in percentage is defined by

100 * vector‐norm(coeffs of the current decomposition, 2) 2

vector‐norm(original signal, 2) 2

When compressing using biorthogonal wavelets, the previous definition is not convenient. We use
instead the Energy ratio in percentage defined by

100 * vector‐norm(compressed signal, 2) 2

vector‐norm(original signal, 2) 2

and as a tuning parameter the Norm cfs recovery defined by

100 * vector‐norm(coeffs of the current decomposition, 2) 2

vector‐norm(coeffs of the original decomposition, 2) 2

The Number of zeros in percentage is defined by

100 * (number of zeros of the current decomposition)
(number of coefficients)
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Wavelet Compression for Images
In “Wavelet Data Compression” on page 6-62, we addressed the aspects specifically related to
compression using wavelets. However, in addition to the algorithms related to wavelets like DWT and
IDWT, it is necessary to use other ingredients concerning the quantization mode and the coding type
in order to deal with true compression.

This more complex process can be represented by the following figure.

Effects of Quantization
Let us show the effects of quantization on the visualization of the fingerprint image. This indexed
image corresponds to a matrix of integers ranging between 0 and 255. Through quantization we can
decrease the number of colors which is here equal to 256.

The next figure illustrates how to decrease from 256 to 16 colors by working on the values of the
original image.
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We can see on this figure:

• At the top

• On the left: the original image
• On the right: the corresponding histogram of values

• At the bottom

• On the left: the reconstructed image
• On the right: the corresponding histogram of quantized values

This quantization leads to a compression of the image. Indeed, with a fixed length binary code, 8 bits
per pixel are needed to code 256 colors and 4 bits per pixel to code 16 colors. We notice that the
image obtained after quantization is of good quality. However, within the framework of true
compression, quantization is not used on the original image, but on its wavelet decomposition.

Let us decompose the fingerprint image at level 4 with the Haar wavelet. The histogram of wavelet
coefficients and the quantized histogram are normalized so that the values vary between –1 and +1.
The 15 intervals of quantization do not have the same length.

The next figure illustrates how to decrease information by binning on the wavelet coefficient values of
the original image.
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We can see on this figure:

• At the top

• On left: the original image
• On the right: the corresponding histogram (central part) of coefficient values

• At the bottom

• On the left: the reconstructed image
• On the right: the corresponding histogram (central part) of quantized coefficient values

The key point is that the histogram of the quantized coefficients is massively concentrated in the class
centered in 0. Let us note that yet again the image obtained is of good quality.

True Compression Methods
The basic ideas presented above are used by three methods which cascade in a single step,
coefficient thresholding (global or by level), and encoding by quantization. Fixed or Huffman coding
can be used for the quantization depending on the method.

The following table summarizes these methods, often called Coefficients Thresholding Methods
(CTM), and gives the MATLAB name used by the true compression tools for each of them.

MATLAB Name Compression Method Name
'gbl_mmc_f' Global thresholding of coefficients and fixed encoding
'gbl_mmc_h' Global thresholding of coefficients and Huffman encoding
'lvl_mmc' Subband thresholding of coefficients and Huffman encoding

More sophisticated methods are available which combine wavelet decomposition and quantization.
This is the basic principle of progressive methods.

On one hand, progressivity makes it possible during decoding to obtain an image whose resolution
increases gradually. In addition, it is possible to obtain a set of compression ratios based on the
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length of the preserved code. This compression usually involves a loss of information, but this kind of
algorithm enables also lossless compression.

Such methods are based on three ideas. The two first, already mentioned, are the use of wavelet
decomposition to ensure sparsity (a large number of zero coefficients) and classical encoding
methods. The third idea, decisive for the use of wavelets in image compression, is to exploit
fundamentally the tree structure of the wavelet decomposition. Certain codes developed from 1993 to
2000 use this idea, in particular, the EZW coding algorithm introduced by Shapiro. See [Sha93] in
“References”.

EZW combines stepwise thresholding and progressive quantization, focusing on the more efficient
way to encode the image coefficients, in order to minimize the compression ratio. Two variants SPIHT
and STW (see the following table) are refined versions of the seminal EZW algorithm.

Following a slightly different objective, WDR (and the refinement ASWDR) focuses on the fact that in
general some portions of a given image require more refined coding leading to a better perceptual
result even if there is generally a small price to pay in terms of compression ratio.

A complete review of these progressive methods is in the Walker reference [Wal99] in “References”.

The following table summarizes these methods, often called Progressive Coefficients Significance
Methods (PCSM), and gives the MATLAB coded name used by the true compression tools for each of
them.

MATLAB Name Compression Method Name
'ezw' Embedded Zerotree Wavelet
'spiht' Set Partitioning In Hierarchical Trees
'stw' Spatial-orientation Tree Wavelet
'wdr' Wavelet Difference Reduction
'aswdr' Adaptively Scanned Wavelet Difference Reduction
'spiht_3d' Set Partitioning In Hierarchical Trees 3D for truecolor images

Quantitative and Perceptual Quality Measures
The following quantitative measurements and measures of perceptual quality are useful for analyzing
wavelet signals and images.

• M S E — Mean square error (MSE) is the squared norm of the difference between the data and
the signal or image approximation divided by the number of elements. The MSE is defined by:

MSE = 1
mn ∑i = 0

m = 1
∑

j = 0

n = 1
X(i, j)− Xc(i, j) 2

• Max Error — Maximum error is the maximum absolute squared deviation in the signal or image
approximation.

• L2-Norm Ratio — L2-norm ratio is the ratio of the squared L2-norm of the signal or image
approximation to the input signal or image. For images, the image is reshaped as a column vector
before taking the L2-norm

• P S N R — Peak signal-to-noise ratio (PSNR) is a measure of the peak error in decibels. PSNR is
meaningful only for data encoded in terms of bits per sample or bits per pixel. The higher the
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PSNR, the better the quality of the compressed or reconstructed image. Typical values for lossy
compression of an image are between 30 and 50 dB. When the PSNR is greater than 40 dB, then
the two images are indistinguishable. The PSNR is defined by:

PSNR = 10 ⋅ log10
2552

MSE

• B P P — Bits per pixel ratio (BPP) is the number of bits required to store one pixel of the image.
The BPP is the compression ratio multiplied by 8, assuming one byte per pixel (8 bits).

• Comp Ratio — Compression ratio is ratio of the number of elements in the compressed image
divided by the number of elements in the original image, expressed as a percentage.

More Information on True Compression
You can find examples illustrating command-line mode and app tools for true compression in “Wavelet
Compression for Images” on page 6-65 and the reference page for wcompress.

More information on the true compression for images and more precisely on the compression
methods is in [Wal99], [Sha93], [Sai96], [StrN96], and [Chr06]. See “References”.
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2-D Wavelet Compression
This section takes you through the features of wavelet 2-D true compression using the Wavelet
Toolbox software.

For more information on the compression methods see “Wavelet Compression for Images” on page 6-
65 in the Wavelet Toolbox User's Guide.

For more information on the main function available when using command-line mode, see the
wcompress reference pages.

Starting from a given image, the goal of the true compression is to minimize the length of the
sequence of bits needed to represent it, while preserving information of acceptable quality. Wavelets
contribute to effective solutions for this problem.

The complete chain of compression includes phases of quantization, coding and decoding in addition
of the wavelet processing itself.

The purpose of this section is to show how to compress and uncompress a grayscale or truecolor
image using various compression methods.

In this section, you'll learn to

• Compress using global thresholding and Huffman encoding
• Uncompress
• Compress using progressive methods
• Handle truecolor images

2-D Wavelet Compression Commands
Compression by Global Thresholding and Huffman Encoding

First load and display the grayscale image mask.

load mask; 
image(X) 
axis square; 
colormap(pink(255)) 
title('Original Image: mask')
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A synthetic performance of the compression is given by the compression ratio and the Bit-Per-Pixel
ratio which are equivalent.

The compression ratio CR means that the compressed image is stored using only CR% of the initial
storage size.

The Bit-Per-Pixel ratio BPP gives the number of bits used to store one pixel of the image.

For a grayscale image, the initial BPP is 8 while for a truecolor image the initial BPP is 24 because 8
bits are used to encode each of the three colors (RGB color space).

The challenge of compression methods is to find the best compromise between a weak compression
ratio and a good perceptual result.

Let us begin with a simple method cascading global coefficients thresholding and Huffman encoding.
We use the default wavelet bior4.4 and the default level which is the maximum possible level (see the
wmaxlev function) divided by 2.

The desired Bit-Per-Pixel ratio BPP is set to 0.5 and the compressed image will be stored in the file
named 'mask.wtc'.

meth = 'gbl_mmc_h'; % Method name 
option = 'c';         % 'c' stands for compression 
[CR,BPP] = wcompress(option,X,'mask.wtc',meth,'bpp',0.5)

CR =

  6.6925

BPP =

  0.5354

The achieved Bit-Per-Pixel ratio is actually about 0.53 (closed to the desired one) for a compression
ratio of 6.7%.
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Uncompression

Let us uncompress the image retrieved from the file 'mask.wtc' and compare it to the original
image.

option = 'u';  % 'u' stands for uncompression 
Xc = wcompress(option,'mask.wtc');
colormap(pink(255)) 
subplot(1,2,1); image(X); 
axis square; 
title('Original Image') 
subplot(1,2,2); image(Xc); 
axis square; 
title('Compressed Image') 
xlabel({['Compression Ratio: ' num2str(CR,'%1.2f %%')], ...
        ['BPP: ' num2str(BPP,'%3.2f')]})

Compression by Progressive Methods

Let us now illustrate the use of progressive methods starting with the well known EZW algorithm
using the Haar wavelet. The key parameter is the number of loops. Increasing it, leads to better
recovery but worse compression ratio.

meth = 'ezw';     % Method name 
wname  = 'haar';  % Wavelet name 
nbloop = 6;       % Number of loops 
[CR,BPP] = wcompress('c',X,'mask.wtc',meth, ...
                     'maxloop',nbloop,'wname',wname); 
Xc = wcompress('u','mask.wtc');
colormap(pink(255)) 
subplot(1,2,1); image(X); 
axis square; 
title('Original Image') 
subplot(1,2,2); image(Xc); 
axis square; title('Compressed Image - 6 steps') 
xlabel({['Compression Ratio: ' num2str(CR,'%1.2f %%')], ...
        ['BPP: ' num2str(BPP,'%3.2f')]}) 
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A too small number of steps (here 6) produces a very coarse compressed image. So let us examine a
little better result for 9 steps and a satisfactory result for 12 steps.

[CR,BPP]= wcompress('c',X,'mask.wtc',meth,'maxloop',9, ...
                    'wname','haar'); 
Xc = wcompress('u','mask.wtc'); 
colormap(pink(255))
subplot(1,2,1); image(Xc); 
axis square; title('Compressed Image - 9 steps') 
xlabel({['Compression Ratio: ' num2str(CR,'%1.2f %%')],...
        ['BPP: ' num2str(BPP,'%3.2f')]})  

[CR,BPP] = wcompress('c',X,'mask.wtc',meth,'maxloop',12, ...
                     'wname','haar'); 
Xc = wcompress('u','mask.wtc');
subplot(1,2,2); image(Xc); 
axis square; 
title('Compressed Image - 12 steps') 
xlabel({['Compression Ratio: ' num2str(CR,'%1.2f %%')],...
        ['BPP: ' num2str(BPP,'%3.2f')]}) 

As can be seen, the reached BPP ratio is about 0.92 when using 12 steps.

Let us try to improve it by using the wavelet bior4.4 instead of haar and looking at obtained results
for steps 12 and 11.

[CR,BPP] = wcompress('c',X,'mask.wtc','ezw','maxloop',12, ...
                     'wname','bior4.4'); 
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Xc = wcompress('u','mask.wtc'); 
colormap(pink(255))
subplot(1,2,1); image(Xc); 
axis square; 
title('Compressed Image - 12 steps - bior4.4') 
xlabel({['Compression Ratio: ' num2str(CR,'%1.2f %%')], ...
        ['BPP: ' num2str(BPP,'%3.2f')]})
[CR,BPP] = wcompress('c',X,'mask.wtc','ezw','maxloop',11, ...
                     'wname','bior4.4'); 
Xc = wcompress('u','mask.wtc');
subplot(1,2,2); image(Xc); 
axis square; 
title('Compressed Image - 11 steps - bior4.4') 
xlabel({['Compression Ratio: ' num2str(CR,'%1.2f %%')], ...
        ['BPP: ' num2str(BPP,'%3.2f')]}) 

Starting from the eleventh loop, the result can be considered satisfactory. The reached BPP ratio is
now about 0.35. It can even be slightly improved by using a more recent method: SPIHT (Set
Partitioning In Hierarchical Trees).

[CR,BPP] = wcompress('c',X,'mask.wtc','spiht','maxloop',12, ...
                     'wname','bior4.4'); 
Xc = wcompress('u','mask.wtc');
colormap(pink(255)) 
subplot(1,2,1); image(X); 
axis square; 
title('Original Image') 
subplot(1,2,2); image(Xc); 
axis square; 
title('Compressed Image - 12 steps - bior4.4') 
xlabel({['Compression Ratio: ' num2str(CR,'%1.2f %%')], ...
        ['BPP: ' num2str(BPP,'%3.2f')]}) 
[psnr,mse,maxerr,l2rat] = measerr(X,Xc)

delete('mask.wtc') 
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The final compression ratio (2.8%) and the Bit-Per-Pixel ratio (0.23) are very satisfactory. Let us recall
that the first ratio means that the compressed image is stored using only 2.8% of the initial storage
size.

Handling Truecolor Images

Finally, let us illustrate how to compress the wpeppers.jpg truecolor image. Truecolor images can
be compressed along the same scheme as the grayscale images by applying the same strategies to
each of the three color components.

The progressive compression method used is SPIHT (Set Partitioning In Hierarchical Trees) and the
number of encoding loops is set to 12.

X = imread('wpeppers.jpg'); 
[CR,BPP] = wcompress('c',X,'wpeppers.wtc','spiht','maxloop',12);
Xc = wcompress('u','wpeppers.wtc'); 
subplot(1,2,1); image(X); 
axis square; 
title('Original Image') 
subplot(1,2,2); image(Xc); 
axis square;
title('Compressed Image - 12 steps - bior4.4') 
xlabel({['Compression Ratio: ' num2str(CR,'%1.2f %%')], ... 
        ['BPP: ' num2str(BPP,'%3.2f')]})
delete('wpeppers.wtc')
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The compression ratio (1.65%) and the Bit-Per-Pixel ratio (0.4) are very satisfactory while maintaining
a good visual perception.

2-D Wavelet Compression using the Wavelet Analyzer App
In this section, we explore the different methods for 2-D true compression, using the Wavelet
Analyzer app.

1 Start the True Compression 2-D Tool.

From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Analyzer appears. Click the True Compression 2-D item. The true compression
tool for images appears.

2 Load the image.

At the MATLAB command prompt, type

load mask

In the True Compression 2-D tool, select File > Import Image from Workspace. When the
Import from Workspace dialog box appears, select the X variable. Click OK to import the data.
The image appears at the top left of the window together with the gray level histogram just
below.

3 Perform a Wavelet Decomposition.

Accept the default wavelet bior4.4 and select 4 from the Level menu which is the maximum
possible level divided by 2 and then click the Decompose button. After a pause for computation,
the tool displays the wavelet approximation and details coefficients of the decomposition for the
three directions, together with the histogram of the original coefficients.
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The peak of the bin containing zero illustrates the capability of wavelets to concentrate the image
energy into a few nonzero coefficients.

4 Try a simple method.

Begin with a simple method cascading global coefficients thresholding and Huffman encoding.

Choose the GBL_MMC_H option from the menu Compression method located at the top right
of the Compression Parameters frame. For more information on the compression methods, see
“Wavelet Compression for Images” on page 6-65 in the Wavelet Toolbox User's Guide.

Set the desired Bit-Per-Pixel ratio to 0.5.

Values of the other parameters are automatically updated. Note that these values are only
approximations of the true performances since the quantization step cannot be exactly predicted
without performing it. Click the Compress button.
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Synthetic performance is given by the compression ratio and the computed Bit-Per-Pixel (BPP).
This last one is actually about 0.53 (close to the desired one 0.5) for a compression ratio of 6.7%.

The compressed image, at the bottom left, can be compared with the original image.

The result is satisfactory but a better compromise between compression ratio and visual quality
can be obtained using more sophisticated true compression which combines the thresholding and
quantization steps.

5 Compress using a first progressive method: EZW.

Let us now illustrate the use of progressive methods starting with the well known EZW
algorithm. Let us start by selecting the wavelet haar from the Wavelet menu and select 8 from
the Level menu. Then click the Decompose button.
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Choose the EZW option from the menu Compression method. The key parameter is the
number of loops: increasing it leads to a better recovery but worse compression ratio. From the
Nb. Encoding Loops menu, set the number of encoding loops to 6, which is a small value. Click
the Compress button.

6 Refine the result by increasing the number of loops.

Too few steps produce a very coarse compressed image. So let us examine a little better result
for 9 steps. Set the number of encoding loops to 9 and click the Compress button.
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As can be seen, the result is better but not satisfactory, both by visual inspection and by
calculating the Peak Signal to Noise Ratio (PSNR) which is less than 30.
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Now try a large enough number of steps to get a satisfactory result. Set the number of encoding
loops to 12 and click the Compress button.
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The result is now acceptable. But for 12 steps, we attain a Bit-Per-Pixel ratio about 0.92.
7 Get better compression performance by changing the wavelet and selecting the best adapted

number of loops.

Let us try to improve the compression performance by changing the wavelet: select bior4.4
instead of haar and then click the Decompose button.

In order to select the number of loops, the Wavelet Analyzer app tool allows you to examine the
successive results obtained by this kind of stepwise procedure. Set the number of encoding loops
at a large value, for example 13, and click the Show Compression Steps button. Moreover you
could execute the procedure stepwise by clicking the Stepwise button.
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Then, click the Compress button. Thirteen progressively more finely compressed images appear,
and you can then select visually a convenient value for the number of loops. A satisfactory result
seems to be obtained after 11 loops. So, you can set the number of encoding loops to 11 and
click the Compress button.

The reached BPP ratio is now about 0.35 which is commonly considered a very satisfactory
result. Nevertheless, it can be slightly improved by using a more recent method SPIHT (Set
Partitioning In Hierarchical Trees).

8 Obtain a final compressed image by using a third method.

Choose the SPIHT option from the menu Compression method, set the number of encoding
loops to 12, and click the Compress button.

The final compression ratio and the Bit-Per-Pixel ratio are very satisfactory: 2.8% and 0.22. Let
us recall that the first ratio means that the compressed image is stored using only 2.8% of the
initial storage size.
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9 Handle truecolor images.

Finally, let us illustrate how to compress truecolor images. The truecolor images can be
compressed along the same scheme by applying the same strategies to each of the three-color
components.

From the File menu, choose the Load Image option and select the Matlab Supported Formats
item.

When the Load Image dialog box appears, select the MAT-file wpeppers.jpg which should
reside in the MATLAB folder toolbox/wavelet/wavelet.

Click the OK button. A window appears asking you if you want to consider the loaded image as a
truecolor one. Click the Yes button. Accept the defaults for wavelet and decomposition level
menus and then click the Decompose button.

Then, accept the default compression method SPIHT and set the number of encoding loops to
12. Click the Compress button.

The compression ratio and Bit-Per-Pixel (BPP) ratio are very satisfactory: 1.65% and 0.4 together
with a very good perceptual result.

10 Inspect the wavelet tree.

For both grayscale and truecolor images, more insight on the multiresolution structure of the
compressed image can be retrieved by clicking the Inspect Wavelet Trees button and then on
the various active menus available from the displayed tree.
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Importing and Exporting from the Wavelet Analyzer App
You can save the compressed image to disk in the current folder with a name of your choice.

The Wavelet Toolbox compression tools can create a file using either one of the Matlab Supported
Format types or a specific format which can be recognized by the extension of the file: wtc (Wavelet
Toolbox Compressed).

To save the above compressed image, use the menu option File > Save Compressed Image >
Wavelet Toolbox Compressed Image. A dialog box appears that lets you specify a folder and
filename for storing the image. Of course, the use of the wtc format requires you to uncompress the
stored image using the Wavelet Toolbox true compression tools.
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Univariate Wavelet Regression
This section takes you through the features of 1-D wavelet regression estimation using one of the
Wavelet Toolbox specialized tools. The toolbox provides a Wavelet Analyzer app to explore some
denoising schemes for equally or unequally sampled data.

For the examples in this section, switch the extension mode to symmetric padding, using the
command

dwtmode('sym')

Regression for Equally-Spaced Observations
1 Start the Regression Estimation 1-D Tool.

From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Analyzer appears.

Click the Regression Estimation 1-D menu item. The discrete wavelet analysis tool for 1-D
regression estimation appears.

2 Load data.

At the MATLAB command prompt, type

load blocregdata;

In the Regression Estimation 1-D tool, select File > Import from Workspace. When the
Import from Workspace dialog box appears, select the blocregdata data. Click OK to import
the data. The loaded data and processed data obtained after a binning are displayed.

3 Choose the processed data.

The default value for the number of bins is 256 for this example. Enter 64 in the Nb bins
(number of bins) edit box, or use the slider to adjust the value. The new binned data to be
processed appears.
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The binned data appears to be very smoothed. Select 1000 from the Nb bins edit and press
Enter or use the slider. The new data to be processed appears.

The binned data appears to be very close to the initial data, since noisbloc is of length 1024.
4 Perform a Wavelet Decomposition of the processed data.

Select the haar wavelet from the Wavelet menu and select 5 from the Level menu, and then
click the Decompose button. After a pause for computation, the tool displays the detail
coefficients of the decomposition.

5 Perform a regression estimation.

While a number of options are available for fine-tuning the estimation algorithm, we'll accept the
defaults of fixed form soft thresholding and unscaled white noise. The sliders located to the right
of the window control the level dependent thresholds, indicated by yellow dotted lines running
horizontally through the graphs on the left part of the window.

Continue by clicking the Estimate button.
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You can see that the process removed the noise and that the blocks are well reconstructed. The
regression estimate (in yellow) is the sum of the signals located below it: the approximation a5
and the reconstructed details after coefficient thresholding.

You can experiment with the various predefined thresholding strategies by selecting the
appropriate options from the menu located on the right part of the window or directly by
dragging the yellow horizontal lines with the left mouse button.

Let us now illustrate the regression estimation using the Wavelet Analyzer app for randomly or
irregularly spaced observations, focusing on the differences from the previous situation.

Regression for Randomly-Spaced Observations
1 From the File menu, choose the Load > Data for Stochastic Design Regression option. When

the Load data for Stochastic Design Regression dialog box appears, select the MAT-file
ex1nsto.mat, which should reside in the MATLAB folder toolbox/wavelet/wavelet. Click
the OK button. This short set of data (of size 500) is loaded into the Regression Estimation 1-D
-- Stochastic Design tool.

The loaded data denoted (X,Y), the histogram of X, and the processed data obtained after a
binning are displayed. The histogram is interesting, because the values of X are randomly
distributed. The binning step is essential since it transforms a problem of regression estimation
for irregularly spaced X data into a classical fixed design scheme for which fast wavelet
transform can be used.

2 Select the sym4 wavelet from the Wavelet menu, select 5 from the Level menu, and enter 125 in
the Nb bins edit box. Click the Decompose button. The tool displays the detail coefficients of
the decomposition.

3 From the Select thresholding method menu, select the item Penalize low and click the
Estimate button.
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4 Check Overlay Estimated Function to validate the fit of the original data.

Importing and Exporting Information from the Wavelet Analyzer App
Saving Function

This tool lets you save the estimated function to disk. The toolbox creates a MAT-file in the current
folder with a name you choose.

To save the estimated function from the present estimation, use the menu option File > Save
Estimated Function. A dialog box appears that lets you specify a folder and filename for storing the
function. Type the name fex1nsto. After saving the function data to the file fex1nsto.mat, load
the variables into your workspace:

load fex1nsto  
whos 

Name Size Bytes Class
thrParams 1x5 580 cell array
wname 1x4 8 char array
xdata 1x125 1000 double array
ydata 1x125 1000 double array

The estimated function is given by xdata and ydata. The length of these vectors is equal to the
number of bins you choose in step 2. In addition, the parameters of the estimation process are given
by the wavelet name contained in wname:

wname

wname =
    sym4
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and the level dependent thresholds contained in thrParams, which is a cell array of length 5 (the
level of the decomposition). For i from 1 to 5, thrParams{i} contains the lower and upper bounds
of the interval of thresholding and the threshold value (since interval dependent thresholds are
allowed). For more information, see “1-D Adaptive Thresholding of Wavelet Coefficients” on page 6-39
in the Wavelet Toolbox User's Guide.

For example, for level 1,

thrParams{1}

ans = 
    -0.4987 0.4997 1.0395

Loading Data

To load data for regression estimation, your data must be in the form of a structure array with exactly
two fields. The fields must be named xdata and ydata, and must be the same length.

For example, load the file containing the data considered in the previous example:

clear
load ex1nsto
whos 

Name Size Bytes Class
xdata 1x500 4000 double array
ydata 1x500 4000 double array

At the end of this section, turn back the extension mode to zero padding using the command

dwtmode('zpd')
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Matching Pursuit

• “Matching Pursuit Algorithms” on page 7-2
• “Matching Pursuit” on page 7-6
• “Matching Pursuit Using Wavelet Analyzer App” on page 7-21

7



Matching Pursuit Algorithms
In this section...
“Redundant Dictionaries and Sparsity” on page 7-2
“Nonlinear Approximation in Dictionaries” on page 7-2
“Basic Matching Pursuit” on page 7-3
“Orthogonal Matching Pursuit” on page 7-5
“Weak Orthogonal Matching Pursuit” on page 7-5

Redundant Dictionaries and Sparsity
Representing a signal in a particular basis involves finding the unique set of expansion coefficients in
that basis. While there are many advantages to signal representation in a basis, particularly an
orthogonal basis, there are also disadvantages.

The ability of a basis to provide a sparse representation depends on how well the signal
characteristics match the characteristics of the basis vectors. For example, smooth continuous signals
are sparsely represented in a Fourier basis, while impulses are not. A smooth signal with isolated
discontinuities is sparsely represented in a wavelet basis. However, a wavelet basis is not efficient at
representing a signal whose Fourier transform has narrow high frequency support.

Real-world signals often contain features that prohibit sparse representation in any single basis. For
these signals, you want the ability to choose vectors from a set not limited to a single basis. Because
you want to ensure that you can represent every vector in the space, the dictionary of vectors you
choose from must span the space. However, because the set is not limited to a single basis, the
dictionary is not linearly independent.

Because the vectors in the dictionary are not a linearly independent set, the signal representation in
the dictionary is not unique. However, by creating a redundant dictionary, you can expand your signal
in a set of vectors that adapt to the time-frequency or time-scale characteristics of your signal. You
are free to create a dictionary consisting of the union of several bases. For example, you can form a
basis for the space of square-integrable functions consisting of a wavelet packet basis and a local
cosine basis. A wavelet packet basis is well adapted to signals with different behavior in different
frequency intervals. A local cosine basis is well adapted to signals with different behavior in different
time intervals. The ability to choose vectors from each of these bases greatly increases your ability to
sparsely represent signals with varying characteristics.

Nonlinear Approximation in Dictionaries
Define a dictionary as a collection of unit-norm elementary building blocks for your signal space.
These unit-norm vectors are called atoms. If the atoms of the dictionary span the entire signal space,
the dictionary is complete.

If the dictionary atoms form a linearly-dependent set, the dictionary is redundant. In most
applications of matching pursuit, the dictionary is complete and redundant.

Let {φk} denote the atoms of a dictionary. Assume the dictionary is complete and redundant. There is
no unique way to represent a signal from the space as a linear combination of the atoms.

x = ∑
k

αkϕk
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An important question is whether there exists a best way. An intuitively satisfying way to choose the
best representation is to select the φk yielding the largest inner products (in absolute value) with the
signal. For example, the best single φk is

max
k

< x, ϕk >

which for a unit-norm atom is the magnitude of the scalar projection onto the subspace spanned by
φk.

The central problem in matching pursuit is how you choose the optimal M-term expansion of your
signal in a dictionary.

Basic Matching Pursuit
Let Φ denote the dictionary of atoms as a N-by-M matrix with M>N. If the complete, redundant
dictionary forms a frame for the signal space, you can obtain the minimum L2 norm expansion
coefficient vector by using the frame operator.

Φ† = Φ*(Φ Φ*)−1

However, the coefficient vector returned by the frame operator does not preserve sparsity. If the
signal is sparse in the dictionary, the expansion coefficients obtained with the canonical frame
operator generally do not reflect that sparsity. Sparsity of your signal in the dictionary is a trait that
you typically want to preserve. Matching pursuit addresses sparsity preservation directly.

Matching pursuit is a greedy algorithm that computes the best nonlinear approximation to a signal in
a complete, redundant dictionary. Matching pursuit builds a sequence of sparse approximations to the
signal stepwise. Let Φ= {φk} denote a dictionary of unit-norm atoms. Let f be your signal.

1 Start by defining R0f = f
2 Begin the matching pursuit by selecting the atom from the dictionary that maximizes the

absolute value of the inner product with R0f = f. Denote that atom by φp.
3 Form the residual R1f by subtracting the orthogonal projection of R0f onto the space spanned by

φp.

R1f = R0f − R0f , ϕp ϕp

4 Iterate by repeating steps 2 and 3 on the residual.

Rm + 1f = Rmf − Rmf , ϕk ϕk

5 Stop the algorithm when you reach some specified stopping criterion.

In nonorthogonal (or basic) matching pursuit, the dictionary atoms are not mutually orthogonal
vectors. Therefore, subtracting subsequent residuals from the previous one can introduce
components that are not orthogonal to the span of previously included atoms.

To illustrate this, consider the following example. The example is not intended to present a working
matching pursuit algorithm.

Consider the following dictionary for Euclidean 2-space. This dictionary is an equal-norm frame.
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1
0

,
1/2
3/2

,
−1/ 2
−1/ 2

Assume you have the following signal.

1
1/2

The following figure illustrates this example. The dictionary atoms are in red. The signal vector is in
blue.

Construct this dictionary and signal in MATLAB.

dictionary = [1 0; 1/2 sqrt(3)/2; -1/sqrt(2) -1/sqrt(2)]';
x = [1 1/2]';

Compute the inner (scalar) products between the signal and the dictionary atoms.

scalarproducts = dictionary'*x;

The largest scalar product in absolute value occurs between the signal and [-1/sqrt(2); -1/
sqrt(2)]. This is clear because the angle between the two vectors is almost π radians.

Form the residual by subtracting the orthogonal projection of the signal onto [-1/sqrt(2); -1/
sqrt(2)] from the signal. Next, compute the inner products of the residual (new signal) with the
remaining dictionary atoms. It is not necessary to include [-1/sqrt(2); -1/sqrt(2)] because
the residual is orthogonal to that vector by construction.

residual = x-scalarproducts(3)*dictionary(:,3);
scalarproducts = dictionary(:,1:2)'*residual;

The largest scalar product in absolute value is obtained with [1;0]. The best two atoms in the
dictionary from two iterations are [-1/sqrt(2); -1/sqrt(2)] and [1;0]. If you iterate on the
residual, you see that the output is no longer orthogonal to the first atom chosen. In other words, the
algorithm has introduced a component that is not orthogonal to the span of the first atom selected.
This fact and the associated complications with convergence argues in favor of “Orthogonal Matching
Pursuit” on page 7-5 (OMP).
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Orthogonal Matching Pursuit
In orthogonal matching pursuit (OMP), the residual is always orthogonal to the span of the atoms
already selected. This results in convergence for a d-dimensional vector after at most d steps.

Conceptually, you can do this by using Gram-Schmidt to create an orthonormal set of atoms. With an
orthonormal set of atoms, you see that for a d-dimensional vector, you can find at most d orthogonal
directions.

The OMP algorithm is:

1 Denote your signal by f. Initialize the residual R0f = f.
2 Select the atom that maximizes the absolute value of the inner product with R0f = f. Denote that

atom by φp.
3 Form a matrix, Φ, with previously selected atoms as the columns. Define the orthogonal

projection operator onto the span of the columns of Φ.

P = Φ (Φ*Φ)−1Φ*
4 Apply the orthogonal projection operator to the residual.
5 Update the residual.

Rm + 1f = (I − P)Rmf

I is the identity matrix.

Orthogonal matching pursuit ensures that components in the span of previously selected atoms are
not introduced in subsequent steps.

Weak Orthogonal Matching Pursuit
It can be computationally efficient to relax the criterion that the selected atom maximizes the
absolute value of the inner product to a less strict one.

x, ϕp ≥ αmax
k

x, ϕk , α ∈ 0, 1

This is known as weak matching pursuit.
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Matching Pursuit
In this section...
“Sensing Dictionary Creation and Visualization” on page 7-6
“Orthogonal Matching Pursuit on 1-D Signal” on page 7-10
“Electricity Consumption Analysis Using Matching Pursuit” on page 7-13

Sensing Dictionary Creation and Visualization
This example shows how to create and visualize a sensing dictionary consisting of a Haar wavelet at
level 2 and the discrete cosine transform-II (DCT-II) basis.

Create the sensing dictionary. The size of the dictionary matrix is 100-by-200. For each basis type, the
size of the associated submatrix is 100-by-100. The matrix columns are the basis elements.

xdict = sensingDictionary(Type={'dwt','dct'},Level=[2 0])

xdict = 
  sensingDictionary with properties:

                Type: {'dwt'  'dct'}
                Name: {'db1'  ''}
               Level: [2 0]
    CustomDictionary: []
                Size: [100 200]

Visualize Haar

Extract the 100-by-100 submatrix associated with the Haar wavelet basis.

xmatHaar = subdict(xdict,1:100,1:100);

Display the matrix.

imagesc(xmatHaar)
colormap(gray)
title("Haar Basis")
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Choose and plot two basis elements.

belement = [10 40];
figure
subplot(1,2,1)
plot(xmatHaar(:,belement(1)))
title("Haar basis element: " + num2str(belement(1)))
ylim([-0.5 0.5])
subplot(1,2,2)
plot(xmatHaar(:,belement(2)))
title("Haar basis element: " + num2str(belement(2)))
ylim([-0.5 0.5])
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To plot all the wavelet basis elements, set showAll to true.

showAll = ;
if showAll
    figure
    for k=1:100
        plot(xmatHaar(:,k))
        title("Haar basis element: " + num2str(k))
        ylim([-0.5 0.5])
        pause(0.1)
    end
end

Visualize DCT-II

Extract the 100-by-100 submatrix associated with the DCT-II basis.

xmatDCT = subdict(xdict,1:100,101:200);

Display the matrix.

figure
imagesc(xmatDCT)
colormap(gray)
title("DCT-II Basis")
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Choose and plot four basis elements.

belement = [10 40 60 90];
for k=1:4
    subplot(2,2,k)
    plot(xmatDCT(:,belement(k)))
    title("DCT-II basis element: " + num2str(belement(k)))
    ylim([-0.5 0.5])
end
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To plot all the DCT-II basis elements, set showAll to true.

showAll = ;
if showAll
    figure
    for k=1:100
        plot(xmatDCT(:,k))
        title("DCT-II basis element: " + num2str(k))
        ylim([-0.5 0.5])
        pause(0.1)
    end
end

Orthogonal Matching Pursuit on 1-D Signal
This example shows how to perform orthogonal matching pursuit on a 1-D input signal that contains a
cusp.

Load the cuspamax signal. Construct a dictionary consisting of Daubechies extremal phase wavelets
at level 2 and the DCT-II basis.

load cuspamax
lsig = length(cuspamax);
A = sensingDictionary(Size=lsig, ...
    Type={'dwt','dct'}, ...
    Name={'db4'},Level=[2 0]);
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Use orthogonal matching pursuit to obtain an approximation of the signal in the sensing dictionary
with 100 iterations.

[Xr,YI,I,R] = matchingPursuit(A,cuspamax, ...
    maxIterations=100, ...
    Algorithm="OMP",maxerr={"L2",1});

Extract the vectors from the dictionary that correspond to the approximation. Multiply with the
associated coefficients and confirm the result is equal to the approximation.

sMat = subdict(A,1:1024,I);
x = sMat*Xr(I,:);
max(abs(x-YI))

ans = 0

Plot the signal, approximation, and residual.

subplot(2,1,1)
plot(cuspamax)
hold on
plot(YI)
hold off
legend("Signal","Approx.")
title("Signal and Approximation")
axis tight
subplot(2,1,2)
plot(R)
title("Residual")
axis tight
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Plot the proportion of retained signal energy for each iteration in the matching pursuit result.

cuspEnergy = cuspamax*cuspamax';
leni = length(I);
recEnergy = zeros(1,leni);
basisElts = subdict(A,1:1024,I);
for k=1:leni
    rec = basisElts(:,1:k)*Xr(I(1:k),:);
    recEnergy(k) = norm(rec)^2/cuspEnergy;
end
figure
plot(recEnergy)
title("Quality / Iteration")
xlabel("Iteration")
ylabel("Quality")
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Electricity Consumption Analysis Using Matching Pursuit
This example shows how to compare matching pursuit with a nonlinear approximation in the discrete
Fourier transform basis. The data is electricity consumption data collected over a 24-hour period. The
example demonstrates that by selecting vectors from a dictionary, matching pursuit is often able to
approximate a signal more efficiently with M vectors than any single basis.

Matching Pursuit Using DCT, Fourier, and Wavelet Dictionaries

Load the dataset and plot the data. The dataset contains 35 days of electric consumption. Choose day
32 for further analysis. The data is centered and scaled, so the actual units of usage are not relevant.

load elec35_nor
x = signals(32,:);

plot(x)
xlabel('Minutes')
ylabel('Usage')
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The electricity consumption data contains smooth oscillations punctuated by abrupt increases and
decreases in usage.

Zoom in on a time interval from 500 minutes to 1200 minutes.

xlim([500 1200])
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You can see the abrupt changes in the slowly-varying signal at approximately 650, 760, and 1120
minutes. In many real-world signals like these data, the interesting and important information is
contained in the transients. It is important to model these transient phenomena.

Construct a signal approximation using 50 vectors chosen from a dictionary with orthogonal
matching pursuit (OMP). The dictionary consists of the Haar wavelet at level 2, the discrete cosine
transform (DCT) basis, a Fourier basis, and the Kronecker delta basis. Then, use OMP to find the best
50-term greedy approximation of the electric consumption data. Plot the result.

Dict = sensingDictionary('Size',length(x), ...
    'Type',{'dwt','dct','fourier','eye'}, ...
    'Name',{'db1'}, ...
    'Level',[2]);
[Xr,YI,I,R] = matchingPursuit(Dict,x, ...
    maxIterations=50, ...
    Algorithm="OMP",maxerr={"L2",1});

plot(x)
hold on
plot(real(YI))
hold off
xlabel('Minutes')
ylabel('Usage')
legend('Original Signal','OMP')
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You can see that with 50 coefficients, orthogonal matching pursuit approximates both the smoothly-
oscillating part of the signal and the abrupt changes in electricity usage.

Determine how many vectors the OMP algorithm selected from each of the subdictionaries.

for k=1:4
    basezind{k} = (k-1)*1440+(1:1440);
end
dictvectors = cellfun(@(x)intersect(I,x),basezind,'UniformOutput',false);
for k=1:4
    fprintf("Subdictionary %d: %d vectors\n",k,numel(dictvectors{k}));
end

Subdictionary 1: 0 vectors
Subdictionary 2: 40 vectors
Subdictionary 3: 2 vectors
Subdictionary 4: 8 vectors

The majority of the vectors come from the DCT and Fourier basis. Given the overall slowly-varying
nature of the electricity consumption data, this is expected behavior. The additional vectors capture
the abrupt signal changes.

Matching Pursuit Using DCT vs. Full Dictionary

Repeat the OMP with only the DCT subdictionary. Set the OMP to select the 50 best vectors from the
DCT dictionary. Construct the dictionary and perform the OMP. Compare the OMP with the DCT
dictionary to the OMP with the additional subdictionaries. Notice that adding the Kronecker delta
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subdictionary shows the abrupt changes in electricity usage more accurately. The advantage of
including the Kronecker delta basis is especially clear especially in approximating the upward and
downward spikes in usage at approximately 650 and 1120 minutes.

Dict2 = sensingDictionary('Size',length(x),'Type',{'dct'});
[Xr2,YI2,I2,R2] = matchingPursuit(Dict2,x, ...
    maxIterations=50, ...
    Algorithm="OMP",maxerr={"L2",1});

plot(x)
hold on
plot(real(YI2),'linewidth',2)
hold off
title('DCT Dictionary')
xlabel('Minutes')
ylabel('Usage')
xlim([500 1200])

figure
plot(x)
hold on
plot(real(YI),'linewidth',2)
hold off
xlim([500 1200])
title('Full Dictionary')
xlabel('Minutes')
ylabel('Usage')
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Obtain the best 50-term nonlinear approximation of the signal in the discrete Fourier basis. Obtain
the DFT of the data, sort the DFT coefficients, and select the 50 largest coefficients. The DFT of a
real-valued signal is conjugate symmetric, so only consider frequencies from 0 (DC) to the Nyquist
(1/2 cycles/minute).

xdft = fft(x);
[~,I] = sort(xdft(1:length(x)/2+1),'descend');
ind = I(1:50);

Examine the vector ind. None of the indices correspond to 0 or the Nyquist. Add the corresponding
complex conjugate to obtain the nonlinear approximation in the DFT basis. Plot the approximation
and the original signal.

indconj = length(xdft)-ind+2;
ind = [ind indconj];
xdftapp = zeros(size(xdft));
xdftapp(ind) = xdft(ind);
xrec = ifft(xdftapp);

plot(x)
hold on
plot(xrec,'LineWidth',2)
hold off
xlabel('Minutes')
ylabel('Usage')
legend('Original Signal','Nonlinear DFT Approximation')
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Similar to the DCT dictionary, the nonlinear DFT approximation performs well at matching the
smooth oscillations in electricity consumption data. However, the nonlinear DFT approximation does
not approximate the abrupt changes accurately. Zoom in on the interval of the data containing the
abrupt changes in consumption.

plot(x)
hold on
plot(xrec,'LineWidth',2)
hold off
xlabel('Minutes')
ylabel('Usage')
legend('Original Signal','Nonlinear DFT Approximation')
xlim([500 1200])
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Matching Pursuit Using Wavelet Analyzer App
In this section...
“Matching Pursuit 1-D Interactive Tool” on page 7-21
“Interactive Matching Pursuit of Electricity Consumption Data” on page 7-33

Matching Pursuit 1-D Interactive Tool
You can perform basic, orthogonal, and weak orthogonal matching pursuit using the Wavelet Analyzer
app. To access the Matching Pursuit 1-D, enter waveletAnalyzer at the MATLAB command
prompt.

Click Matching Pursuit 1-D.

 Matching Pursuit Using Wavelet Analyzer App

7-21



To demonstrate the Matching Pursuit 1-D tool, select File —> Example —> Cusp signal.
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In the upper left corner, you see the plot of the signal with the matching pursuit approximation
superimposed.
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Underneath the plot, you see the relative errors using the L1, L2, and L-infinity norms.

The maximum relative error in a given norm is

100 R
Y ,

where || || denotes the specified norm, R is the residual vector at each iteration in the matching
pursuit algorithm, and Y is the signal.

In the middle panel on the left is the plot of the final residual vector after the matching pursuit
algorithm terminates.
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The bottom left panel displays the percentage of retained signal energy (L2 norm) and the relative
error percentages for the L1, L2, and L-infinity norms over the algorithm iterations.
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In the top middle panel of the Matching Pursuit 1-D tool, you see the indices of the selected
coefficients from the subdictionaries.

7 Matching Pursuit

7-26



The left vertical axis shows the name of the subdictionary. The right vertical axis gives the ratio of
selected vectors to the total number of vectors in the subdictionary. The location of the vertical bars
along the horizontal axis gives the relative positions of the selected vectors in the subdictionaries.

More detailed information on selected components is available by clicking More on Components in
the bottom right panel.

The bottom middle panel displays the superposition of selected vectors from the subdictionaries.
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This plot enables you to assess the relative contribution of the subdictionaries to the signal
approximation. In this example, you can see that the cosine and DCT subdictionaries contribute
significantly to the approximation of the slowly-varying portions of the signal. The Daubechies least
asymmetric wavelet with 4 vanishing moments (sym4) enables the matching pursuit to sparsely
represent the cusp around index 700.

In the top right panel of the Matching Pursuit 1-D tool, you see the dictionary used in the analysis.

You have the ability to add or delete subdictionaries with Add Component and Del Component.

The next panel contains the algorithm stopping rules.
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• Max. Iterations — This controls the number of iterations of the greedy matching pursuit
algorithm. The value is equal to the number of expansion coefficients (vectors) used in the
approximation. The utility of matching pursuit is that you can approximate many real-world
signals efficiently with far fewer vectors than needed to span the signal space.

• Max Relative Error — Specifies the stopping criterion based on the maximum relative error.
Choose one of None, L2 norm, L1 norm, or Linf norm.

The maximum relative error in a given norm is

100 R
Y ,

where || || denotes the specified norm, R is the residual vector at each iteration in the matching
pursuit algorithm, and Y is the signal.

In the next panel you select the algorithm used in the matching pursuit. Choose one of Basic MP for
basic matching pursuit, Orthogonal MP for orthogonal matching pursuit, and Weak MP for weak
orthogonal matching pursuit. See “Matching Pursuit Algorithms” on page 7-2 for a brief description
of these algorithms.

In the Display Parameters panel, you can control how the progress of the matching pursuit is
displayed.

Select one of

• Final Plot — Plots the result of matching pursuit only after the algorithm terminates.
• Stepwise — Updates the result every N iterations where N is a positive integer. If you select

Stepwise, the Display every iterations item becomes visible. Select the number of iterations
from the drop down menu. You are prompted to step through the algorithm with the Next or Final
Plot.

• Movie — Updates the result every N iterations where N is a positive integer in a continuous
manner. If you select Movie, the Display every iterations item becomes visible. Select the
number of iterations from the drop down menu. Click Continue to step through the algorithm as a
movie, which continues until the algorithm terminates. Click Pause to pause the algorithm, or
Final Plot to update only at the termination of the algorithm.
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After you obtain a matching pursuit of a signal, use

to obtain detailed interactive plots and information on the selected dictionary atoms and the final
residual vector.

Click More on Components.

From the above figure, you can see that while the DCT and cosine subdictionaries contribute energy
across the extent of the signal, the wavelet and wavelet packet contributions are localized at the cusp
around sample 700. This result is expected because wavelets and wavelet packets excel at sparsely
representing abrupt changes in a signal or image.

Change the Display to the Coefficients view.

The Selection of Coefficients panel enables you to selectively sort and display contributions to the
signal approximation by the various subdictionaries.
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Under Selection parameters, choose By Family and sym4 — lev5. Click Select

From the preceding operation, you see that the wavelet packet contributes to the approximation of
the cusp, but does not contribute significantly to the global approximation.

Choose dct and click Select.
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The DCT basis contributes significantly to the global approximation of the signal but the smooth DCT
basis vectors are not able to sparsely represent the cusp.

Selecting More on Residuals on the Matching Pursuit 1-D tool allows you to examine the residual
vector, a histogram of the residuals, a cumulative histogram, the estimated autocorrelation sequence,
and the magnitude-squared discrete Fourier transform.
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You can control which plots are displayed and the appearance of the histogram by the options in the
right panel.

Interactive Matching Pursuit of Electricity Consumption Data
This example shows how to perform an interactive matching pursuit of electricity consumption data
collected over a 24-hour period.

Load the electricity consumption signals in the workspace. Select the data for the 32nd day for
further matching pursuit.
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load elec35_nor;
x = signals(32,:);

To start the app, enter waveletAnalyzer at the MATLAB command prompt.

Click the Matching Pursuit 1-D tool.

Select File —> Import Signal from Workspace

Load x.

Construct the following matching pursuit dictionary.
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In the Algorithm Stopping Rules panel, set Max. Iterations to 30.

Select Orthogonal MP to use orthogonal matching pursuit.

Click Approximate.
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Code Generation from MATLAB Support
in Wavelet Toolbox

• “Code Generation Support, Usage Notes, and Limitations” on page 8-2
• “Denoise Signal Using Generated C Code” on page 8-5
• “Generate Code to Denoise a Signal” on page 8-9
• “CUDA Code from CWT” on page 8-11
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Code Generation Support, Usage Notes, and Limitations
To generate code from MATLAB code that contains Wavelet Toolbox functions, you must have
MATLAB Coder™.

An asterisk (*) indicates that the reference page has usage notes and limitations for C/C++ code
generation.

appcoef* 1-D approximation coefficients
appcoef2* 2-D approximation coefficients
centerFrequencies CWT filter bank bandpass center frequencies
conv* Convolution and polynomial multiplication
conv2 2-D convolution
cwtfilterbank* Continuous wavelet transform filter bank
cwtfreqbounds* CWT maximum and minimum frequency or period
ddencmp* Default values for denoising or compression
detcoef 1-D detail coefficients
detcoef2 2-D detail coefficients
dualtree* Kingsbury Q-shift 1-D dual-tree complex wavelet transform
dualtree2 Kingsbury Q-shift 2-D dual-tree complex wavelet transform
dwpt* Multisignal 1-D wavelet packet transform
dwt* Single-level 1-D discrete wavelet transform
dwt2* Single-level discrete 2-D wavelet transform
dyadup* Dyadic upsampling
emd* Empirical mode decomposition
ewt* Empirical wavelet transform
fft* Fast Fourier transform
fft2* 2-D fast Fourier transform
fftshift Shift zero-frequency component to center of spectrum
filter* 1-D digital filter
filter2 2-D digital filter
filterbank Shearlet system filters
framebounds Shearlet system frame bounds
freqz* CWT filter bank frequency responses
haart Haar 1-D wavelet transform
haart2 2-D Haar wavelet transform
hht* Hilbert-Huang transform
idualtree Kingsbury Q-shift 1-D inverse dual-tree complex wavelet transform
idualtree2 Kingsbury Q-shift 2-D inverse dual-tree complex wavelet transform
idwpt* Multisignal 1-D inverse wavelet packet transform
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idwt* Single-level inverse discrete 1-D wavelet transform
idwt2* Single-level inverse discrete 2-D wavelet transform
ifft* Inverse fast Fourier transform
ifft2* 2-D inverse fast Fourier transform
ifftshift Inverse zero-frequency shift
ihaart Inverse 1-D Haar wavelet transform
ihaart2 Inverse 2-D Haar wavelet transform
imodwpt* Inverse maximal overlap discrete wavelet packet transform
imodwt* Inverse maximal overlap discrete wavelet transform
isheart2 Inverse shearlet transform
iswt* Inverse discrete stationary wavelet transform 1-D
iswt2* Inverse discrete stationary wavelet transform 2-D
mdwtdec* Multisignal 1-D wavelet decomposition
mdwtrec* Multisignal 1-D wavelet reconstruction
meyeraux Meyer wavelet auxiliary function
modwpt* Maximal overlap discrete wavelet packet transform
modwptdetails* Maximal overlap discrete wavelet packet transform details
modwt* Maximal overlap discrete wavelet transform
modwtmra* Multiresolution analysis based on MODWT
modwtvar* Multiscale variance of maximal overlap discrete wavelet transform
numshears Number of shearlets
qbiorthfilt First-level dual-tree biorthogonal filters
qfactor CWT filter bank quality factor
qmf Scaling and Wavelet Filter
qorthwavf Kingsbury Q-shift filters
scales CWT filter bank scales
scaleSpectrum* Scale-averaged wavelet spectrum
shearletSystem Cone-adapted bandlimited shearlet system
sheart2 Shearlet transform
swt* Discrete stationary wavelet transform 1-D
swt2* Discrete stationary wavelet transform 2-D
thselect Threshold selection for denoising
timeSpectrum Time-averaged wavelet spectrum
vmd* Variational mode decomposition
wavedec* 1-D wavelet decomposition
wavedec2* 2-D wavelet decomposition
wavelets CWT filter bank time-domain wavelets
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waverec* 1-D wavelet reconstruction
waverec2* 2-D wavelet reconstruction
wcoherence* Wavelet coherence and cross-spectrum
wden* Automatic 1-D denoising
wdencmp* Denoising or compression
wdenoise* Wavelet signal denoising
wdenoise2* Wavelet image denoising
wextend* Extend vector or matrix
wnoisest Estimate noise of 1-D wavelet coefficients
wt Continuous wavelet transform with filter bank
wthcoef 1-D wavelet coefficient thresholding
wthcoef2 Wavelet coefficient thresholding 2-D
wthresh Soft or hard thresholding
wvd* Wigner-Ville distribution and smoothed pseudo Wigner-Ville distribution
xwvd* Cross Wigner-Ville distribution and cross smoothed pseudo Wigner-Ville distribution
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Denoise Signal Using Generated C Code
This example shows how to denoise a signal using C code generated from the wdenoise function.
Two techniques are demonstrated. The first technique uses a wrapper function which calls
wdenoise. The second technique generates C code directly from wdenoise. Depending on your
workflow, one technique may be preferred over the other. For example, to streamline code generation
for large MATLAB® code, you can use wrapper functions to modularize the code.

Use Wrapper Function

Create a MATLAB function denoiseSignal that executes wdenoise and returns a denoised signal.
The function takes two input arguments: a 1-D signal, and a denoising method. It passes these
arguments to wdenoise. The function is included in the directory containing this example. The code
for denoiseSignal follows.

function out = denoiseSignal(input,denMthd)
%#codegen
out = wdenoise(input,'DenoisingMethod',denMthd);
end

The %#codegen directive indicates that the function is intended for code generation.

Use codegen (MATLAB Coder) to generate a MEX function. For faster compilation, enable debug
mode by setting the -g option. (In debug mode, the compiler disables some optimizations.) Code
generation defaults to MEX code generation when you do not specify a build target. By default,
codegen names the generated MEX function denoiseSignal_mex. To allow the generation of MEX
file, specify the properties (class, size, and complexity) of the two input parameters:

• coder.typeof(0,[1 Inf]) specifies a row vector of arbitrary length containing real double
values.

• coder.typeof('c',[1 Inf]) specifies a character array of arbitrary length.

codegen -g denoiseSignal -args {coder.typeof(0,[1 Inf]),coder.typeof('c',[1 Inf])}

Code generation successful.

Load a signal.

load noisdopp
plot(noisdopp)
title('Signal')
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Denoise the signal twice using denoiseSignal_mex. First, use the denoising method
UniversalThreshold. Then, use the SURE method. Plot both results.

dn = denoiseSignal_mex(noisdopp,'UniversalThreshold');
dn2 = denoiseSignal_mex(noisdopp,'SURE');
plot([dn' dn2'])
legend('Universal','SURE')
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Use the MATLAB function and MEX function to denoise the signal using the Minimax method.
Confirm the results are equal.

dnA = denoiseSignal_mex(noisdopp,'Minimax');
dnB = denoiseSignal(noisdopp,'Minimax');
max(abs(dnA-dnB))

ans = 6.2172e-15

Use Explicitly

You can also generate C code directly from wdenoise. Generate a MEX file that denoises a signal
using the db4 wavelet. The generated MEX file is called wdenoise_mex.

codegen -g wdenoise -args {coder.typeof(0,[1 Inf]),coder.Constant('Wavelet'),coder.Constant('db4')}

Code generation successful.

Denoise the original signal.

dn3 = wdenoise_mex(noisdopp,'Wavelet','db4');

To confirm the MEX file accepts variable length inputs, denoise the first 200 samples of the original
signal.

dn4 = wdenoise_mex(noisdopp(1:200),'Wavelet','db4');
plot([noisdopp(1:200)' dn4'])
legend('Original','Denoised')
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See Also
wdenoise

More About
• “Code Generation Support, Usage Notes, and Limitations” on page 8-2
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Generate Code to Denoise a Signal
This example shows how to use MATLAB Coder to generate executable code. The Wavelet Toolbox
supports code generation for functions that support discrete wavelet transform (DWT), maximal
overlap discrete wavelet transform (MODWT), wavelet packet transform (WPT), maximal overlap
wavelet packet transform (MODWPT), and denoising workflows. This example requires a MATLAB
Coder license.

Define a function that uses wdenoise to denoise a signal. You also specify the level to which to
denoise the signal when you run the generated code.

1 From the MATLAB command prompt, create the file, sigdenoise.m.

edit sigdenoise

If you do not have permission to write to the current working folder, change the current folder to
one that is writable.

2 Copy this sigdenoise function code into the sigdenoise.m file. Your file must include
%#codegen to indicate that this function will generate code.

function xdenoise = sigdenoise(x,level)
%#codegen
wname = 'sym4';
xdenoise = wdenoise(x,level,'Wavelet',wname,...
    'DenoisingMethod','SURE',...
    'ThresholdRule','soft',...
    'NoiseEstimate','LevelIndependent');
end

3 Save the file.
4 At the MATLAB command line, use the codegen function to compile the sigdenoise function

into a MEX file. You can use the -o option to specify the name of the executable. If you do not use
the -o option, the generated MEX file has the same name as the original MATLAB file with _mex
appended. You can include the -report option to generate a compilation report. This report
shows the original MATLAB code and the associated files created during code generation. The -
args option specifies the data types of the inputs required to run the generated code. In this
case, a variable-size row vector and a scalar input are required.

codegen sigdenoise.m -config:mex -args {coder.typeof(1,[1 inf]),0}
5 At the MATLAB command line, run the generated code on noisy Doppler data and denoise it to

level three. Compare the original and denoised signals.

load noisdopp
xden = sigdenoise_mex(noisdopp,3);
plot([noisdopp',xden'])
legend('Original','Denoised')
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For a list of Wavelet Toolbox functions supported for code generation and associated limitations, see
“Code Generation Support, Usage Notes, and Limitations” on page 8-2. For more information on code
generation, see “Get Started with MATLAB Coder” (MATLAB Coder).

See Also
wdenoise

More About
• “Denoise Signal Using Generated C Code” on page 8-5

8 Code Generation from MATLAB Support in Wavelet Toolbox

8-10



CUDA Code from CWT
This example shows how to generate a MEX file to perform the continuous wavelet transform (CWT)
using generated CUDA code.

First, ensure that you have a CUDA-enabled GPU and the NVCC compiler. See “The GPU
Environment Check and Setup App” (GPU Coder) to ensure you have the proper configuration.

Create a GPU coder configuration object.

cfg = coder.gpuConfig("mex");

Generate a signal of 100,000 samples at 1,000 Hz. The signal consists of two cosine waves with
disjoint time supports.

t = 0:.001:(1e5*0.001)-0.001;
x = cos(2*pi*32*t).*(t > 10 & t<=50)+ ...
    cos(2*pi*64*t).*(t >= 60 & t < 90)+ ...
    0.2*randn(size(t));

Cast the signal to use single precision. GPU calculations are often more efficiently done in single
precision. You can however also generate code for double precision if your NVIDIA GPU supports it.

x = single(x);

Generate the GPU MEX file and a code generation report. To allow generation of the MEX file, you
must specify the properties (class, size, and complexity) of the three input parameters:

• coder.typeof(single(0),[1 1e5]) specifies a row vector of length 100,000 containing real
single values.

• coder.typeof('c',[1 inf]) specifies a character array of arbitrary length.
• coder.typeof(0) specifies a real double value.

sig = coder.typeof(single(0),[1 1e5]);
wav = coder.typeof('c',[1 inf]);
sfrq = coder.typeof(0);
codegen cwt -config cfg -args {sig,wav,sfrq} -report

Code generation successful: View report

The -report flag is optional. Using -report generates a code generation report. In the Summary tab
of the report, you can find a GPU code metrics link, which provides detailed information such as the
number of CUDA kernels generated and how much memory was allocated.

Run the MEX file on the data and plot the scalogram. Confirm the plot is consistent with the two
disjoint cosine waves.

[cfs,f] = cwt_mex(x,'morse',1e3);
image("XData",t,"YData",f,"CData",abs(cfs),"CDataMapping","scaled")
set(gca,"YScale","log")
axis tight
xlabel("Time (Seconds)")
ylabel("Frequency (Hz)")
title("Scalogram of Two-Tone Signal")
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Run the CWT command above without appending the _mex. Confirm the MATLAB and the GPU MEX
scalograms are identical.

[cfs2,f2] = cwt(x,'morse',1e3);
max(abs(cfs2(:)-cfs(:)))

ans = single
    7.3380e-07

See Also
cwt | cwtfilterbank
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Wavelet Scattering
A wavelet scattering network enables you to derive, with minimal configuration, low-variance
features from real-valued time series and image data for use in machine learning and deep learning
applications. The features are insensitive to translations of the input on an invariance scale that you
define and are continuous with respect to deformations. In the 2-D case, features are also insensitive
to rotations. The scattering network uses predefined wavelet and scaling filters.

Mallat, with Bruna and Andén, pioneered the creation of a mathematical framework for studying
convolutional neural architectures [2][3][4][5]. Andén and Lostanlen developed efficient algorithms
for wavelet scattering of 1-D signals [4] [6]. Oyallon developed efficient algorithms for 2-D scattering
[7]. Andén, Lostanlen, and Oyallon are major contributors to the ScatNet [10] and Kymatio [11]
software for computing scattering transforms.

Mallat and others characterized three properties that deep learning architectures possess for
extracting useful features from data:

• Multiscale contractions
• Linearization of hierarchical symmetries
• Sparse representations

The wavelet scattering network exhibits all these properties. Wavelet transforms linearize small
deformations such as dilations by separating the variations across different scales. For many natural
signals, the wavelet transform also provides a sparse representation. By combining wavelet
transforms with other features of the scattering network described below, the scattering transform
produces data representations that minimize differences within a class while preserving
discriminability across classes. An important distinction between the scattering transform and deep
learning networks is that the filters are defined a priori as opposed to being learned. Because the
scattering transform is not required to learn the filter responses, you can often use scattering
successfully in situations where there is a shortage of training data.

Wavelet Scattering Transform
A wavelet scattering transform processes data in stages. The output of one stage becomes input for
the next stage. Each stage consists of three operations.

The zeroth-order scattering coefficients are computed by simple averaging of the input. Here is a tree
view of the algorithm:
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The ψ j, k  are wavelets, ϕJ is the scaling function, and f  is the input data. In the case of image data,
for each ψ j, k, there are a number of user-specified rotations of the wavelet. A sequence of edges from
the root to a node is referred to as a path. The tree nodes are the scalogram coefficients. The
scattering coefficients are the scalogram coefficients convolved with the scaling function ϕJ. The set
of scattering coefficients are the low-variance features derived from the data. Convolution with the
scaling function is lowpass filtering and information is lost. However, the information is recovered
when computing the coefficients in the next stage.

To extract features from the data, first use waveletScattering (for time series) or
waveletScattering2 (for image data) to create and configure the network. Parameters you set
include the size of invariance scale, the number of filter banks, and the number of wavelets per
octave in each filter bank. In waveletScattering2 you can also set the number of rotations per
wavelet. To derive features from time series, use the waveletScattering object functions
scatteringTransform or featureMatrix. To derive features from image data, use the
waveletScattering2 object functions scatteringTransform or featureMatrix.

The scattering transform generates features in an iterative fashion. First, you convolve the data with
the scaling function, f ∗ ϕJ to obtain S[0], the zeroth-order scattering coefficients. Next, proceed as
follows:

1 Take the wavelet transform of the input data with each wavelet filter in the first filter bank.
2 Take the modulus of each of the filtered outputs. The nodes are the scalogram, U[1].
3 Average each of the moduli with the scaling filter. The results are the first-order scattering

coefficients, S[1].

Repeat the process at every node.

The scatteringTransform function returns the scattering and scalogram coefficients. The
featureMatrix function returns the scattering features. Both outputs can be made easily
consumable by learning algorithms, as demonstrated in “Wavelet Time Scattering for ECG Signal
Classification” on page 13-16 or “Texture Classification with Wavelet Image Scattering” on page 13-
86.

Invariance Scale
The scaling filter plays a crucial role in the wavelet scattering network. When you create a wavelet
scattering network, you specify the invariance scale. The network is invariant to translations up to
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the invariance scale. The support of the scaling function determines the size of the invariant in time
or space.

Time Invariance

For time series data, the invariance scale is a duration. The time support of the scaling function does
not exceed the size of the invariant. This plot shows the support of the scaling function in a network
with an invariance scale of two seconds and a sampling frequency of 100 Hz. Also shown are the real
and imaginary parts of the coarsest-scale wavelet from the first filter bank. Observe the time supports
of the functions do not exceed two seconds.

The invariance scale also affects the spacings of the center frequencies of the wavelets in the filter
banks. In a filter bank created by cwtfilterbank, the bandpass center frequencies are
logarithmically spaced and the bandwidths of the wavelets decrease with center frequency.

In a scattering network, however, the time support of a wavelet cannot exceed the invariance scale.
This property is illustrated in the coarsest-scale wavelet plot. Frequencies lower than the invariant
scale are linearly spaced with scale held constant so that the size of the invariant is not exceeded.
The next plot shows the center frequencies of the wavelets in the first filter bank in the scattering
network. The center frequencies are plotted on linear and logarithmic scales. Note the logarithmic
spacing of the higher center frequencies and the linear spacing of the lower center frequencies.
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Image Invariance

For image data, the invariance scale specifies the N-by-N spatial support, in pixels, of the scaling
filter. For example, by default the waveletScattering2 function creates a wavelet image scattering
network for the image size 128-by-128 and an invariance scale of 64. The following surface plot
shows the scaling function used in the network. The intersecting red lines form a 64-by-64 square.
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Quality Factors and Filter Banks
When creating a wavelet scattering network, in addition to the invariance scale, you also set the
quality factors for the scattering filter banks. The quality factor for each filter bank is the number of
wavelet filters per octave. The wavelet transform discretizes the scales using the specified number of
wavelet filters.

This plot shows the wavelet filters in the network created by waveletScattering. The invariance
scale is one second and sampling frequency is 200 Hz. The first filter bank has the default quality
value of 8, and the second filter bank has the default quality factor of 1.

9 Special Topics

9-6



For image data, large quality factors are not necessary. Large values also result in significant
computational overhead. By default waveletScattering2 creates a network with two filter banks
each with a quality factor of 1. This plot shows the wavelet center frequencies for a wavelet image
scattering network with two filter banks. The first filter bank has a quality factor of 2, and the second
filter bank has a quality factor of 1. The number of rotations per filter bank is 6.
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In Practice
With the proper choice of wavelets, the scattering transform is nonexpansive. Energy dissipates as
you iterate through the network. As the order m increases, the energy of the mth-order scalogram
coefficients and scattering coefficients rapidly converges to 0 [3]. Energy dissipation has a practical
benefit. You can limit the number of wavelet filter banks in the network with a minimal loss of signal
energy. Published results show that the energy of the third-order scattering coefficients can fall below
one percent. For most applications, a network with two wavelet filter banks is sufficient.

Consider the tree view of the wavelet time scattering network. Suppose that there are M wavelets in
the first filter bank, and N wavelets in the second filter bank. The number of wavelet filters in each
filter bank do not have to be large before a naive implementation becomes unfeasible. Efficient
implementations take advantage of the lowpass nature of the modulus function and critically
downsample the scattering and scalogram coefficients. These strategies were pioneered by Andén,
Mallat, Lostanlen, and Oyallon [4] [6] [7] in order to make scattering transforms computationally
practical while maintaining their ability to produce low-variance data representations for learning. By
default, waveletScattering and waveletScattering2 create networks that critically
downsample the coefficients.
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Related Examples
• “Wavelet Time Scattering for ECG Signal Classification” on page 13-16
• “Music Genre Classification Using Wavelet Time Scattering” on page 13-26
• “Wavelet Time Scattering Classification of Phonocardiogram Data” on page 13-35
• “Spoken Digit Recognition with Wavelet Scattering and Deep Learning” on page 13-53
• “Texture Classification with Wavelet Image Scattering” on page 13-86
• “Digit Classification with Wavelet Scattering” on page 13-94
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Wavelet Scattering Invariance Scale and Oversampling
This example shows how changing the invariance scale and oversampling factor affects the output of
the wavelet scattering transform.

Invariance Scale

The InvarianceScale property of a wavelet time scattering network sets the time scale of the
scaling (lowpass) filter. Create a wavelet scattering network with a signal length of 10,000 and
invariance scale of 500. Obtain the filter bank.

sigLength = 1e4;
sf = waveletScattering('SignalLength',sigLength,'InvarianceScale',500);
[fb,f] = filterbank(sf);

Use the helper function helperPlotScalingWavelet to plot the scaling filter in time along with
the real and imaginary parts of the coarsest-scale wavelet from the first filter bank. The source code
for helperPlotScalingWavelet is listed in the appendix. The supports of the scaling filter and
wavelet are essentially the size of the invariance scale.

helperPlotScalingWavelet(fb,f,500)

Generate a random signal and use featureMatrix to obtain the scattering feature matrix for the
signal and scattering network.
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x = randn(1,sigLength);
smat = featureMatrix(sf,x);
whos smat

  Name        Size            Bytes  Class     Attributes

  smat      102x79            64464  double              

Each row of the feature matrix is a vector which has been convolved (filtered) with the lowpass filter
(after other wavelet filtering). The second dimension of the feature matrix is the time resolution. The
output of the filtering is downsampled as much as possible without aliasing, what is called "critically
downsampling". The amount of downsampling depends on the bandwidth of the filter. The bigger the
invariance scale, the larger the time support of the lowpass (scaling) function and accordingly the
more we can downsample.

Obtain the scattering transform of the signal.

[S,~] = scatteringTransform(sf,x);
S{2}

ans=41×4 table
       signals        path      bandwidth    resolution
    _____________    _______    _________    __________

    {79x1 double}    0     1    0.0084478        -7    
    {79x1 double}    0     2    0.0084478        -7    
    {79x1 double}    0     3    0.0084478        -7    
    {79x1 double}    0     4    0.0084478        -7    
    {79x1 double}    0     5    0.0084478        -7    
    {79x1 double}    0     6    0.0084478        -7    
    {79x1 double}    0     7    0.0084478        -7    
    {79x1 double}    0     8    0.0084478        -7    
    {79x1 double}    0     9    0.0084478        -7    
    {79x1 double}    0    10    0.0084478        -7    
    {79x1 double}    0    11    0.0084478        -7    
    {79x1 double}    0    12    0.0084478        -7    
    {79x1 double}    0    13    0.0084478        -7    
    {79x1 double}    0    14    0.0084478        -7    
    {79x1 double}    0    15    0.0084478        -7    
    {79x1 double}    0    16    0.0084478        -7    
      ⋮

The scattering coefficient vectors, signals, have length 79, and the resolution is -7. This means that
we expect approximately 104/27 coefficients in each vector.

Create a wavelet scattering network with an invariance scale of 200. Obtain the scattering transform
of the signal. Because the invariance scale is smaller, the bandwidth of the scaling filter increases and
we cannot downsample as much without aliasing. Therefore, the number of scattering coefficients
increases.

sf = waveletScattering('SignalLength',sigLength,'InvarianceScale',200);
[S,~] = scatteringTransform(sf,x);
S{2}

ans=30×4 table
       signals         path      bandwidth    resolution
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    ______________    _______    _________    __________

    {157x1 double}    0     1     0.02112         -6    
    {157x1 double}    0     2     0.02112         -6    
    {157x1 double}    0     3     0.02112         -6    
    {157x1 double}    0     4     0.02112         -6    
    {157x1 double}    0     5     0.02112         -6    
    {157x1 double}    0     6     0.02112         -6    
    {157x1 double}    0     7     0.02112         -6    
    {157x1 double}    0     8     0.02112         -6    
    {157x1 double}    0     9     0.02112         -6    
    {157x1 double}    0    10     0.02112         -6    
    {157x1 double}    0    11     0.02112         -6    
    {157x1 double}    0    12     0.02112         -6    
    {157x1 double}    0    13     0.02112         -6    
    {157x1 double}    0    14     0.02112         -6    
    {157x1 double}    0    15     0.02112         -6    
    {157x1 double}    0    16     0.02112         -6    
      ⋮

Oversampling Factor

Because the invariance scale is such an important hyperparameter for scattering networks (one of
the most important for performance), you should set the value based on the problem at hand and not
because you want a certain number of coefficients. You can use the OversamplingFactor property
for adjusting the number of coefficients for a given InvarianceScale. The OversamplingFactor
specifies how much the scattering coefficients are oversampled with respect to the critically
downsampled values. The factor is on a log2 scale.

Create a scattering network with an invariance scale of 500, and an OversamplingFactor equal to
1. Obtain the scattering transform of the signal. As expected, the number of scattering paths is
greater than in the case where InvarianceScale is 200. By setting OversamplingFactor to 1,
the scattering transform returns two times as many coefficients for each scattering path with respect
to the critically sampled number. The size of the scattering coefficient vectors returned is equal to the
size when the scattering network has an invariance scale of 200 with default critical downsampling.

sf = waveletScattering('SignalLength',sigLength,'InvarianceScale',500,'OversamplingFactor',1);
[S,~] = scatteringTransform(sf,x);
S{2}

ans=41×4 table
       signals         path      bandwidth    resolution
    ______________    _______    _________    __________

    {157x1 double}    0     1    0.0084478        -6    
    {157x1 double}    0     2    0.0084478        -6    
    {157x1 double}    0     3    0.0084478        -6    
    {157x1 double}    0     4    0.0084478        -6    
    {157x1 double}    0     5    0.0084478        -6    
    {157x1 double}    0     6    0.0084478        -6    
    {157x1 double}    0     7    0.0084478        -6    
    {157x1 double}    0     8    0.0084478        -6    
    {157x1 double}    0     9    0.0084478        -6    
    {157x1 double}    0    10    0.0084478        -6    
    {157x1 double}    0    11    0.0084478        -6    
    {157x1 double}    0    12    0.0084478        -6    
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    {157x1 double}    0    13    0.0084478        -6    
    {157x1 double}    0    14    0.0084478        -6    
    {157x1 double}    0    15    0.0084478        -6    
    {157x1 double}    0    16    0.0084478        -6    
      ⋮

Appendix

function helperPlotScalingWavelet(fb,f,invScale)
% This function is in support of wavelet scattering examples only. It may
% change or be removed in a future release.
fBin = diff(f(1:2));
time = (-1/2:fBin:1/2-fBin)*1e4;
phi = ifftshift(ifft(fb{1}.phift));
psiL1 = ifftshift(ifft(fb{2}.psift(:,end)));
figure
plot(time,phi,'b','LineWidth',1.5)
grid on
hold on
plot(time,real(psiL1));
plot(time,imag(psiL1));
plot([-invScale/2 -invScale/2],[-6e-3 6.5e-3],'k--')
plot([invScale/2 invScale/2],[-6e-3 6.5e-3],'k--')
ylim([-6e-3 6.5e-3])
xlim([-invScale invScale])
legend('Scaling Function','Wavelet-Real Part','Wavelet-Imaginary Part')
end

See Also
waveletScattering | scatteringTransform | filterbank
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Empirical Wavelet Transform
The empirical wavelet transform (EWT) is a technique that creates a multiresolution analysis (MRA)
of a signal using an adaptive wavelet subdivision scheme. The EWT starts with a segmentation of the
signal's spectrum. The EWT provides perfect reconstruction of the input signal. The EWT coefficients
partition the energy of the input signal into separate passbands.

The EWT was developed by Gilles [1 on page 9-0 ]. Gilles and Heal [3 on page 9-0 ] proposed and
use a histogram-based approach for segmenting the spectrum.

An MRA is a decomposition of a signal into components on different scales, or equivalently, on
different frequency bands in such a way that the original signal is recovered by summing the
components at each point in time (see “Practical Introduction to Multiresolution Analysis” on page
11-2). Many MRA techniques exist. The maximal overlap discrete wavelet transform (MODWT) and
its associated MRA formulation use a basis or frame designed independently of the signal (see modwt
and modwtmra). The empirical mode decomposition (EMD) algorithm is a data-adaptive technique
that decomposes a nonlinear or nonstationary process into its intrinsic modes of oscillation. The EMD
iterates on an input signal to extract natural AM-FM modes, also known as intrinsic mode functions,
contained in the data (see emd).

EWT Algorithm

You can use the ewt function to obtain the MRA of a signal. The structure of the EWT algorithm is as
follows.

1 We obtain a multitaper power spectral estimate of the signal using five sine tapers. This is a
smooth, low-variance estimate of the power spectrum (see “Bias and Variability in the
Periodogram” (Signal Processing Toolbox)). We normalize the estimate to lie in the range [0,1].
By default, we identify all peaks strictly greater than 70% of the peak value. If there is a
dominant peak and many smaller ones, you can use the “LogSpectrum” option.

2 The empirical wavelet passbands are constructed by default, so that their transition bands cross
at the geometric mean frequency of the adjacent peaks. The Meyer wavelets are constructed as
described in [1 on page 9-0 ] along with the way we determine the γ parameter. The wavelets
are overlapped in such a way that they form a Parseval tight frame.

3 For determining the boundaries between adjacent passbands, you have the option of using the
first local minima between adjacent peaks. If no local minimum is identified, we revert to the
geometric mean (default).

4 You also have the option to override the automatic thresholding of peaks using “MaxNumPeaks”.
The largest peaks up to MaxNumPeaks are used. The approximate bandwidth of the multitaper
estimate is (K+1/2)/(N+1), where K is the number of tapers, and N is the data length (which may
include padding). Because peaks must be minimally separated by the approximate bandwidth to
qualify as a peak, it is possible that fewer than MaxNumPeaks peaks, including no peaks, are
identified.

Because the wavelets form a Parseval tight frame, the filter bank is self-dual: the analysis filter bank
is equal to the synthesis filter bank. The EWT uses the wavelets to filter the signal in the frequency
domain and then inverts the transform to obtain the analysis coefficients. The EWT uses the
corresponding synthesis wavelets to reconstruct the MRA components.

Spectrum Segmentation

If you have Signal Processing Toolbox™, you can see how using multitapers can produce a smoothed
estimate of the power spectrum.
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Create the third test signal defined in [1 on page 9-0 ] and add white noise. Set the random number
generator to the default settings to produce repeatable results. Subtract its mean value and plot the
result.

rng default
fs = 500;
t = 0:1/fs:1-1/fs;
f1 = 1./(6/5+cos(2*pi*t));
f2 = 1./(3/2+sin(2*pi*t));
f3 = cos(32*pi*t+cos(64*pi*t));
sig = f1+f2.*f3;
sig = sig+randn(1,length(sig))/2;
sig = sig-mean(sig);
plot(t,sig)
xlabel('Time (sec)')
ylabel('Amplitude')
title('Test Signal')

Use the periodogram function to plot the periodogram of the signal. Then use the pmtm function to
plot the smoothed multitaper estimate.

[Pxx,F] = periodogram(sig,[],[],500);
Pxxmt = pmtm(sig,5,[],500,'Tapers','sine','power');
subplot(2,1,1)
plot(F,Pxx)
title('Periodogram')
subplot(2,1,2)
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plot(F,Pxxmt)
title('Smoothed Estimate')
xlabel('Frequency (Hz)')

Computing EWT

You have several ways to control how the ewt function obtains the MRA of a signal. This section
demonstrates a few options.

Use the ewt function with default settings to obtain the MRA of the signal and information about the
filter bank.

[mra,~,~,info] = ewt(sig);
size(mra)

ans = 1×2

   500     2

Specify Peaks

By default, ewt finds two MRA components. Inspect the filter bank passbands. Because the
passbands are returned in normalized frequencies, multiply them by the sampling frequency.

info.FilterBank.Passbands*fs

ans = 2×2
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    65   250
     0    65

Note that there is a segment boundary at 22 Hz. The first segment has two peaks. Set MaxNumPeaks
equal to 3 so that ewt determines the filter passbands using the three largest peaks.

[mra,cfs,~,info] = ewt(sig,'MaxNumPeaks',3);
info.FilterBank.Passbands*fs

ans = 3×2

   62.0000  250.0000
   28.0000   62.0000
         0   28.0000

Verify that summing the MRA components results in perfect reconstruction of the signal, and verify
that the EWT analysis coefficients are energy preserving.

max(abs(sig'-sum(mra,2)))

ans = 1.7764e-15

sum(sum(abs(cfs).^2))

ans = 1.2985e+03

norm(sig,2)^2

ans = 1.2985e+03

Instead of specifying a maximum number of peaks, you can set the percentage threshold used to
determine which peaks are retained in the multitaper power spectrum. Local maxima in the
multitaper power spectral estimate of the signal are normalized to lie in the range [0,1] with the
maximum peak equal to 1. Set PeakThresholdPercent to 2.

[~,~,~,info] = ewt(sig,'PeakThresholdPercent',2);
info.FilterBank.Passbands*fs

ans = 5×2

  141.0000  250.0000
   74.0000  141.0000
   57.0000   74.0000
   28.0000   57.0000
         0   28.0000

Specify Segmentation Method

By default, ewt uses the geometric mean of adjacent peaks to determine the filter passbands. The
ewt function gives you the option to instead use the first local minimum between peaks. Set
SegmentMethod to 'localmin', so that ewt uses the first local minimum, and specify a maximum
of three peaks. Confirm that using the first local minimum results in a different segmentation.

[~,~,~,info] = ewt(sig,'MaxNumPeaks',3,'SegmentMethod','localmin');
info.FilterBank.Passbands*fs
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ans = 3×2

   54.0000  250.0000
   28.0000   54.0000
         0   28.0000

Specify Frequency Resolution

You can also specify the frequency resolution bandwidth of the multitaper power spectral estimate.
The frequency resolution bandwidth determines how many sine tapers are used in the multitaper
power spectrum estimate. Specify a frequency resolution of 0.2 and a maximum of three peaks. Note
that even though MaxNumPeaks is set at 3, three peaks are not found using the specified frequency
resolution.

[mra,~,~,info] = ewt(sig,'MaxNumPeaks',3,'FrequencyResolution',0.2);
info.FilterBank.Passbands*fs

ans = 2×2

   83.0000  250.0000
         0   83.0000
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Tunable Q-factor Wavelet Transform
The Q-factor of a wavelet transform is the ratio of the center frequency to the bandwidth of the filters
used in the transform. The tunable Q-factor wavelet transform (TQWT) is a technique that creates a
wavelet multiresolution analysis (MRA) with a user-specified Q-factor. The TQWT provides perfect
reconstruction of the signal. The TQWT coefficients partition the energy of the signal into subbands.

The TQWT was developed by Selesnick [1]. The algorithm uses filters specified directly in the
frequency domain and can be efficiently implemented using FFTs. The wavelets satisfy the Parseval
frame property. The TQWT is defined by two variables: the Q-factor and the redundancy, also known
as the oversampling rate. To obtain wavelets well-localized in time, Selesnick recommends a
redundancy r ≥ 3. As implemented, the tqwt, itqwt, and tqwtmra functions use the fixed
redundancy r = 3.

Discrete wavelet transforms (DWT) use the fixed Q-factor of √2. The value √2 follows from the
definition of the MRA leading to an orthogonal wavelet transform. However, depending on the data,
other Q-factors may be desirable. Higher Q-factors result in more narrow filters, which are better for
analyzing oscillatory signals. To analyze signals with transient components, lower Q-factors are more
appropriate.

Frequency-Domain Scaling
A fundamental component of the TQWT is scaling in the frequency domain:

• lowpass scaling — frequency-domain scaling that preserves low-frequency content
• highpass scaling — frequency-domain scaling that preserves high-frequency content

When you scale a signal x(n) that is sampled at a rate fs in the frequency domain, you change the
sample rate of the output signal y(n). If X(ω) and Y(ω) are the discrete-time Fourier transforms of x(n)
and y(n), respectively, and 0 < α < 1, lowpass scaling by α (LPS α) in the frequency domain is defined
as

Y(ω) = X(αω) .

For lowpass scaling, the output signal is sampled at α·fs. If 0 < β ≤ 1, highpass scaling by β (HPS β) is
defined as

Y(ω) =
X(βπ + (1− β)π), 0 < ω < π,

X(βπ − (1− β)π), − π < ω < 0.

For highpass scaling, the output signal is sampled at β·fs. Similar definitions exist for the cases α > 1
and β > 1.

TQWT Algorithm
The TQWT algorithm is implemented as a two-channel filter bank. In the analysis direction, the
lowpass subband v0(n) has a sample rate of α·fs, and the highpass subband v1(n) has a sample rate of
β·fs. We say that the filter bank is oversampled by a factor of α + β.
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The lowpass and highpass filters, H0(ω) and H1(ω) respectively, satisfy

H0(ω) = 1, ω ≤ (1− β) π
H0(ω) = 0, απ ≤ ω ≤ π

and

H1(ω) = 0, ω ≤ (1− β)π
H1(ω) = 1, απ ≤ ω ≤ π

In the TQWT algorithm, the analysis filter bank is applied iteratively to the lowpass output of the
previous iteration. The sample rate of the highpass output at kth iteration is β·αk-1·fs, where fs is the
sample rate of the original input signal. To ensure perfect reconstruction and well-localized (in time)
wavelets, the TQWT algorithm requires that α and β satisfy α + β > 1.

Redundancy and Q-factor
In the TQWT, 0 < α < 1 and 0 < β ≤ 1. As stated above, the sample rate at the kth iteration is
β ⋅ αk− 1 ⋅ fs, where fs is the original sample rate. As the iterations continue, the sample rate

converges to β
1− α ⋅ fs The quantity r = β

1− α  is the redundancy of the TQWT. The support of the

frequency response of the kth iteration of the highpass filter, H1
k(ω), is in the interval

[(1− β)αk− 1π, αk− 1π]. The center frequency fc of the highpass filter is approximately equal to the

average of the frequencies at the ends of the interval: fc = αk2− β
4α ⋅ fs. The bandwidth BW is the

length of the interval: BW = 1
4β ⋅ αk− 1 ⋅ fs. The Q-factor is Q =

fc
BW = 2− β

β .

To illustrate how the redundancy and Q-factor affect the transition bands of the lowpass and highpass
filters, H0(ω) and H1(ω) respectively, use the helper function helperPlotLowAndHighpassFilters
to plot the frequency responses of the filters for different redundancy and Q-factor values. Source
code for the helper function is in the same directory as this example file. The helper function uses
filters based on the Daubechies frequency response: θ(ω) = 1

2(1 + cosω) 2− cosω for |ω | ≤ π. For
more information, see [1].

qualityFactor = ;

redundancy = ;
helperPlotLowAndHighpassFilters(qualityFactor,redundancy)
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As implemented, the tqwt, itqwt, and tqwtmra functions use a fixed redundancy of 3. To see how
the Q-factor affects the wavelet, use the helper function helperPlotQfactorWavelet to plot the
wavelet in the time domain for different integer values of the Q-factor. Observe that for a fixed Q-
factor, the wavelet support decreases as the scale grows finer. For analyzing oscillatory signals,
higher Q-factors are better.

qf = ;

scale = ;
helperPlotQfactorWavelet(qf,scale)

     9
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Example: MRA of Audio Signal
Load and plot a recording of a female speaker saying "I saw the sheep". The sample rate is 22,050
Hz.

load wavsheep
plot(tsh,sheep)
axis tight
title('"I saw the sheep."')
xlabel("Time (sec)")
ylabel("Amplitude")

9 Special Topics

9-22



Obtain the TQWT using the default quality factor of 1.

[wt1,info1] = tqwt(sheep);

The output info1 is a structure array that contains information about the TQWT. The field
CenterFrequencies contains the normalized center frequencies (cycles/sample) of the wavelet
subbands. The field Bandwidths contains the approximate bandwidths of the wavelet subbands in
normalized frequency. For every subband, confirm that the ratio of the center frequency to the
bandwidth is equal to the quality factor.

ratios = info1.CenterFrequencies./info1.Bandwidths;
[min(ratios) max(ratios)]

ans = 1×2

     1     1

Display β, the highpass scaling factor, and α, the lowpass scaling factor. As implemented, the
functions tqwt, itqwt, and tqwtmra use the redundancy factor r = 3. Confirm that the scaling
factors satisfy the relation r = β

1− α .

[info1.Beta info1.Alpha]

ans = 1×2
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    1.0000    0.6667

r = info1.Beta/(1-info1.Alpha)

r = 3.0000

Identify the subbands that contain at least 15% of the total energy. Note that the last element of wt1
contains the lowpass subband coefficients. Confirm the sum of the percentages equals 100.

EnergyBySubband = cellfun(@(x)norm(x,2)^2,wt1)./norm(sheep,2)^2*100;
idx15 = EnergyBySubband >= 15;
bar(EnergyBySubband)
title("Percent Energy By Subband")
xlabel("Subband")
ylabel("Percent Energy")

sum(EnergyBySubband)

ans = 100.0000

Obtain a multiresolution analysis and sum those MRA components corresponding to previously
identified subbands.

mra = tqwtmra(wt1,length(sheep));
ts = sum(mra(idx15,:));
plot(tsh,[sheep ts'])
axis tight
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legend("Signal","Large Energy Components")
xlabel("Time (sec)")
ylabel("Amplitude")

Plot the first subband. Observe that this subband contains frequency content of the words "saw" and
"sheep".

mra = tqwtmra(wt1,length(sheep));
str = sprintf("Center Frq = %.2f Hz\nBandwidth = %.2f Hz",...
    fs*info1.CenterFrequencies(1),fs*info1.Bandwidths(1));
plot(tsh,sheep)
hold on
plot(tsh,mra(1,:));
hold off
axis tight
title(str)
legend("Signal","Subband 1")
xlabel("Time (sec)")
ylabel("Amplitude")
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To obtain a finer look of the first subband, obtain a second TQWT of the signal using a quality factor
of 3. Inspect the center frequencies, in hertz, of the first five subbands.

[wt3,info3] = tqwt(sheep,QualityFactor=3);
fs*info3.CenterFrequencies(1:5)

ans = 1×5
103 ×

    8.2688    6.8906    5.7422    4.7852    3.9876

The center frequencies of the first three subbands are higher than the center frequency of the first
subband of the first TQWT. Obtain the MRA of the signal using a quality factor of 3, and plot the first
three MRA components. Compare the frequency content of the words "saw" and "sheep" in the three
subbands. Most of the energy in the first subband comes from the word "saw".

mra = tqwtmra(wt3,length(sheep),QualityFactor=3);
for k=1:3
    str = sprintf("Center Frq = %.2f Hz",fs*info3.CenterFrequencies(k));
    subplot(3,1,k)
    plot(tsh,mra(k,:))
    axis tight
    title(str)
    ylabel("Amplitude")
end
xlabel("Time (sec)")
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Plot the percentage of total energy each subband contains when quality factor is 3. Confirm the sum
of the percentages equals 100.

EnergyBySubband = cellfun(@(x)norm(x,2)^2,wt3)./norm(sheep,2)^2*100;
figure
bar(EnergyBySubband)
title("Percent Energy By Subband")
xlabel("Subband")
ylabel("Percent Energy")
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sum(EnergyBySubband)

ans = 100.0000
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Practical Introduction to Continuous Wavelet Analysis
This example shows how to perform and interpret continuous wavelet analysis. The example helps
you answer common questions such as: What is the difference between continuous and discrete
wavelet analysis? Why are the frequencies, or scales in continuous wavelet analysis logarithmically
spaced? In what types of signal analysis problems are continuous wavelet techniques particularly
useful?

Continuous versus Discrete Wavelet Analysis

One question that people often have is: What is continuous about continuous wavelet analysis? After
all, you are presumably interested in doing wavelet analysis in a computer and not with pencil and
paper, and in a computer, nothing is really continuous. When the term continuous wavelet analysis is
used in a scientific computing setting, it means a wavelet analysis technique with more than one
wavelet per octave, or doubling of frequency, and where the shift between wavelets in time is one
sample. This provides the resulting continuous wavelet transform (CWT) has two properties that are
very useful in applications:

• The frequency content of a signal is more finely captured than with discrete wavelet techniques.
• The CWT has the same time resolution as the original data in each frequency band.

Additionally, in most applications of the CWT, it is useful to have complex-valued wavelets as opposed
to real-valued wavelets. The main reason for this is that complex-valued wavelets contain phase
information. See Compare Time-Varying Frequency Content in Two Signals on page 10-0  for an
example where phase information is useful. The examples in this tutorial use complex-valued
wavelets exclusively.

See [1 on page 10-0 ] for a detailed treatment of wavelet signal processing including continuous
wavelet analysis with complex-valued wavelets.

Filters or Voices Per Octave

A term commonly used to designate the number of wavelet filters per octave is voices per octave. To
illustrate this, construct a default continuous wavelet filter bank.

fb = cwtfilterbank

fb = 
  cwtfilterbank with properties:

      VoicesPerOctave: 10
              Wavelet: 'Morse'
    SamplingFrequency: 1
       SamplingPeriod: []
         PeriodLimits: []
         SignalLength: 1024
      FrequencyLimits: []
        TimeBandwidth: 60
    WaveletParameters: []
             Boundary: 'reflection'

If you examine the properties of the filter bank, by default there are 10 wavelet filters per octave (or
VoicesPerOctave). Plot the frequency responses of the wavelet filters.

freqz(fb)
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The wavelet filters in a continuous analysis share the important constant-Q property with all wavelet
filters, namely that their spread in frequency, or bandwidth, is proportional to their center frequency.
In other words, wavelet filters are broader at higher frequencies than they are at lower frequencies.
Because of the reciprocal relationship between time and frequency, this means that higher frequency
wavelets are better localized in time (have smaller time support) than lower frequency wavelets. To
see this, extract the center frequencies and time-domain wavelets from the filter bank. Plot the real
parts of two wavelets, one high-frequency and one low frequency, for comparison.

psi = wavelets(fb);
F = centerFrequencies(fb);
figure
plot(real(psi(9,:)))
ylabel('Amplitude')
yyaxis right
plot(real(psi(end-16,:)))
ylabel('Amplitude')
axis tight
S1 = 'Wavelets With Center Frequencies';
S2 = [num2str(F(9),'%1.2f') ' and ' num2str(F(end-16),'%1.2f') ' cycles/sample'];
title({S1 ; S2})
xlabel('Sample')
legend('0.25 c/s Wavelet','0.01 c/s Wavelet')
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In the frequency responses plot, the center frequencies do not exceed 0.45 cycles/sample. Find how
many wavelet filters the filter bank has in one octave, or doubling of frequency. Confirm the number
is equal to VoicesPerOctave.

numFilters10 = nnz(F >= 0.2 & F<= 0.4)

numFilters10 = 10

You can specify a different number of filters when you create the filter bank. Create a filter bank with
8 voices per octave and plot the frequency responses.

fb = cwtfilterbank('VoicesPerOctave',8);
figure
freqz(fb)
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Confirm that there are eight filters per octave in the filter bank.

F = centerFrequencies(fb);
numFilters8 = nnz(F >= 0.2 & F<= 0.4)

numFilters8 = 8

You can read a more detailed explanation of the differences between continuous and discrete wavelet
analysis at “Continuous and Discrete Wavelet Transforms”.

Logarithmically Spaced Center Frequencies

One aspect of wavelet analysis that people can find a bit confusing is the logarithmic spacing of the
filters.

Plot the center frequencies for the wavelet filter bank.

subplot(2,1,1)
plot(F)
ylabel('Cycles/Sample')
title('Wavelet Center Frequencies')
grid on
subplot(2,1,2)
semilogy(F)
grid on
ylabel('Cycles/Sample')
title('Semi-Log Scale')
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The plots show that the wavelet center frequencies are not linearly spaced as is commonly the case
with other filter banks. Specifically, the center frequencies are exponentially decreasing, so that the
step size between higher center frequencies is larger than the step size between lower center
frequencies. Why does this make sense for wavelets? Recall that wavelets are constant-Q filters,
which means their bandwidths are proportional to their center frequencies. If you have a filter bank
where every filter has the same bandwidth, like in the short-time Fourier transform, or spectrogram,
filter bank, then to maintain a constant frequency overlap between filters you need a constant step
size. However, with wavelets, the step size should be proportional to frequency like the bandwidth.
For continuous wavelet analysis, the most common spacing is the base 2^(1/NV), where NV is the
number of filters per octave, raised to integer powers. For comparison, the spacing used exclusively
in discrete wavelet analysis is the base 2 raised to integer powers.

See [2 on page 10-0 ] for a thorough treatment of discrete wavelet analysis. The following table
summarizes the main similarities and differences between discrete and continuous wavelet
techniques. For discrete techniques, the names of representative algorithms in MATLAB are provided
in parentheses.

10 Featured Examples — Time-Frequency Analysis

10-6



Time-Frequency Analysis

Because wavelets are simultaneously localized in time and frequency, they are useful for a number of
applications. For continuous wavelet analysis, the most common application area is time-frequency
analysis. Furthermore, the following properties of the CWT make it particularly useful for certain
classes of signals.

• The constant-Q property of the wavelet filters, which means higher frequency wavelets are shorter
in duration and lower frequency wavelets are longer in duration.

• The one-sample time shift between wavelet filters in continuous analysis

To understand which classes of signals are good candidates for continuous wavelet analysis, consider
a hyperbolic chirp signal.

load hyperbolicChirp
figure
plot(t,hyperbolchirp)
axis tight
xlabel('Time (s)')
ylabel('Amplitude')
title('Hyperbolic Chirp')
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The hyperbolic chirp is the sum of sin 15π
0 . 8− t  and sin 5π

0 . 8− t . The first component is active from
0.1 to 0.68 seconds, and the second component from 0.1 to 0.75 seconds. The frequency at each
instant in time, or the instantaneous frequencies, of these components are 7 . 5

(0 . 8− t)2
 and 2 . 5

(0 . 8− t)2
cycles/second respectively. This means that the instantaneous frequencies are very low near t = 0 and
increase rapidly as the time approaches 0.8 seconds.

Obtain the CWT of the chirp signal and plot the CWT along with the true instantaneous frequencies
plotted as dashed lines.

Fs = 1/mean(diff(t));
[cfs,f] = cwt(hyperbolchirp,Fs);
helperHyperbolicChirpPlot(cfs,f,t)
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We see that the CWT shows a time-frequency representation that accurately captures the
instantaneous frequencies of the hyperbolic chirp. Now analyze the same signal with the short-time
Fourier transform which uses constant bandwidth filters. Use the default window size and overlap.

pspectrum(hyperbolchirp,2048,'spectrogram')
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Note that the spectrogram is unable to distinguish the two different instantaneous frequencies when
the frequencies are low, or equivalently when the two instantaneous frequencies are close together.
Based on the input length of 2048, the spectrogram is computed by default using a window length of
128 samples. This is equivalent to a time resolution of 62.5 msec given the sampling rate of 2048 Hz.
Based on the default Kaiser window, this results in a frequency resolution of 41 Hz. This is too large
to differentiate the instantaneous frequencies near t=0. What happens if we reduce the frequency
resolution by approximately 1/2 in the hopes of better resolving the lower frequencies?

pspectrum(hyperbolchirp,2048,'spectrogram','FrequencyResolution',20, ...
    'OverlapPercent',90)
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The result is no better because any frequency separation we have gained at the lower frequencies
results in the higher instantaneous frequencies smearing together in time. The spectrogram is a
powerful time-frequency analysis technique, in fact arguably optimal in many applications, but like all
techniques it has limitations. This particular type of signal presents a major challenge for fixed
bandwidth filters. Ideally you want a long time response with narrow frequency support at low
frequencies and a short time support with broader frequency support at high frequencies. The
wavelet transform provides exactly that and is therefore quite successful in this case. An equivalent
way to state this is that the wavelet transform has better time resolution at higher frequencies and
better frequency resolution at lower frequencies.

In real-world signals, high-frequency events are often of short duration while lower frequency events
are longer in duration. As an example, load and plot a human electrocardiogram (ECG) signal. The
data is sampled at 180 Hz.

load wecg
tm = 0:1/180:numel(wecg)*1/180-1/180;
plot(tm,wecg)
grid on
axis tight
title('Human ECG')
xlabel('Time (s)')
ylabel('Amplitude')
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The data consists of slowly varying components punctuated by high frequency transients, which
represent the electrical impulse as it spreads through the heart. If we are interested in localizing
these impulsive events accurately in time, we want the analysis window (filter) to be short. We are
willing to sacrifice frequency resolution in this case for more accurate time localization. On the other
hand, to identify the lower frequency oscillations, it is preferred to have a longer analysis window.

[cfs,f] = cwt(wecg,180);
imagesc(tm,f,abs(cfs))
xlabel('Time (s)')
ylabel('Frequency (Hz)')
axis xy
caxis([0.025 0.25])
title('CWT of ECG Data')
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The CWT shows nearly steady-state oscillations near 30 Hz and 37 Hz as well as the transient events
denoting the heartbeats (QRS complexes). With this analysis, you are able to analyze both phenomena
simultaneously in the same time-frequency representation.

As another example of high frequency transients punctuating slowly varying components, consider a
time series of solar magnetic field magnitudes recorded hourly over the south pole of the sun by the
Ulysses spacecraft from 21:00 UT on December 4, 1993 to 12:00 UT on May 24, 1994. See [2 on page
10-0 ] pp. 218–220 for a complete description of this data.

load solarMFmagnitudes
plot(sm_dates,sm)
axis tight
title('Solar Magnetic Field Magnitudes')
xlabel('Date')
ylabel('Magnitude')
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The raw time data shows an overall roughly linear trend with several impulsive events, or shock
waves. Shock waves are produced when a fast solar wind or fast coronal mass ejection overtakes a
slow solar wind. In the time series, we see significant shock wave structures occurring approximately
on the following dates: February 11, February 26, March 10, April 3, and April 23.

Perform a continuous wavelet analysis of the data and plot the CWT magnitudes with the time series
data on the same plot.

helperSolarMFDataPlot(sm,sm_dates)
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The CWT captures the impulsive events at the same times they occur in the time series. However, the
CWT also reveals lower frequency features of the data hidden in the time series. For example,
starting before and extending beyond the shock wave structure on February 11, 1994, there is a low-
frequency steady state event (near 0.04 cycles/day). This results from a coronal mass ejection (CME)
event likely occurring in a different solar region which reached the Ulysses spacecraft at the same
time as the closer shock wave.

With the ECG and solar magnetic field magnitude examples, we have two time series from very
disparate mechanisms generating similar data: signals with both short-duration transients and longer
duration low frequency oscillations. Characterizing both in the same time-frequency representation is
advantageous.

Localize Transients

Transient events in time series data are often one of the most informative events. Transient events
can indicate an abrupt change in the data-generating mechanism, which you would like to detect and
localize in time. Examples include faults in machinery, problems with sensors, financial "shocks" in
economic time series, and many others. As an example, consider the following signal.

rng default;
dt = 0.001;
t = 0:dt:1.5-dt;
addNoise = 0.025*randn(size(t));
x = cos(2*pi*150*t).*(t>=0.1 & t<0.5)+sin(2*pi*200*t).*(t>0.7 & t <= 1.2);
x = x+addNoise;
x([222 800]) = x([222 800 ])+[-2 2];

 Practical Introduction to Continuous Wavelet Analysis

10-15



figure;
plot(t.*1000,x);
xlabel('Milliseconds'); ylabel('Amplitude');

The signal consists of two sinusoidal components that turn on and off abruptly with additional
"defects" at 222 milliseconds and 800 milliseconds. Obtain the CWT of the signal and plot only the
finest-scale, or highest center frequency, wavelet coefficients. Create a second axis and plot the
original time data.

cfs = cwt(x,1000,'amor');
plot(t,abs(cfs(1,:)),'linewidth',2)
ylabel('Magnitude')
set(gca,'XTick',[0.1 0.222 0.5 0.7 0.8 1.2])
yyaxis right
plot(t,x,'--')
ylabel('Amplitude')
xlabel('Seconds')
hold off
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The finest-scale CWT coefficients localize all the abrupt changes in the data. The CWT coefficients
show peaks where the sinusoidal components turn on and off as well as localizing the defects in the
sinusoids at 222 milliseconds and 800 milliseconds. Because the CWT coefficients have the same time
resolution as the data, it is often useful to use the CWT fine-scale magnitudes in order to detect
transient changes in the data. To most accurately localize these transients, use the finest-scale
(highest frequency) coefficients.

Sharpen Time-Frequency Analysis

Any time-frequency transform that uses filters, like wavelets in the case of the CWT, or modulated
windows in the case of the short-time Fourier transform, necessarily smears the picture of the signal
in time and frequency. The uncertainty in the localization of the signal's energy in time and frequency
comes from the spread of the filters in time and frequency. Synchrosqueezing is a technique that
attempts to compensate for this smearing by "squeezing" the transform along the frequency axis. To
illustrate this with wavelets, obtain the CWT of a signal consisting of an amplitude and frequency
modulated (AM-FM) signal and an 18-Hz sinusoid. The AM-FM signal is defined by the equation

(2 + cos(4πt))sin(2π231t + 90sin(3πt))

load multicompsig
sig = sig1+sig2;
cwt(sig,sampfreq,'amor')
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While the CWT shows both the 18-Hz sine wave as well as the AM-FM component, we see that the 18-
Hz sine wave certainly appears spread out in frequency. Now use synchrosqueezing to sharpen the
frequency estimates.

[sst,f] = wsst(sig,sampfreq);
figure
helperSSTPlot(sst,t,f)
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The synchrosqueezed transform has largely compensated for the spread in time frequency introduced
by the wavelet filters. Synchrosqueezing has squeezed the relatively broad peaks in time-frequency
into narrow ridges. You can actually extract these ridges and reconstruct the individual components
from the time-frequency ridges.

[fridge,iridge] = wsstridge(sst,5,f,'NumRidges',2);
figure;
contour(t,f,abs(sst));
grid on;
title('Synchrosqueezed Transform with Ridges');
xlabel('Time (secs)'); ylabel('Hz');
hold on;
plot(t,fridge,'k--','linewidth',2);
hold off;
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Finally reconstruct approximations to the components from the time-frequency ridges and compare
the results to the original components.

xrec = iwsst(sst,iridge);
helperPlotComponents(xrec,sig1,sig2,t)
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Compare Time-Varying Frequency Content in Two Signals

Often you have two signals which may be related in some way. One signal may determine behavior in
another, or the signals may simply be correlated because of some influence extrinsic to both signals.
If you obtain the CWT of two signals, you can use those transforms to obtain the wavelet coherence, a
measure of time-varying correlation.

Wavelet coherence for each time instant and center frequency produces a coherence value between 0
and 1 which quantifies the strength of the correlation between the two signals. Because complex-
valued wavelets are used, there is also phase information, which can be used to infer the lead-lag
relationship between the signals. As an example, consider the following two signals.

t = 0:0.001:2;
X = cos(2*pi*10*t).*(t>=0.5 & t<1.1)+ ...
        cos(2*pi*50*t).*(t>= 0.2 & t< 1.4)+0.25*randn(size(t));
Y = sin(2*pi*10*t).*(t>=0.6 & t<1.2)+...
        sin(2*pi*50*t).*(t>= 0.4 & t<1.6)+ 0.35*randn(size(t));
figure
subplot(2,1,1)
plot(t,X)
ylabel('Amplitude')
subplot(2,1,2)
plot(t,Y)
ylabel('Amplitude')
xlabel('Time (s)')
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Both signals consist two sine waves (10 Hz and 50 Hz) in white noise. The sine waves have slightly
different time supports. Note that the 10 Hz and 50 Hz components in Y are lagged by 1/4 cycle with
respect to the corresponding components in X. Plot the wavelet coherence of the two signals.

   figure
   wcoherence(X,Y,1000,'PhaseDisplayThreshold',0.7)
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The wavelet coherence estimate captures that the signals are highly correlated near 50 and 10 Hz
and only during the correct time intervals. The dark arrows on the plot show the phase relationship
between the signals. Here the arrows point straight up which indicates a 90-degree phase
relationship between the two signals. That is exactly the relationship dictated by the cosine-sine
terms in the signals.

For a real-world example, consider the El Nino Region 3 data and deseasonalized All Indian Rainfall
Index from 1871 to late 2003. The data are sampled monthly. The Nino 3 time series is a record of
monthly sea surface temperature anomalies in degrees Celsius recorded from the equatorial Pacific at
longitudes 90 degrees west to 150 degrees west, and latitudes 5 degrees north to 5 degrees south.
The All Indian Rainfall Index represents average Indian rainfalls in millimeters with seasonal
components removed.

load ninoairdata
figure
subplot(2,1,1)
plot(datayear,nino)
title('El Nino Region 3 -- SST Anomalies')
ylabel('Degrees Celsius')
xlabel('Year')
axis tight
subplot(2,1,2)
plot(datayear,air)
axis tight
title('Deseasonalized All Indian Rainfall Index')
ylabel('Millimeters')
xlabel('Year')
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Compute the wavelet coherence between the two time series. Set the phase display threshold to 0.7.
To display the periods in years, specify the sampling interval as 1/12 of a year.

figure
wcoherence(nino,air,years(1/12),'PhaseDisplayThreshold',0.7);
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The plot shows time-localized areas of strong coherence occurring in periods that correspond to the
typical El Nino cycles of 2 to 7 years. The plot also shows that there is an approximate 3/8-to-1/2
cycle delay between the two time series at those periods. This indicates that periods of sea warming
consistent with El Nino recorded off the coast of South America are correlated with rainfall amounts
in India approximately 17,000 km away, but that this effect is delayed by approximately 1/2 a cycle (1
to 3.5 years).

Conclusions

In this example you learned:

• What differentiates continuous from discrete wavelet analysis.
• How the constant-Q and one-sample time shift properties of the CWT allow you to analyze very
different signal structures simultaneously.

• A time-frequency reassignment technique using the CWT.
• How you can use the CWT to compare frequency content in two signals.

See “Time-Frequency Analysis” for many more highlighted topics and featured examples on
continuous wavelet analysis.
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CWT-Based Time-Frequency Analysis
This example shows how to use the continuous wavelet transform (CWT) to analyze signals jointly in
time and frequency. The example discusses the localization of transients where the CWT outperforms
the short-time Fourier transform (STFT). The example also shows how to synthesize time-frequency
localized signal approximations using the inverse CWT.

The CWT is compared with the STFT in a number of the examples. You must have Signal Processing
Toolbox™ to run the spectrogram examples.

Time-Frequency Analysis of Modulated Signals

Load a quadratic chirp signal and show a plot of its spectrogram. The signal's frequency begins at
approximately 500 Hz at t = 0, decreases to 100 Hz at t=2, and increases back to 500 Hz at t=4. The
sampling frequency is 1 kHz.

load quadchirp;
fs = 1000;
[S,F,T] = spectrogram(quadchirp,100,98,128,fs);
helperCWTTimeFreqPlot(S,T,F,'surf','STFT of Quadratic Chirp','Seconds','Hz')

Obtain a time-frequency plot of this signal using the CWT.

[cfs,f] = cwt(quadchirp,fs,'WaveletParameters',[14,200]);
helperCWTTimeFreqPlot(cfs,tquad,f,'surf','CWT of Quadratic Chirp','Seconds','Hz')
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The CWT with the bump wavelet produces a time-frequency analysis very similar to the STFT.

Frequency and amplitude modulation occur frequently in natural signals. Use the CWT to obtain a
time-frequency analysis of an echolocation pulse emitted by a big brown bat (Eptesicus Fuscus). The
sampling interval is 7 microseconds. Use the bump wavelet with 32 voices per octave. Thanks to
Curtis Condon, Ken White, and Al Feng of the Beckman Center at the University of Illinois for the bat
data and permission to use it in this example.

load batsignal
t = 0:DT:(numel(batsignal)*DT)-DT;
[cfs,f] = cwt(batsignal,'bump',1/DT,'VoicesPerOctave',32);
helperCWTTimeFreqPlot(cfs,t*1e6,f./1000,'surf','CWT of Bat Echolocation',...
    'Microseconds','kHz')
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Obtain and plot the STFT of the bat data.

[S,F,T] = spectrogram(batsignal,50,48,128,1/DT);
helperCWTTimeFreqPlot(S,T.*1e6,F./1e3,'surf','Bat Echolocation (STFT)',...
    'Microseconds','kHz')
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For both the simulated and natural modulated signals, the CWT provides results similar to the STFT.

Detection of Transients in Oscillations Using the CWT

There are certain situations in time-frequency analysis where the CWT can provide a more
informative time-frequency transform than the short-time Fourier transform. One such situation
occurs when the signal is corrupted by transients. The appearance and disappearance of these
transients often has physical significance. Therefore, it is important to be able to localize these
transients in addition to characterizing oscillatory components in the signal. To simulate this, create a
signal consisting of two sine waves with frequencies of 150 and 200 Hz. The sampling frequency is 1
kHz. The sine waves have disjoint time supports. The 150-Hz sine wave occurs between 100 and 300
milliseconds. The 200-Hz sine wave occurs from 700 milliseconds to 1 second. Additionally, there are
two transients at 222 and 800 milliseconds. The signal is corrupted by noise.

rng default;
dt = 0.001;
t = 0:dt:1-dt;
addNoise = 0.025*randn(size(t));
x = cos(2*pi*150*t).*(t>=0.1 & t<0.3)+sin(2*pi*200*t).*(t>0.7);
x = x+addNoise;
x([222 800]) = x([222 800 ])+[-2 2];
figure;
plot(t.*1000,x);
xlabel('Milliseconds'); ylabel('Amplitude');
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Zoom in on the two transients to see that they represent disturbances in the oscillations at 150 and
200 Hz.

subplot(2,1,1)
plot(t(184:264).*1000,x(184:264));
ylabel('Amplitude')
title('Transients')
axis tight;
subplot(2,1,2)
plot(t(760:840).*1000,x(760:840));
ylabel('Amplitude')
axis tight;
xlabel('Milliseconds')
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Obtain and plot the CWT using the analytic Morlet wavelet.

figure;
[cfs,f] = cwt(x,1/dt,'amor');
contour(t*1000,f,abs(cfs))
grid on
c = colorbar;
xlabel('Milliseconds')
ylabel('Frequency')
c.Label.String = 'Magnitude';
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The analytic Morlet wavelet exhibits poorer frequency localization than the bump wavelet, but
superior time localization. This makes the Morlet wavelet a better choice for transient localization.
Plot the magnitude-squared fine scale coefficients to demonstrate the localization of the transients.

figure;
wt = cwt(x,1/dt,'amor');
plot(t.*1000,abs(wt(1,:)).^2);
xlabel('Milliseconds'); ylabel('Magnitude');
grid on;
title('Analytic Morlet Wavelet -- Fine Scale Coefficients');
hold off
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The wavelet shrinks to enable time localization of the transients with a high degree of accuracy while
stretching to permit frequency localization of the oscillations at 150 and 200 Hz.

The STFT can only localize the transients to the width of the window. You have to plot the STFT in
decibels (dB) to be able to visualize the transients.

[S,F,T] = spectrogram(x,50,48,128,1000);
surf(T.*1000,F,20*log10(abs(S)),'edgecolor','none'); view(0,90);
axis tight;
shading interp;
colorbar
xlabel('Time'), ylabel('Hz');
title('STFT')
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The transients appear in the STFT only as a broadband increase in power. Compare short-time power
estimates obtained from the STFT before (centered at 183 msec) and after (centered at 223 msec) the
appearance of the first transient.

figure;
plot(F,20*log10(abs(S(:,80))));
hold on;
plot(F,20*log10(abs(S(:,100))),'r');
legend('T = 183 msec','T = 223 msec')
xlabel('Hz');
ylabel('dB');
hold off;
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The STFT does not provide the ability to localize transients to the same degree as the CWT.

Removing A Time-Localized Frequency Component Using the Inverse CWT

Create a signal consisting of exponentially weighted sine waves. There are two 25-Hz components --
one centered at 0.2 seconds and one centered at 0.5 seconds. There are two 70-Hz components -- one
centered at 0.2 and one centered at 0.8 seconds. The first 25-Hz and 70-Hz components co-occur in
time.

t = 0:1/2000:1-1/2000;
dt = 1/2000;
x1 = sin(50*pi*t).*exp(-50*pi*(t-0.2).^2);
x2 = sin(50*pi*t).*exp(-100*pi*(t-0.5).^2);
x3 = 2*cos(140*pi*t).*exp(-50*pi*(t-0.2).^2);
x4 = 2*sin(140*pi*t).*exp(-80*pi*(t-0.8).^2);
x = x1+x2+x3+x4;
figure;
plot(t,x)
title('Superimposed Signal')
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Obtain and display the CWT.

cwt(x,2000);
title('Analytic CWT using Default Morse Wavelet');
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Remove the 25 Hz component which occurs from approximately 0.07 to 0.3 seconds by zeroing out
the CWT coefficients. Use the inverse CWT (icwt) to reconstruct an approximation to the signal.

[cfs,f] = cwt(x,2000);
T1 = .07;  T2 = .33;
F1 = 19;   F2 = 34;
cfs(f > F1 & f < F2, t> T1 & t < T2) = 0;
xrec = icwt(cfs);

Display the CWT of the reconstructed signal. The initial 25-Hz component is removed.

cwt(xrec,2000)
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Plot the original signal and the reconstruction.

subplot(2,1,1);
plot(t,x);
title('Original Signal');
subplot(2,1,2);
plot(t,xrec)
title('Signal with first 25-Hz component removed');
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Finally, compare the reconstructed signal with the original signal without the 25-Hz component
centered at 0.2 seconds.

y = x2+x3+x4;
figure;
plot(t,xrec)
hold on
plot(t,y,'r--')
legend('Inverse CWT approximation','Original signal without 25-Hz');
hold off
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Determining Exact Frequency Through the Analytic CWT

When you obtain the wavelet transform of a sine wave using an analytic wavelet, the analytic CWT
coefficients actually encode the frequency.

To illustrate this, consider an otoacoustic emission obtained from a human ear. Otoacoustic emissions
(OAEs) are emitted by the cochlea (inner ear) and their presence are indicative of normal hearing.
Load and plot the OAE data. The data are sampled at 20 kHz.

load dpoae
plot(t.*1000,dpoaets)
xlabel('Milliseconds')
ylabel('Amplitude')
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The emission was evoked by a stimulus beginning at 25 milliseconds and ending at 175 milliseconds.
Based on the experimental parameters, the emission frequency should be 1230 Hz. Obtain and plot
the CWT.

cwt(dpoaets,'bump',20000);
xlabel('Milliseconds');
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You can investigate the time evolution of the OAE by finding the CWT coefficients closest in frequency
to 1230 Hz and examining their magnitudes as a function of time. Plot the magnitudes along with
time markers designating the beginning and end of the evoking stimulus.

[dpoaeCWT,f] = cwt(dpoaets,'bump',20000);
[~,idx1230] = min(abs(f-1230));
cfsOAE = dpoaeCWT(idx1230,:);
plot(t.*1000,abs(cfsOAE));
hold on
AX = gca;
plot([25 25],[AX.YLim(1) AX.YLim(2)],'r')
plot([175 175],[AX.YLim(1) AX.YLim(2)],'r')
xlabel('Milliseconds'), ylabel('Magnitude');
title('CWT Coefficient Magnitudes')
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There is some delay between the onset of the evoking stimulus and the OAE. Once the evoking
stimulus is terminated, the OAE immediately begins to decay in magnitude.

Another way to isolate the emission is to use the inverse CWT to reconstruct a frequency-localized
approximation in the time domain.

Reconstruct a frequency-localized emission approximation by inverting the CWT in the frequency
range [1150 1350] Hz. Plot the original data along with the reconstruction and markers indicating the
beginning and end of the evoking stimulus.

xrec = icwt(dpoaeCWT,'bump',f,[1150 1350]);
figure
plot(t.*1000,dpoaets)
hold on;
plot(t.*1000,xrec,'r')
AX = gca;
ylim = AX.YLim;
plot([25 25],ylim,'k')
plot([175 175],ylim,'k')
xlabel('Milliseconds')
ylabel('Amplitude')
title('Frequency-Localized Reconstruction of Emission')
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In the time-domain data, you clearly see how the emission ramps on and off at the application and
termination of the evoking stimulus.

It is important to note that even though a range of frequencies were selected for the reconstruction,
the analytic wavelet transform actually encodes the exact frequency of the emission. To demonstrate
this, take the Fourier transform of the emission approximation reconstructed from the analytic CWT.

xdft = fft(xrec);
freq = 0:2e4/numel(xrec):1e4;
xdft = xdft(1:numel(xrec)/2+1);
figure
plot(freq,abs(xdft));
xlabel('Hz'); ylabel('Magnitude')
title('Fourier Transform of CWT-Based Signal Approximation');
[~,maxidx] = max(abs(xdft));
fprintf('The frequency is %4.2f Hz\n',freq(maxidx));

The frequency is 1230.00 Hz
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Conclusions and Further Reading

In this example you learned how to use the CWT to obtain a time-frequency analysis of a 1-D signal
using an analytic wavelet with cwt. You saw examples of signals where the CWT provides similar
results to the STFT and an example where the CWT can provide more interpretable results than the
STFT. Finally, you learned how to reconstruct time-scale (frequency) localized approximations to a
signal using icwt.

For more information on the CWT see the Wavelet Toolbox documentation.

Reference: Mallat, S. "A Wavelet Tour of Signal Processing: The Sparse Way", Academic Press, 2009.

Appendix

The following helper functions are used in this example.

• helperCWTTimeFreqPlot
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Time-Frequency Reassignment and Mode Extraction with
Synchrosqueezing

This example shows how to use wavelet synchrosqueezing to obtain a higher resolution time-
frequency analysis. The example also shows how to extract and reconstruct oscillatory modes in a
signal.

In many practical applications across a wide range of disciplines, signals occur which consist of a
number of oscillatory components, or modes. These components often exhibit slow variations in
amplitude and smooth changes in frequency over time. Signals consisting of one or more such
components are called amplitude and frequency modulated (AM-FM). Individual AM-FM components
of signals are also referred to as intrinsic modes, or intrinsic mode functions (IMF).

Wavelet synchrosqueezing is a method for analyzing signals consisting of a sum of well-separated
AM-FM components, or IMFs. With synchrosqueezing, you can sharpen the time-frequency analysis of
a signal as well as reconstruct individual oscillatory modes for isolated analysis.

Sharpen Time-Frequency Analysis

Synchrosqueezing can compensate for the spreading in time and frequency caused by linear
transforms like the short-time Fourier and continuous wavelet transforms (CWT). In the CWT, the
wavelet acts like a measuring device for the input signal. Accordingly, any time frequency analysis
depends not only on the intrinsic time-frequency properties of the signal, but also on the properties of
the wavelet.

To demonstrate this, first obtain and plot the CWT of a quadratic chirp signal. The signal's frequency
begins at approximately 500 Hz at t = 0, decreases to 100 Hz at t=2, and increases back to 500 Hz at
t=4. The sampling frequency is 1 kHz.

load quadchirp;
fs = 1000;
[cfs,f] = cwt(quadchirp,'bump',fs);
helperCWTTimeFreqPlot(cfs,tquad,f,'surf','CWT of Quadratic Chirp','Seconds','Hz')
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Note that the energy of the quadratic chirp is smeared in the time-frequency plane by the time-
frequency concentration of the wavelet. For example, if you focus on the time-frequency
concentration of the CWT magnitudes near 100 Hz, you see that it is narrower than that observed
near 500 Hz. This is not an intrinsic property of the chirp. It is an artifact of the measuring device
(the CWT). Compare the time-frequency analysis of the same signal obtained with the
synchrosqueezed transform.

wsst(quadchirp,1000,'bump')
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The synchrosqueezed transform uses the phase information in the CWT to sharpen the time-
frequency analysis of the chirp.

Reconstruct Signal from Synchrosqueezed Transform

You can reconstruct a signal from the synchrosqueezed transform. This is an advantage
synchrosqueezing has over other time-frequency reassignment techniques. The transform does not
provide a perfect inversion, but the reconstruction is stable and the results are typically quite good.
To demonstrate this, load, plot, and play a recording of a female speaker saying "I saw the sheep".

load wavsheep;
plot(tsh,sheep)
title(' "I saw the sheep." ');
xlabel('Time (secs)'); ylabel('Amplitude');
grid on;
hplayer = audioplayer(sheep,fs);
play(hplayer);
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Plot the synchrosqueezed transform of the speech sample.

[sst,f] = wsst(sheep,fs,'bump');
contour(tsh,f,abs(sst));
title('Wavelet Synchrosqueezed Transform');
xlabel('Time (secs)'); ylabel('Hz');
grid on;
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Reconstruct the signal from the synchrosqueezed transform and compare the reconstruction to the
original waveform.

xrec = iwsst(sst,'bump');
plot(tsh,sheep)
hold on;
plot(tsh,sheep,'r');
xlabel('Time (secs)'); ylabel('Amplitude');
grid on;
title('Reconstruction From Synchrosqueezed Transform');
legend('Original Waveform','Synchrosqueezed Reconstruction');
sprintf('The maximum sample-by-sample difference is %1.3f', ...
    norm(abs(xrec-sheep),Inf))
hold off;

ans =

    'The maximum sample-by-sample difference is 0.004'
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Play the reconstructed signal and compare with the original.

hplayerRecon = audioplayer(xrec,fs);
play(hplayerRecon)

The ability to reconstruct from the synchrosqueezed transform enables you to extract signal
components from localized regions of the time-frequency plane. The next section demonstrates this
idea.

Identify Ridges and Reconstruct Modes

A time-frequency ridge is defined by the local maxima of a time-frequency transform. Because the
synchrosqueezed transform concentrates oscillatory modes in a narrow region of the time-frequency
plane and is invertible, you can reconstruct individual modes by:

1 Identifying ridges in the magnitudes of the synchrosqueezed transform
2 Reconstructing along the ridge

This allows you to isolate and analyze modes which may be difficult or impossible to extract with
conventional bandpass filtering.

To illustrate this, consider an echolocation pulse emitted by a big brown bat (Eptesicus Fuscus). The
sampling interval is 7 microseconds. Thanks to Curtis Condon, Ken White, and Al Feng of the
Beckman Center at the University of Illinois for the bat data and permission to use it in this example.

Load the data and plot the synchrosqueezed transform.
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load batsignal;
time = 0:DT:(numel(batsignal)*DT)-DT;
[sst,f] = wsst(batsignal,1/DT);
contour(time.*1e6,f./1000,abs(sst));
grid on;
xlabel('microseconds'); ylabel('kHz');
title('Bat Echolocation Pulse');

Note that there are two modulated modes that trace out curved paths in the time-frequency plane.
Attempting to separate these components with conventional bandpass filtering does not work
because the filter would need to operate in a time-varying manner. For example, a conventional filter
with a passband of 18 to 40 kHz would capture the energy in the earliest-occurring pulse, but would
also capture energy from the later pulse.

Synchrosqueezing can separate these components by filtering and reconstructing the
synchrosqueezed transform in a time-varying manner.

First, extract the two highest-energy ridges from the synchrosqueezed transform.

[fridge,iridge] = wsstridge(sst,5,f,'NumRidges',2);
hold on;
plot(time.*1e6,fridge./1e3,'k--','linewidth',2);
hold off;
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The ridges follow the time-varying nature of the modulated pulses. Reconstruct the signal modes by
inverting the synchrosqueezed transform.

xrec = iwsst(sst,iridge);
subplot(2,1,1)
plot(time.*1e6,batsignal); hold on;
plot(time.*1e6,xrec(:,1),'r');
grid on; ylabel('Amplitude');
title('Bat Echolocation Pulse with Reconstructed Modes');
legend('Original Signal','Mode 1','Location','SouthEast');
subplot(2,1,2);
plot(time.*1e6,batsignal); hold on;
grid on;
plot(time.*1e6,xrec(:,2),'r');
xlabel('microseconds'); ylabel('Amplitude');
legend('Original Signal','Mode 2','Location','SouthEast');
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You see that synchrosqueezing has extracted the two modes. If you sum the two dominant modes at
each point in time, you essentially recover the entire echolocation pulse. In this application,
synchrosqueezing allows you to isolate signal components where a traditional bandpass filter would
fail.

Penalty Term in Ridge Extraction

The previous mode extraction example used a penalty term in the ridge extraction without
explanation.

When you extract multiple ridges, or you have a single modulated component in additive noise, it is
important to use a penalty term in the ridge extraction. The penalty term serves to prevent jumps in
frequency as the region of highest energy in the time-frequency plane moves.

To demonstrate this, consider a two-component signal consisting of an amplitude and frequency-
modulated signal plus a sine wave. The signal is sampled at 1000 Hz. The sine wave frequency is 18
Hz. The AM-FM signal is defined by:

Load the signal and obtain the synchrosqueezed transform.

load multicompsig;
sig = sig1+sig2;
[sst,f] = wsst(sig,sampfreq);
figure;
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contour(t,f,abs(sst));
grid on;
title('Synchrosqueezed Transform of AM-FM Signal Plus Sine Wave');
xlabel('Time (secs)'); ylabel('Hz');

First attempt to extract two ridges from the synchrosqueezed transform without using a penalty.

[fridge,iridge] = wsstridge(sst,f,'NumRidges',2);
hold on;
plot(t,fridge,'k--','linewidth',2);
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You see that the ridge jumps between the AM-FM signal and the sine wave as the region of highest
energy in the time-frequency plane changes between the two signals. Add a penalty term of 5 to the
ridge extraction. In this case, jumps in frequency are penalized by a factor of 5 times the distance
between the frequencies in terms of bins (not actual frequency in hertz).

[fridge,iridge] = wsstridge(sst,5,f,'NumRidges',2);
figure;
contour(t,f,abs(sst));
grid on;
title('Synchrosqueezed Transform of AM-FM Signal Plus Sine Wave');
xlabel('Time (secs)'); ylabel('Hz');
hold on;
plot(t,fridge,'k--','linewidth',2);
hold off;
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With the penalty term, the two modes of oscillation are isolated in two separate ridges. Reconstruct
the modes along the time-frequency ridges from the synchrosqueezed transform.

xrec = iwsst(sst,iridge);

Plot the reconstructed modes along with the original signals for comparison.

subplot(2,2,1)
plot(t,xrec(:,1)); grid on;
ylabel('Amplitude');
title('Reconstructed Mode');
ylim([-1.5 1.5]);
subplot(2,2,2);
plot(t,sig2); grid on;
ylabel('Amplitude');
title('Original Component');
ylim([-1.5 1.5]);
subplot(2,2,3);
plot(t,xrec(:,2)); grid on;
xlabel('Time (secs)'); ylabel('Amplitude');
title('Reconstructed Mode');
ylim([-1.5 1.5]);
subplot(2,2,4);
plot(t,sig1); grid on;
xlabel('Time (secs)'); ylabel('Amplitude');
title('Original Component');
ylim([-1.5 1.5]);
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Conclusions

In this example, you learned how to use wavelet synchrosqueezing to obtain a higher-resolution time-
frequency analysis.

You also learned how to identify maxima ridges in the synchrosqueezed transform and reconstruct
the time waveforms corresponding to those modes. Mode extraction from the synchrosqueezing
transform can help you isolate signal components, which are difficult or impossible to isolate with
conventional bandpass filtering.
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Appendix

The following helper function is used in this example.
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• helperScaleVector
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Frequency- and Time-Localized Reconstruction from the
Continuous Wavelet Transform

Reconstruct a frequency-localized approximation of Kobe earthquake data. Extract information from
the CWT for frequencies in the range of [0.030, 0.070] Hz.

load kobe

Obtain the CWT of the data.

[wt,f] = cwt(kobe,1);

Reconstruct the earthquake data, adding the signal mean back into the transformed data.

xrec = icwt(wt,[],f,[0.030 0.070],'SignalMean',mean(kobe));

Plot and compare the original data and the data for frequencies in the range of [0.030, 0.070] Hz.

subplot(2,1,1)
plot(kobe)
grid on
title('Original Data')
subplot(2,1,2)
plot(xrec)
grid on
title('Bandpass Filtered Reconstruction [0.030 0.070] Hz')
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You can also use time periods, instead of frequency, with the CWT. Load the El Nino data and obtain
its CWT, specifying the time period in years.

load ninoairdata
[cfs,period] = cwt(nino,years(1/12));

Obtain the inverse CWT for years 2 through 8.

xrec = icwt(cfs,[],period,[years(2) years(8)]);

Plot the CWT of the reconstructed data. Note the absence of energy outside the band of periods from
2 to 8 years.

figure
cwt(xrec,years(1/12))

Compare the original data with the reconstructed data for years 2 through 8.

figure
subplot(2,1,1)
plot(nino)
grid on
title('Original Data')
subplot(2,1,2)
plot(xrec)
grid on
title('El Nino Data - Years 2-8')
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Compare Time-Frequency Content in Signals with Wavelet
Coherence

This example shows how to use wavelet coherence and the wavelet cross-spectrum to identify time-
localized common oscillatory behavior in two time series. The example also compares the wavelet
coherence and cross-spectrum against their Fourier counterparts. You must have Signal Processing
Toolbox™ to run the examples using mscohere (Signal Processing Toolbox) and cpsd (Signal
Processing Toolbox).

Many applications involve identifying and characterizing common patterns in two time series. In
some situations, common behavior in two time series results from one time series driving or
influencing the other. In other situations, the common patterns result from some unobserved
mechanism influencing both time series.

For jointly stationary time series, the standard techniques for characterizing correlated behavior in
time or frequency are cross-correlation, the (Fourier) cross-spectrum, and coherence. However, many
time series are nonstationary, meaning that their frequency content changes over time. For these
time series, it is important to have a measure of correlation or coherence in the time-frequency plane.

You can use wavelet coherence to detect common time-localized oscillations in nonstationary signals.
In situations where it is natural to view one time series as influencing another, you can use the phase
of the wavelet cross-spectrum to identify the relative lag between the two time series.

Locate Common Time-Localized Oscillations and Determine Phase Lag

For the first example, use two signals consisting of time-localized oscillations at 10 and 75 Hz. The
signals are six seconds in duration and are sampled at 1000 Hz. The 10-Hz oscillation in the two
signals overlaps between 1.2 and 3 seconds. The overlap for the 75-Hz oscillation occurs between 0.4
and 4.4 seconds. The 10 and 75-Hz components are delayed 1/4 of a cycle in the Y-signal. This means
there is a π/2 (90 degree) phase lag between the 10 and 75-Hz components in the two signals. Both
signals are corrupted by additive white Gaussian noise.

load wcoherdemosig1
subplot(2,1,1)
plot(t,x1)
title('X Signal')
grid on
ylabel('Amplitude')
subplot(2,1,2)
plot(t,y1)
title('Y Signal')
ylabel('Amplitude')
grid on
xlabel('Seconds')

10 Featured Examples — Time-Frequency Analysis

10-64



Obtain the wavelet coherence and display the result. Enter the sampling frequency (1000 Hz) to
obtain a time-frequency plot of the wavelet coherence. In regions of the time-frequency plane where
coherence exceeds 0.5, the phase from the wavelet cross-spectrum is used to indicate the relative lag
between coherent components. Phase is indicated by arrows oriented in a particular direction. Note
that a 1/4 cycle lag in the Y-signal at a particular frequency is indicated by an arrow pointing
vertically.

figure
wcoherence(x1,y1,1000)
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The two time-localized regions of coherent oscillatory behavior at 10 and 75 Hz are evident in the
plot of the wavelet coherence. The phase relationship is shown by the orientation of the arrows in the
regions of high coherence. In this example, you see that the wavelet cross-spectrum captures the π/2
(1/4 cycle) phase lag between the two signals at 10 and 75 Hz.

The white dashed line shows the cone of influence where edge effects become significant at different
frequencies (scales). Areas of high coherence occurring outside or overlapping the cone of influence
should be interpreted with caution.

Repeat the same analysis using the Fourier magnitude-squared coherence and cross-spectrum.

figure
mscohere(x1,y1,500,450,[],1000)
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[Pxy,F] = cpsd(x1,y1,500,450,[],1000);
Phase = (180/pi)*angle(Pxy);
figure
plot(F,Phase)
title('Cross-Spectrum Phase')
xlabel('Hz')
ylabel('Phase (Degrees)')
grid on
ylim([0 180])
xlim([0 200])
hold on
plot([10 10],[0 180],'r--')
plot([75 75],[0 180],'r--')
plot(F,90*ones(size(F)),'r--')
hold off
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The Fourier magnitude-squared coherence obtained from mscohere (Signal Processing Toolbox)
clearly identifies the coherent oscillations at 10 and 75 Hz. In the phase plot of the Fourier cross-
spectrum, the vertical red dashed lines mark 10 and 75 Hz while the horizontal line marks an angle of
90 degrees. You see that the phase of the cross-spectrum does a reasonable job of capturing the
relative phase lag between the components.

However, the time-dependent nature of the coherent behavior is completely obscured by these
techniques. For nonstationary signals, characterizing coherent behavior in the time-frequency plane
is much more informative.

The following example repeats the preceding one while changing the phase relationship between the
two signals. In this case, the 10-Hz component in the Y-signal is delayed by 3/8 of a cycle (3π/4
radians). The 75-Hz component in the Y-signal is delayed by 1/8 of a cycle (π/4 radians). Plot the
wavelet coherence and threshold the phase display to only show areas where the coherence exceeds
0.75.

load wcoherdemosig2
wcoherence(x2,y2,1000,'phasedisplaythreshold',0.75)
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Phase estimates obtained from the wavelet cross-spectrum capture the relative lag between the two
time series at 10 and 75 Hz.

If you prefer to view data in terms of periods rather than frequency, you can use a MATLAB duration
object to provide wcoherence with a sample time.

wcoherence(x2,y2,seconds(0.001),'phasedisplaythreshold',0.75)
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Note that cone of influence has inverted because the wavelet coherence is now plotted in terms of
periods.

Determine Coherent Oscillations and Delay in Climate Data

Load and plot the El Nino Region 3 data and deseasonalized All Indian Rainfall Index from 1871 to
late 2003. The data are sampled monthly. The Nino 3 time series is a record of monthly sea surface
temperature anomalies in degrees Celsius recorded from the equatorial Pacific at longitudes 90
degrees west to 150 degrees west and latitudes 5 degrees north to 5 degrees south. The All Indian
Rainfall Index represents average Indian rainfalls in millimeters with seasonal components removed.

load ninoairdata
figure
subplot(2,1,1)
plot(datayear,nino)
title('El Nino Region 3 -- SST Anomalies')
ylabel('Degrees Celsius')
axis tight
subplot(2,1,2)
plot(datayear,air)
axis tight
title('Deseasonalized All Indian Rainfall Index')
ylabel('Millimeters')
xlabel('Year')
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Plot the wavelet coherence with phase estimates. For this data, it is more natural to look at
oscillations in terms of their periods in years. Enter the sampling interval (period) as a duration
object with units of years so that the output periods are in years. Show the relative lag between the
two climate time series only where the magnitude-squared coherence exceeds 0.7.

figure
wcoherence(nino,air,years(1/12),'phasedisplaythreshold',0.7)
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The plot shows time-localized areas of strong coherence occurring in periods that correspond to the
typical El Nino cycles of 2 to 7 years. The plot also shows that there is an approximate 3/8-to-1/2
cycle delay between the two time series at those periods. This indicates that periods of sea warming
consistent with El Nino recorded off the coast of South America are correlated with rainfall amounts
in India approximately 17,000 km away, but that this effect is delayed by approximately 1/2 a cycle (1
to 3.5 years).

Find Coherent Oscillations in Brain Activity

In the previous examples, it was natural to view one time series as influencing the other. In these
cases, examining the lead-lag relationship between the data is informative. In other cases, it is more
natural to examine the coherence alone.

For an example, consider near-infrared spectroscopy (NIRS) data obtained in two human subjects.
NIRS measures brain activity by exploiting the different absorption characteristics of oxygenated and
deoxygenated hemoglobin. The data is taken from Cui, Bryant, & Reiss [1] and was kindly provided
by the authors for this example. The recording site was the superior frontal cortex for both subjects.
The data is sampled at 10 Hz. In the experiment, the subjects alternatively cooperated and competed
on a task. The period of the task was approximately 7.5 seconds.

load NIRSData
figure
plot(tm,NIRSData(:,1))
hold on
plot(tm,NIRSData(:,2),'r')
legend('Subject 1','Subject 2','Location','NorthWest')
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xlabel('Seconds')
title('NIRS Data')
grid on
hold off

Obtain the wavelet coherence as a function of time and frequency. You can use wcoherence to output
the wavelet coherence, cross-spectrum, scale-to-frequency, or scale-to-period conversions, as well as
the cone of influence. In this example, the helper function helperPlotCoherence packages some
useful commands for plotting the outputs of wcoherence.

[wcoh,~,F,coi] = wcoherence(NIRSData(:,1),NIRSData(:,2),10,'numscales',16);
helperPlotCoherence(wcoh,tm,F,coi,'Seconds','Hz')
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In the plot, you see a region of strong coherence throughout the data collection period around 1 Hz.
This results from the cardiac rhythms of the two subjects. Additionally, you see regions of strong
coherence around 0.13 Hz. This represents coherent oscillations in the subjects' brains induced by
the task. If it is more natural to view the wavelet coherence in terms of periods rather than
frequencies, you can input the sampling interval as a duration object. wcoherence provides scale-to-
period conversions.

[wcoh,~,P,coi] = wcoherence(NIRSData(:,1),NIRSData(:,2),seconds(0.1),...
    'numscales',16);
helperPlotCoherence(wcoh,tm,seconds(P),seconds(coi),...
    'Time (secs)','Periods (Seconds)')
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Again, note the coherent oscillations corresponding to the subjects' cardiac activity occurring
throughout the recordings with a period of approximately one second. The task-related activity is also
apparent with a period of approximately 8 seconds. Consult Cui, Bryant, & Reiss [1] for a more
detailed wavelet analysis of this data.

Conclusions

In this example you learned how to use wavelet coherence to look for time-localized coherent
oscillatory behavior in two time series. For nonstationary signals, it is often more informative if you
have a measure of coherence that provides simultaneous time and frequency (period) information.
The relative phase information obtained from the wavelet cross-spectrum can be informative when
one time series directly affects oscillations in the other.

Appendix

The following helper function is used in this example.

• helperPlotCoherence
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Continuous and Discrete Wavelet Analysis of Frequency Break
This example shows the difference between the discrete wavelet transform (DWT) and the
continuous wavelet transform (CWT).

When is Continuous Analysis More Appropriate than Discrete Analysis?

To answer this, consider the related questions: Do you need to know all values of a continuous
decomposition to reconstruct the signal exactly? Can you perform nonredundant analysis? When the
energy of the signal is finite, not all values of a decomposition are needed to exactly reconstruct the
original signal, provided that you are using a wavelet that satisfies some admissibility condition.
Usual wavelets satisfy this condition. In this case, a continuous-time signal is characterized by the
knowledge of the discrete transform. In such cases, discrete analysis is sufficient and continuous
analysis is redundant.

Continuous analysis is often easier to interpret, since its redundancy tends to reinforce the traits and
makes all information more visible. This is especially true of very subtle information. Thus, the
analysis gains in "readability" and in ease of interpretation what it loses in terms of saving space.

DWT and CWT of a Signal with a Frequency Break

Show how analysis using wavelets can detect the exact instant when a signal changes. Use a
discontinuous signal that consists of a slow sine wave abruptly followed by a medium sine wave.

load freqbrk; 
signal = freqbrk;

Perform the discrete wavelet transform (DWT) at level 5 using the Haar wavelet.

lev   = 5;
wname = 'db1'; 
nbcol = 64; 
[c,l] = wavedec(signal,lev,wname);

Expand discrete wavelet coefficients for plot.

len = length(signal);
cfd = zeros(lev,len);
for k = 1:lev
    d = detcoef(c,l,k);
    d = d(:)';
    d = d(ones(1,2^k),:);
    cfd(k,:) = wkeep(d(:)',len);
end
cfd =  cfd(:);
I = find(abs(cfd)<sqrt(eps));
cfd(I) = zeros(size(I));
cfd    = reshape(cfd,lev,len);
cfd = wcodemat(cfd,nbcol,'row');

h211 = subplot(2,1,1);
h211.XTick = [];
plot(signal,'r'); 
title('Analyzed signal.');
ax = gca;
ax.XLim = [1 length(signal)];
subplot(2,1,2);
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colormap(cool(128));
image(cfd);
tics = 1:lev; 
labs = int2str(tics');
ax = gca;
ax.YTickLabelMode = 'manual';
ax.YDir = 'normal';
ax.Box = 'On';
ax.YTick = tics;
ax.YTickLabel = labs;
title('Discrete Transform, absolute coefficients.');
ylabel('Level');

Perform the continuous wavelet transform (CWT) and visualize results

figure;
[cfs,f] = cwt(signal,1,'waveletparameters',[3 3.1]);
hp = pcolor(1:length(signal),f,abs(cfs)); hp.EdgeColor = 'none'; 
set(gca,'YScale','log');
xlabel('Sample'); ylabel('log10(f)');
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If you just look at the finest scale CWT coefficients, you can localize the frequency change precisely.

plot(abs(cfs(1,:))); grid on;
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This example shows an important advantage of wavelet analysis over Fourier. If the same signal had
been analyzed by the Fourier transform, we would not have been able to detect the instant when the
signal's frequency changed, whereas it is clearly observable here.
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Wavelet Packets: Decomposing the Details
This example shows how wavelet packets differ from the discrete wavelet transform (DWT). The
example shows how the wavelet packet transform results in equal-width subband filtering of signals
as opposed to the coarser octave band filtering found in the DWT.

This makes wavelet packets an attractive alternative to the DWT in a number of applications. Two
examples presented here are time-frequency analysis and signal classification. You must have
Statistics and Machine Learning Toolbox™ and Signal Processing Toolbox™ to perform the
classification.

If you use an orthogonal wavelet with the wavelet packet transform, you additionally end up with a
partitioning of the signal energy among the equal-width subbands.

The example focuses on the 1-D case, but many of the concepts extend directly to the wavelet packet
transform of images.

Discrete Wavelet and Discrete Wavelet Packet Transforms

The following figure shows a DWT tree for a 1-D input signal.
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Figure 1: DWT Tree down to level 3 for a 1-D input signal.

G∼(f ) is the scaling (lowpass) analysis filter and H∼(f ) represents the wavelet (highpass) analysis filter.
The labels at the bottom show the partition of the frequency axis [0,1/2] into subbands.

The figure shows that subsequent levels of the DWT operate only on the outputs of the lowpass
(scaling) filter. At each level, the DWT divides the signal into octave bands. In the critically-sampled
DWT, the outputs of the bandpass filters are downsampled by two at each level. In the undecimated
discrete wavelet transform, the outputs are not downsampled.

Compare the DWT tree with the full wavelet packet tree.
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Figure 2: Full wavelet packet tree down to level 3.

In the wavelet packet transform, the filtering operations are also applied to the wavelet, or detail,
coefficients. The result is that wavelet packets provide a subband filtering of the input signal into
progressively finer equal-width intervals. At each level, j, the frequency axis [0,1/2] is divided into 2 j

subbands. The subbands in hertz at level j are approximately

[ nFs
2 j + 1 , (n + 1)Fs

2 j + 1 ) n = 0, 1, …2 j− 1 where Fs is the sampling frequency.

How good this bandpass approximation is depends on how frequency-localized the filters are. For
Fejér-Korovkin filters like 'fk18' (18 coefficients), the approximation is quite good. For a filter like
the Haar ('haar'), the approximation is not accurate.

In the critically-sampled wavelet packet transform the outputs of the bandpass filters are
downsampled by two. In the undecimated wavelet packet transform, the outputs are not
downsampled.
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Time-Frequency Analysis with Wavelet Packets

Because wavelet packets divide the frequency axis into finer intervals than the DWT, wavelet packets
are superior at time-frequency analysis. As an example, consider two intermittent sine waves with
frequencies of 150 and 200 Hz in additive noise. The data are sampled at 1 kHz. To prevent the loss
of time resolution inherent in the critically-sampled wavelet packet transform, use the undecimated
transform.

dt = 0.001;
t = 0:dt:1-dt;
x = ...
cos(2*pi*150*t).*(t>=0.2 & t<0.4)+sin(2*pi*200*t).*(t>0.6 & t<0.9);
y = x+0.05*randn(size(t));
[wpt,~,F] = modwpt(x,'TimeAlign',true);
contour(t,F.*(1/dt),abs(wpt).^2)
grid on
xlabel('Time (secs)')
ylabel('Hz')
title('Time-Frequency Analysis -- Undecimated Wavelet Packet Transform')

Note that the wavelet packet transform is able to separate the 150 and 200 Hz components. This is
not true of the DWT, because 150 and 200 Hz fall in the same octave band. The octave bands for a
level-four DWT are (in Hz)

• [0,31.25)
• [31.25,62.5)
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• [62.5,125)
• [125,250)
• [250,500)

Demonstrate that these two components are time-localized by the DWT but not separated in
frequency.

mra  = modwtmra(modwt(y,'fk18',4),'fk18');
J = 5:-1:1;
freq = 1/2*(1000./2.^J);
contour(t,freq,flipud(abs(mra).^2))
grid on
ylim([0 500])
xlabel('Time (secs)')
ylabel('Hz')
title('Time-Frequency Analysis -- Undecimated Wavelet Transform')

Of course, the continuous wavelet transform (CWT) provides a higher resolution time-frequency
analysis than the wavelet packet transform, but wavelet packets have the added benefit of being an
orthogonal transform (when using an orthogonal wavelet). An orthogonal transform means that the
energy in the signal is preserved and partitioned among the coefficients as the next section
demonstrates.

Energy Preservation in the Wavelet Packet Transform

In addition to filtering a signal into equal-width subbands at each level, the wavelet packet transform
partitions the signal's energy among the subbands. This is true for both the decimated and

 Wavelet Packets: Decomposing the Details

10-85



undecimated wavelet packet transforms. To demonstrate this, load a dataset containing a seismic
recording of an earthquake. This data is similar to the time series used in the signal classification
example below.

load kobe
plot(kobe)
grid on
xlabel('Seconds')
title('Kobe Earthquake Data')
axis tight

Obtain both the decimated and undecimated wavelet packet transforms of the data down to level 3.
To ensure consistent results for the decimated wavelet packet transform, set the boundary extension
mode to 'periodic'.

wptreeDecimated = dwpt(kobe,'Level',3,'Boundary','periodic');
wptUndecimated = modwpt(kobe,3);

Compute the total energy in both the decimated and undecimated wavelet packet level-three
coefficients and compare to the energy in the original signal.

decimatedEnergy = sum(cell2mat(cellfun(@(x) sum(abs(x).^2),wptreeDecimated,'UniformOutput',false)))

decimatedEnergy = 2.0189e+11

undecimatedEnergy = sum(sum(abs(wptUndecimated).^2,2))

undecimatedEnergy = 2.0189e+11
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signalEnergy = norm(kobe,2)^2

signalEnergy = 2.0189e+11

The DWT shares this important property with the wavelet packet transform.

wt = modwt(kobe,'fk18',3);
undecimatedWTEnergy = sum(sum(abs(wt).^2,2))

undecimatedWTEnergy = 2.0189e+11

Because the wavelet packet transform at each level divides the frequency axis into equal-width
intervals and partitions the signal energy among those intervals, you can often construct useful
feature vectors for classification just by retaining the relative energy in each wavelet packet. The
next example demonstrates this.

Wavelet Packet Classification -- Earthquake or Explosion?

Seismic recordings pick up activity from many sources. It is important to be able to classify this
activity based on its origin. For example, earthquakes and explosions may present similar time-
domain signatures, but it is very important to differentiate between these two events. The dataset
EarthQuakeExplosionData contains 16 recordings with 2048 samples. The first 8 recordings
(columns) are seismic recordings of earthquakes, the last 8 recordings (columns) are seismic
recordings of explosions. Load the data and plot an earthquake and explosion recording for
comparison. The data is taken from the R package astsa Stoffer [4], which supplements Shumway and
Stoffer [3]. The author has kindly allowed its use in this example.

Plot a time series from each group for comparison.

load EarthQuakeExplosionData
subplot(2,1,1)
plot(EarthQuakeExplosionData(:,3))
xlabel('Time')
title('Earthquake Recording')
grid on
axis tight
subplot(2,1,2)
plot(EarthQuakeExplosionData(:,9))
xlabel('Time')
title('Explosion Recording')
grid on
axis tight
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Form a wavelet packet feature vector by decomposing each time series down to level three using the
'fk6' wavelet with an undecimated wavelet packet transform. This results in 8 subbands with an
approximate width of 1/16 cycles/sample. Use the relative energy in each subband to create a feature
vector. As an example, obtain a wavelet packet relative energy feature vector for the first earthquake
recording.

[wpt,~,F,E,RE] = modwpt(EarthQuakeExplosionData(:,1),3,'fk6');

RE contains the relative energy in each of the 8 subbands. If you sum all the elements in RE, it is
equal to 1. Note that this is a significant reduction in data. A time series of length 2048 is reduced to
a vector with 8 elements, each element representing the relative energy in the wavelet packet nodes
at level 3. The helper function helperEarthQuakeExplosionClassifier obtains the relative
energies for each of the 16 recordings at level 3 using the 'fk6' wavelet. This results in a 16-by-8
matrix and uses these feature vectors as inputs to a kmeans classifier. The classifier uses the Gap
statistic criterion to determine the optimal number of clusters for the feature vectors between 1 and
6 and classifies each vector. Additionally, the classifier performs the exact same classification on the
undecimated wavelet transform coefficients at level 3 obtained with the 'fk6' wavelet and power
spectra for each of the time series. The undecimated wavelet transform results in a 16-by-4 matrix (3
wavelet subbands and 1 scaling subband). The power spectra result in a 16-by-1025 matrix. The
source code for helperEarthQuakeExplosionClassifier is listed in the appendix. You must
have Statistics and Machine Learning Toolbox™ and Signal Processing Toolbox™ to run the classifier.

Level = 3;
[WavPacketCluster,WtCluster,PspecCluster] = ...
helperEarthQuakeExplosionClassifier(EarthQuakeExplosionData,Level)
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WavPacketCluster = 
  GapEvaluation with properties:

    NumObservations: 16
         InspectedK: [1 2 3 4 5 6]
    CriterionValues: [-0.0039 0.0779 0.1314 0.0862 0.0296 -0.0096]
           OptimalK: 2

WtCluster = 
  GapEvaluation with properties:

    NumObservations: 16
         InspectedK: [1 2 3 4 5 6]
    CriterionValues: [-0.0095 0.0474 0.0706 0.0260 -0.0280 -0.0346]
           OptimalK: 2

PspecCluster = 
  GapEvaluation with properties:

    NumObservations: 16
         InspectedK: [1 2 3 4 5 6]
    CriterionValues: [0.3804 0.3574 0.3466 0.2879 0.3256 0.3326]
           OptimalK: 1

WavPacketCluster is the clustering output for the undecimated wavelet packet feature vectors.
WtCluster is the clustering output using the undecimated DWT feature vectors, and PspecCluster
is the output for the clustering based on the power spectra. The wavelet packet classification has
identified two clusters (OptimalK: 2) as the optimal number. Examine the results of the wavelet
packet clustering.

res = [ WavPacketCluster.OptimalY(1:8)' ; WavPacketCluster.OptimalY(9:end)']

res = 2×8

     1     2     2     2     2     2     2     2
     1     1     1     1     1     1     1     2

You see that only two errors have been made. Of the eight earthquake recordings, seven are classified
together (group 2) and one is mistakenly classified as belonging to group 1. The same is true of the 8
explosion recordings -- 7 are classified together and 1 is misclassified. Classifications based on the
level-three undecimated DWT and power spectra return one cluster as the optimal solution.

If you repeat the above with the level equal to 4, the undecimated wavelet transform and wavelet
packet transform perform identically. Both identify two clusters as optimal, and both misclassify the
first and last time series as belonging to the other group.

Conclusions

In this example, you learned how the wavelet packet transform differs from the discrete wavelet
transform. Specifically, the wavelet packet tree also filters the wavelet (detail) coefficients, while the
wavelet transform only iterates on the scaling (approximation) coefficients.
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You learned that the wavelet packet transform shares the important energy-preserving property of
the DWT while providing superior frequency resolution. In some applications, this superior frequency
resolution makes the wavelet packet transform an attractive alternative to the DWT.

Appendix

helperEarthQuakeExplosionClassifier

function [WavPacketCluster,WtCluster,PspecCluster] = helperEarthQuakeExplosionClassifier(Data,Level)  
%   This function is provided solely in support of the featured example
%   waveletpacketsdemo.mlx. 
%   This function may be changed or removed in a future release.
%   Data - The data matrix with individual time series as column vectors.
%   Level - The level of the wavelet packet and wavelet transforms

NP = 2^Level;
NW = Level+1;
WpMatrix = zeros(16,NP);
WtMatrix = zeros(16,NW);

for jj = 1:8
    [~,~,~,~,RE] = modwpt(Data(:,jj),Level,'fk6');
    wt = modwt(Data(:,jj),Level,'fk6');
    WtMatrix(jj,:) = sum(abs(wt).^2,2)./norm(Data(:,jj),2)^2;
    WpMatrix(jj,:) = RE;
end

for kk = 9:16
    [~,~,~,~,RE] = modwpt(Data(:,kk),Level,'fk6');
    wt = modwt(Data(:,kk),Level,'fk6');
    WtMatrix(kk,:) = sum(abs(wt).^2,2)./norm(Data(:,kk),2)^2;
    WpMatrix(kk,:) = RE;
end

% For repeatability
rng('default');

WavPacketCluster = evalclusters(WpMatrix,'kmeans','gap','KList',1:6,...
    'Distance','cityblock');

WtCluster = evalclusters(WtMatrix,'kmeans','gap','KList',1:6,...
'Distance','cityblock');

Pxx = periodogram(Data,hamming(numel(Data(:,1))),[],1,'power');

PspecCluster = evalclusters(Pxx','kmeans','gap','KList',1:6,...
    'Distance','cityblock');
end
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See Also
modwt | modwtmra | modwpt | dwpt
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Wavelet Analysis of Physiologic Signals
This example shows how to use wavelets to analyze physiologic signals.

Physiologic signals are frequently nonstationary meaning that their frequency content changes over
time. In many applications, these changes are the events of interest.

Wavelets decompose signals into time-varying frequency (scale) components. Because signal features
are often localized in time and frequency, analysis and estimation are easier when working with
sparser (reduced) representations.

This example presents a few illustrative cases where the ability of wavelets to provide a local time-
frequency analysis of signals is beneficial.

R Wave Detection in the Electrocardiogram with MODWT

The QRS complex consists of three deflections in the electrocardiogram (ECG) waveform. The QRS
complex reflects the depolarization of the right and left ventricles and is the most prominent feature
of the human ECG.

Load and plot an ECG waveform where the R peaks of the QRS complex have been annotated by two
or more cardiologists. The ECG data and annotations are taken from the MIT-BIH Arrhythmia
Database. The data are sampled at 360 Hz.

load mit200
figure
plot(tm,ecgsig)
hold on
plot(tm(ann),ecgsig(ann),'ro')
xlabel('Seconds')
ylabel('Amplitude')
title('Subject - MIT-BIH 200')
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You can use wavelets to build an automatic QRS detector for use in applications like R-R interval
estimation.

There are two keys for using wavelets as general feature detectors:

• The wavelet transform separates signal components into different frequency bands enabling a
sparser representation of the signal.

• You can often find a wavelet which resembles the feature you are trying to detect.

The 'sym4' wavelet resembles the QRS complex, which makes it a good choice for QRS detection. To
illustrate this more clearly, extract a QRS complex and plot the result with a dilated and translated
'sym4' wavelet for comparison.

qrsEx = ecgsig(4560:4810);
fb = dwtfilterbank('Wavelet','sym4','SignalLength',numel(qrsEx),'Level',3);
psi = wavelets(fb);
figure
plot(qrsEx)
hold on
plot(-2*circshift(psi(3,:),[0 -38]),'r')
axis tight
legend('QRS Complex','Sym4 Wavelet')
title('Comparison of Sym4 Wavelet and QRS Complex')
hold off
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Use the maximal overlap discrete wavelet transform (MODWT) to enhance the R peaks in the ECG
waveform. The MODWT is an undecimated wavelet transform, which handles arbitrary sample sizes.

First, decompose the ECG waveform down to level 5 using the default 'sym4' wavelet. Then,
reconstruct a frequency-localized version of the ECG waveform using only the wavelet coefficients at
scales 4 and 5. The scales correspond to the following approximate frequency bands.

• Scale 4 -- [11.25, 22.5) Hz
• Scale 5 -- [5.625, 11.25) Hz.

This covers the passband shown to maximize QRS energy.

wt = modwt(ecgsig,5);
wtrec = zeros(size(wt));
wtrec(4:5,:) = wt(4:5,:);
y = imodwt(wtrec,'sym4');

Use the squared absolute values of the signal approximation built from the wavelet coefficients and
employ a peak finding algorithm to identify the R peaks.

If you have Signal Processing Toolbox™, you can use findpeaks to locate the peaks. Plot the R-peak
waveform obtained with the wavelet transform annotated with the automatically-detected peak
locations.

y = abs(y).^2;
[qrspeaks,locs] = findpeaks(y,tm,'MinPeakHeight',0.35,...
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    'MinPeakDistance',0.150);
figure
plot(tm,y)
hold on
plot(locs,qrspeaks,'ro')
xlabel('Seconds')
title('R Peaks Localized by Wavelet Transform with Automatic Annotations')

Add the expert annotations to the R-peak waveform. Automatic peak detection times are considered
accurate if within 150 msec of the true peak (±75 msec).

plot(tm(ann),y(ann),'k*')
title('R peaks Localized by Wavelet Transform with Expert Annotations')
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At the command line, you can compare the values of tm(ann) and locs, which are the expert times
and automatic peak detection times respectively. Enhancing the R peaks with the wavelet transform
results in a hit rate of 100% and no false positives. The calculated heart rate using the wavelet
transform is 88.60 beats/minute compared to 88.72 beats/minute for the annotated waveform.

If you try to work on the square magnitudes of the original data, you find the capability of the wavelet
transform to isolate the R peaks makes the detection problem much easier. Working on the raw data
can cause misidentifications such as when the squared S-wave peak exceeds the R-wave peak around
10.4 seconds.

figure
plot(tm,ecgsig,'k--')
hold on
plot(tm,y,'r','linewidth',1.5)
plot(tm,abs(ecgsig).^2,'b')
plot(tm(ann),ecgsig(ann),'ro','markerfacecolor',[1 0 0])
set(gca,'xlim',[10.2 12])
legend('Raw Data','Wavelet Reconstruction','Raw Data Squared', ...
    'Location','SouthEast')
xlabel('Seconds')
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Using findpeaks on the squared magnitudes of the raw data results in twelve false positives.

[qrspeaks,locs] = findpeaks(ecgsig.^2,tm,'MinPeakHeight',0.35,...
    'MinPeakDistance',0.150);

In addition to switches in polarity of the R peaks, the ECG is often corrupted by noise.

load mit203
figure
plot(tm,ecgsig)
hold on
plot(tm(ann),ecgsig(ann),'ro')
xlabel('Seconds')
ylabel('Amplitude')
title('Subject - MIT-BIH 203 with Expert Annotations')
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Use the MODWT to isolate the R peaks. Use findpeaks to determine the peak locations. Plot the R-
peak waveform along with the expert and automatic annotations.

wt = modwt(ecgsig,5);
wtrec = zeros(size(wt));
wtrec(4:5,:) = wt(4:5,:);
y = imodwt(wtrec,'sym4');
y = abs(y).^2;
[qrspeaks,locs] = findpeaks(y,tm,'MinPeakHeight',0.1,...
    'MinPeakDistance',0.150);
figure
plot(tm,y)
title('R-Waves Localized by Wavelet Transform')
hold on
hwav = plot(locs,qrspeaks,'ro');
hexp = plot(tm(ann),y(ann),'k*');
xlabel('Seconds')
legend([hwav hexp],'Automatic','Expert','Location','NorthEast')
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The hit rate is again 100% with zero false alarms.

The previous examples used a very simple wavelet QRS detector based on a signal approximation
constructed from modwt. The goal was to demonstrate the ability of the wavelet transform to isolate
signal components, not to build the most robust wavelet-transform-based QRS detector. It is possible,
for example, to exploit the fact that the wavelet transform provides a multiscale analysis of the signal
to enhance peak detection. Examine the scale 4 and 5 magnitude-squared wavelet details plotted
along with R peak times as annotated by the experts. The level-4 details are shifted for visualization.

ecgmra = modwtmra(wt);
figure
plot(tm,ecgmra(5,:).^2,'b')
hold on
plot(tm,ecgmra(4,:).^2+0.6,'b')
set(gca,'xlim',[14.3 25.5])
timemarks = repelem(tm(ann),2);
N = numel(timemarks);
markerlines = reshape(repmat([0;1],1,N/2),N,1);
h = stem(timemarks,markerlines,'k--');
h.Marker = 'none';
set(gca,'ytick',[0.1 0.6]);
set(gca,'yticklabels',{'D5','D4'})
xlabel('Seconds')
title('Magnitude-Squared Level 4 and 5 Details')
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You see that peaks in the level 4 and level 5 details tend to co-occur. A more advanced wavelet peak-
finding algorithm could exploit this by using information from multiple scales simultaneously.

Time-Varying Wavelet Coherence Analysis of Brain Dynamics

Fourier-domain coherence is a well-established technique for measuring the linear correlation
between two stationary processes as a function of frequency on a scale from 0 to 1. Because wavelets
provide local information about data in time and scale (frequency), wavelet-based coherence allows
you to measure time-varying correlation as a function of frequency. In other words, a coherence
measure suitable for nonstationary processes.

To illustrate this, examine near-infrared spectroscopy (NIRS) data obtained in two human subjects.
NIRS measures brain activity by exploiting the different absorption characteristics of oxygenated and
deoxygenated hemoglobin. The data is taken from Cui, Bryant, & Reiss (2012) and was kindly
provided by the authors for this example. The recording site was the superior frontal cortex for both
subjects. The data is sampled at 10 Hz.

In the experiment, the subjects alternatively cooperated and competed on a task. The period of the
task was seven seconds.

load NIRSData
figure
plot(tm,[NIRSData(:,1) NIRSData(:,2)])
legend('Subject 1','Subject 2','Location','NorthWest')
xlabel('Seconds')
title('NIRS Data')
grid on

10 Featured Examples — Time-Frequency Analysis

10-100



Examining the time-domain data, it is not clear what oscillations are present in the individual time
series, or what oscillations are common to both data sets. Use wavelet analysis to answer both
questions.

cwt(NIRSData(:,1),10,'bump')
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figure
cwt(NIRSData(:,2),10,'bump')
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The CWT analyses reveal strong frequency-modulated oscillations in both datasets around 1 Hz.
These are due to the cardiac cycles in the two subjects. Additionally, there appears to be a weaker
oscillation in both datasets around 0.15 Hz. This activity is stronger and more consistent in subject 1
than subject 2. Wavelet coherence can enhance the detection of weak oscillations that are jointly
present in two time series.

[wcoh,~,F] = wcoherence(NIRSData(:,1),NIRSData(:,2),10);
figure
surf(tm,F,abs(wcoh).^2); view(0,90)
shading interp
axis tight
hc = colorbar;
hc.Label.String = 'Coherence';
title('Wavelet Coherence')
xlabel('Seconds')
ylabel('Hz')
ylim([0 2.5])
set(gca,'ytick',[0.15 1.2 2])
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In the wavelet coherence, there is a strong correlation around 0.15 Hz. This is in the frequency band
corresponding to the experimental task and represents task-related coherent oscillations in brain
activity in the two subjects. Add to the plot time markers which indicate two task periods. The period
between the tasks is a rest period.

taskbd = [245 1702 2065 3474];
tvec = repelem(tm(taskbd),2);
yvec = [0 max(F)]';
yvec = reshape(repmat(yvec,1,4),8,1);
hold on
stemPlot = stem(tvec,yvec,'w--','linewidth',2);
stemPlot.Marker = 'none';
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This example used cwt to obtain and plot a time-frequency analysis of the individual NIRS time
series. The example also used wcoherence to obtain the wavelet coherence of the two time series.
The use of wavelet coherence often enables you to detect coherent oscillatory behavior in two time
series which may be fairly weak in each individual series. Consult Cui, Bryant, & Reiss (2012) for a
more detailed wavelet-coherence analysis of this data.

Time-Frequency Analysis of Otoacoustic Emission Data with the CWT

Otoacoustic emissions (OAEs) are narrowband oscillatory signals emitted by the cochlea (inner ear)
and their presence is indicative of normal hearing. Load and plot some example OAE data. The data
are sampled at 20 kHz.

load dpoae
figure
plot(t.*1000,dpoaets)
xlabel('Milliseconds')
ylabel('Amplitude')
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The emission was evoked by a stimulus beginning at 25 milliseconds and ending at 175 milliseconds.
Based on the experimental parameters, the emission frequency should be 1230 Hz. Obtain and plot
the CWT as a function of time and frequency. Use the default analytic Morse wavelet with 16 voices
per octave. Use the helper function helperCWTTimeFreqPlot to plot the CWT. The helper function
is in the same folder as this example.

[dpoaeCWT,f] = cwt(dpoaets,2e4,'VoicesPerOctave',16);
helperCWTTimeFreqPlot(dpoaeCWT,t.*1000,f,...
    'surf','CWT of OAE','milliseconds','Hz')
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You can investigate the time evolution of the OAE by finding the CWT coefficients closest in frequency
to 1230 Hz and examining their magnitudes as a function of time. Plot the magnitudes along with
time markers designating the beginning and end of the evoking stimulus.

[~,idx1230] = min(abs(f-1230));
cfsOAE = dpoaeCWT(idx1230,:);
plot(t.*1000,abs(cfsOAE))
hold on
AX = gca;
plot([25 25],[AX.YLim(1) AX.YLim(2)],'r')
plot([175 175],[AX.YLim(1) AX.YLim(2)],'r')
xlabel('msec')
title('CWT Coefficient Magnitudes')

 Wavelet Analysis of Physiologic Signals

10-107



There is some delay between the onset of the evoking stimulus and the OAE. Once the evoking
stimulus is terminated, the OAE immediately begins to decay in magnitude.

Another way to isolate the emission is to use the inverse CWT to reconstruct a frequency-localized
approximation in the time domain.

Construct a frequency-localized emission approximation by extracting the CWT coefficients
corresponding to frequencies between 1150 and 1350 Hz. Use these coefficients and invert the CWT.
Plot the original data along with the reconstruction and markers indicating the beginning and end of
the evoking stimulus.

frange = [1150 1350];
xrec = icwt(dpoaeCWT,[],f,frange);
figure
plot(t.*1000,dpoaets)
hold on
plot(t.*1000,xrec,'r')
AX = gca;
ylimits = AX.YLim;
plot([25 25],ylimits,'k')
plot([175 175],ylimits,'k')
grid on
xlabel('Milliseconds')
ylabel('Amplitude')
title('Frequency-Localized Reconstruction of Emission')

10 Featured Examples — Time-Frequency Analysis

10-108



In the time-domain data, you clearly see how the emission ramps on and off at the application and
termination of the evoking stimulus.

It is important to note that even though a range of frequencies were selected for the reconstruction,
the analytic wavelet transform actually encodes the exact frequency of the emission. To demonstrate
this, take the Fourier transform of the emission approximation reconstructed from the analytic CWT.

xdft = fft(xrec);
freq = 0:2e4/numel(xrec):1e4;
xdft = xdft(1:numel(xrec)/2+1);
figure
plot(freq,abs(xdft))
xlabel('Hz')
ylabel('Magnitude')
title('Fourier Transform of CWT-Based Signal Approximation')
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[~,maxidx] = max(abs(xdft));
fprintf('The frequency is %4.2f Hz\n',freq(maxidx))

The frequency is 1230.00 Hz

This example used cwt to obtain a time-frequency analysis of the OAE data and icwt to obtain a
frequency-localized approximation to the signal.
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Visualize and Recreate EWT Decomposition
This example shows how to visualize an EWT decomposition using Signal Multiresolution
Analyzer. You learn how to compare two different decompositions in the app, and how to recreate a
decomposition in your workspace.

Create a noisy signal, sig, composed of three main components:

• A 60 Hz component between 0.1 and 0.3 seconds
• A 200 Hz component between 0.7 and 1 second
• A trend term

Sample the signal at 1000 Hz for one second.

Fs = 1e3;
t = 0:1/Fs:1-1/Fs;
comp1 = cos(2*pi*200*t).*(t>0.7);
comp2 = cos(2*pi*60*t).*(t>=0.1 & t<0.3);
trend = sin(2*pi*1/2*t);
rng default
wgnNoise = 0.4*randn(size(t));
sig = comp1+comp2+trend+wgnNoise;

Visualize EWT

Open Signal Multiresolution Analyzer and click Import. Select sig and click Import. By default,
a four-level MODWTMRA decomposition appears in the MODWT tab. In the Signal Multiresolution
Analyzer tab, set the sample rate to 1000 Hz.

To generate an MRA decomposition using the empirical wavelet transform (EWT), go to the Signal
Multiresolution Analyzer tab. Click Add ▼ and select EWT.
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After a few moments, the EWT decomposition sig2 appears in the EWT tab. The app obtains the
decomposition using the ewt function with default settings. The Level Selection pane shows the
relative energies of the signal across the passbands, as well as the measured frequency ranges. With
the toolstrip, you can change the EWT parameters to generate a different decomposition. You can:

• Specify how to choose the peaks that determine the passbands.
• Specify the frequency resolution bandwidth of the multitaper power spectral estimate. The value

determines the number of sine tapers the app uses in the multitaper power spectrum estimate.
• Choose whether or not to use the log of the multitaper power spectrum to determine the peak

frequencies.
• Choose either the geometric mean of adjacent peaks or the first local minimum between adjacent

peaks to determine the passbands.

Changing a value enables the Decompose button. To learn more about the parameters, see ewt and
“Empirical Wavelet Transform” on page 9-14.
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Change Peak Identification Method

By default, the ewt function uses a threshold to determine which peaks to retain in the multitaper
power spectrum of the signal. In the case of sig, ewt found two passbands. You can also choose the
N largest peaks. To compare the two methods, select sig2, and on the Signal Multiresolution
Analyzer tab, click Duplicate. A duplicate, sig2Copy, appears. In the EWT tab, set the value of
Max Number Peaks to 5 and click Decompose. The result is a decomposition with five passbands.
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You can compare the sig2Copy approximation with the sig1 approximation by first removing
passbands 2 through 4 from the sig2Copy reconstruction, and then clicking sig and sig2 in the
legend in the Reconstructions pane. To remove a passband from the reconstruction, you can either
clear the corresponding Include box in the Level Selection pane or click on the plot of the passband
in the Decomposition pane.
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Export Script

To recreate the decomposition in your workspace, in the Signal Multiresolution Analyzer tab click
Export > Generate MATLAB Script. An untitled script opens in your editor with the following
executable code. The true-false values in levelForReconstruction correspond to the Include
boxes you selected in the Level Selection pane. You can save the script as is or modify it to apply the
same decomposition settings to other signals. Run the code.

% Logical array for selecting reconstruction elements
levelForReconstruction = [false,false,false,false,true];

% Perform the decomposition using ewt
[mra,cfs,wfb,info] = ewt(sig, ...
    MaxNumPeaks=5, ...
    SegmentMethod='geomean', ...
    FrequencyResolution=0.0055, ...
    LogSpectrum=false);

% Sum down the rows of the selected multiresolution signals
sig2Copy = sum(mra(:,levelForReconstruction),2);

The columns in the MRA matrix mra correspond to the passbands and approximation in the Level
Selection pane. Plot the passbands, and confirm they are identical with those in the app.

numplots = size(mra,2);
figure
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for k=1:numplots
    subplot(numplots,1,k)
    plot(mra(:,k))
    if k~=numplots
        title(["Passband "+num2str(k)])
    else
        title("Approx.")
    end
    axis tight
end

See Also
Apps
Signal Multiresolution Analyzer

Functions
ewt

More About
• “Empirical Wavelet Transform” on page 9-14
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Visualize and Recreate VMD Decomposition
This example shows how to visualize a VMD decomposition using Signal Multiresolution Analyzer.
You learn how to compare two different decompositions in the app, and how to recreate a
decomposition in your workspace.

Generate a piecewise composite signal consisting of a quadratic trend, a chirp, and a cosine with a
sharp transition between two constant frequencies at t = 0.5. Sample the signal for 1 second at 1000
Hz. Plot the signal.

x(t) = 6t2 + cos(4πt + 10πt2) +
cos(60πt), t ≤ 0 . 5,
cos(100πt − 10π), t > 0 . 5 .

fs = 1e3;
t = 0:1/fs:1-1/fs;

sig = 6*t.^2 + cos(4*pi*t+10*pi*t.^2) + ...
    [cos(60*pi*(t(t<=0.5))) cos(100*pi*(t(t>0.5)-10*pi))];

plot(t,sig)
title("Signal")
xlabel("Time (s)")
ylabel("Amplitude")
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Visualize VMD

Open Signal Multiresolution Analyzer and click Import. Select sig and click Import. By default,
a four-level MODWTMRA decomposition appears in the MODWT tab. In the Signal Multiresolution
Analyzer tab, set the sample rate to 1000 Hz.

To generate a variational mode decomposition of the signal, go to the Signal Multiresolution
Analyzer tab. Click Add ▼ and select VMD.

After a few moments, the VMD decomposition sig2 appears in the VMD tab. The app obtains the
decomposition using the vmd function with default settings. The Level Selection pane shows the
relative energies of the signal across the intrinsic mode functions (IMF), as well as the measured
frequency ranges. With the toolstrip, you can change the VMD parameters to generate a different
decomposition. You can specify:

• Number of IMFs extracted
• Mode convergence relative and absolute tolerances
• Maximum number of optimization iterations
• Initial IMFs
• Initial Lagrange multiplier and update rate for the Lagrange multiplier in each iteration
• Method to initialize the central frequencies
• Penalty factor that determines the reconstruction fidelity

Changing a value enables the Decompose button. To learn more about the parameters, see vmd.
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Set the number of extracted IMFs to 4 and click Decompose to visualize the decomposition. The app
recovers four distinct components of the signal. Include the first and fourth IMFs in the
reconstruction.
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Export Script

To recreate the decomposition in your workspace, in the Signal Multiresolution Analyzer tab click
Export > Generate MATLAB Script. An untitled script opens in your editor with the following
executable code. The true-false values in levelForReconstruction correspond to the Include
boxes you selected in the Level Selection pane. You can save the script as is or modify it to apply the
same decomposition settings to other signals. Run the code.

% Logical array for selecting reconstruction elements
levelForReconstruction = [true,false,false,true,true];

% Perform the decomposition using VMD
[imf,residual,info] = vmd(sig, ...
    AbsoluteTolerance=5e-06, ...
    RelativeTolerance=0.005, ...
    MaxIterations=500, ...
    NumIMF=4, ...
    InitialIMFs=zeros(1000,4), ...
    PenaltyFactor=1000, ...
    InitialLM=complex(zeros(1001,1)), ...
    LMUpdateRate=0.01, ...
    InitializeMethod='peaks');

% Construct MRA matrix by appending IMFs and residual
mra = [imf residual].';
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% Sum down the rows of the selected multiresolution signals
sig2 = sum(mra(levelForReconstruction,:),1);

The rows in the MRA matrix mra correspond to the IMFs and residual in the Level Selection pane.
Plot the reconstruction, which consists of the residual and two IMFs, and compare with the original
signal.

plot(t,sig2)
hold on
plot(t,sig)
hold off
legend("Reconstruction","Original")
xlabel("Time (s)")
ylabel("Amplitude")

References
[1] Dragomiretskiy, Konstantin, and Dominique Zosso. “Variational Mode Decomposition.” IEEE

Transactions on Signal Processing 62, no. 3 (February 2014): 531–44. https://doi.org/10.1109/
TSP.2013.2288675.

See Also
Apps
Signal Multiresolution Analyzer
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vmd | emd | hht
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Practical Introduction to Multiresolution Analysis
This example shows how to perform and interpret basic signal multiresolution analysis (MRA). The
example uses both simulated and real data to answer questions such as: What does multiresolution
analysis mean? What insights about my signal can I gain performing a multiresolution analysis? What
are some of the advantages and disadvantages of different MRA techniques? Many of the analyses
presented here can be replicated using the Signal Multiresolution Analyzer app.

What Is Multiresolution Analysis?

Signals often consist of multiple physically meaningful components. Quite often, you want to study
one or more of these components in isolation on the same time scale as the original data.
Multiresolution analysis refers to breaking up a signal into components, which produce the original
signal exactly when added back together. To be useful for data analysis, how the signal is decomposed
is important. The components ideally decompose the variability of the data into physically meaningful
and interpretable parts. The term multiresolution analysis is often associated with wavelets or
wavelet packets, but there are non-wavelet techniques which also produce useful MRAs.

As a motivating example of the insights you can gain from an MRA, consider the following synthetic
signal. The signal is sampled at 1000 Hz for one second.

Fs = 1e3;
t = 0:1/Fs:1-1/Fs;
comp1 = cos(2*pi*200*t).*(t>0.7);
comp2 = cos(2*pi*60*t).*(t>=0.1 & t<0.3);
trend = sin(2*pi*1/2*t);
rng default
wgnNoise = 0.4*randn(size(t));
x = comp1+comp2+trend+wgnNoise;
plot(t,x)
xlabel('Seconds')
ylabel('Amplitude')
title('Synthetic Signal')
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The signal is explicitly composed of three main components: a time-localized oscillation with a
frequency of 60 cycles/second, a time-localized oscillation with a frequency of 200 cycles/second, and
a trend term. The trend term here is also sinusoidal but has a frequency of 1/2 cycle per second, so it
completes only 1/2 cycle in the one-second interval. The 60 cycles/second or 60 Hz oscillation occurs
between 0.1 and 0.3 seconds, while the 200 Hz oscillation occurs between 0.7 and 1 second.

Not all of this is immediately evident from the plot of the raw data because these components are
mixed.

Now, plot the signal from a frequency point of view.

xdft = fft(x);
N = numel(x);
xdft = xdft(1:numel(xdft)/2+1);
freq = 0:Fs/N:Fs/2;
plot(freq,20*log10(abs(xdft)))
xlabel('Cycles/second')
ylabel('dB')
grid on

 Practical Introduction to Multiresolution Analysis

11-3



From the frequency analysis, it is much easier for us to discern the frequencies of the oscillatory
components, but we have lost their time-localized nature. It is also difficult to visualize the trend in
this view.

To gain some simultaneous time and frequency information, we can use a time-frequency analysis
technique like the continuous wavelet transform (cwt).

cwt(x,Fs)
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Now you see the time extents of the 60 Hz and 200 Hz components. However, we still do not have any
useful visualization of the trend.

The time-frequency view provides useful information, but in many situations you would like to
separate out components of the signal in time and examine them individually. Ideally, you want this
information to be available on the same time scale as the original data.

Multiresolution analysis accomplishes this. In fact, a useful way to think about multiresolution
analysis is that it provides a way of avoiding the need for time-frequency analysis while allowing you
to work directly in the time domain.

Separating Signal Components in Time

Real-world signals are a mixture of different components. Often you are only interested in a subset of
these components. Multiresolution analysis allows you to narrow your analysis by separating the
signal into components at different resolutions.

Extracting signal components at different resolutions amounts to decomposing variations in the data
on different time scales, or equivalently in different frequency bands (different rates of oscillation).
Accordingly, you can visualize signal variability at different scales, or frequency bands simultaneously.

Analyze and plot the synthetic signal using a wavelet MRA. The signal is analyzed at eight resolutions
or levels.

mra = modwtmra(modwt(x,8));
helperMRAPlot(x,mra,t,'wavelet','Wavelet MRA',[2 3 4 9])

 Practical Introduction to Multiresolution Analysis

11-5



Without explaining what the notations on the plot mean, let us use our knowledge of the signal and
try to understand what this wavelet MRA is showing us. If you start from the uppermost plot and
proceed down until you reach the plot of the original data, you see that the components become
progressively smoother. If you prefer to think about data in terms of frequency, the frequencies
contained in the components are becoming lower. Recall that the original signal had three main
components, a high frequency oscillation at 200 Hz, a lower frequency oscillation of 60 Hz, and a
trend term, all corrupted by additive noise.

If you look at the D∼2 plot, you can see that the time-localized high frequency component is isolated
there. You can see and investigate this important signal feature essentially in isolation. The next two
plots contain the lower frequency oscillation. This is an important aspect of multiresolution analysis,
namely important signal components may not end up isolated in one MRA component, but they are
rarely located in more than two. Finally, we see the S8 plot contains the trend term. For convenience,
the color of the axes in those components has been changed to highlight them in the MRA. If you
prefer to visualize this plot or subsequent ones without the highlighting, leave out the last numeric
input to helperMRAPlot.

The wavelet MRA uses fixed functions called wavelets to separate the signal components. The kth
wavelet MRA component, denoted by D∼k in the previous plot, can be regarded as a filtering of the
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signal into frequency bands of the form [ 1
2k + 1Δt

, 1
2kΔt

] where Δt is the sampling period, or sampling

interval. The final smooth component, denoted in the plot by SL, where L is the level of the MRA,
captures the frequency band [0, 1

2L + 1Δt
]. The accuracy of this approximation depends on the wavelet

used in the MRA. See [5 on page 11-0 ] for detailed descriptions of wavelet and wavelet packet
MRAs.

However, there are other MRA techniques to consider.

The empirical mode decomposition (EMD) is a data-adaptive multiresolution technique. EMD
recursively extracts different resolutions from the data without the use of fixed functions or filters.
EMD regards a signal as consisting of a fast oscillation superimposed on a slower one. After the fast
oscillation is extracted, the process treats the remaining slower component as the new signal and
again regards it as a fast oscillation superimposed on a slower one. The process continues until some
stopping criterion is reached. While EMD does not use fixed functions like wavelets to extract
information, the EMD approach is conceptually very similar to the wavelet method of separating the
signal into details and approximations and then separating the approximation again into details and
an approximation. The MRA components in EMD are referred to as intrinsic mode functions (IMF).
See [4 on page 11-0 ] for a detailed treatment of EMD.

Plot the EMD analysis of the same signal.

[imf_emd,resid_emd] = emd(x);
helperMRAPlot(x,imf_emd,t,'emd','Empirical Mode Decomposition',[1 2 3 6])
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While the number of MRA components is different, the EMD and wavelet MRAs produce a similar
picture of the signal. This is not accidental. See [2 on page 11-0 ] for a description of the similarities
between the wavelet transform and EMD.

In the EMD decomposition, the high-frequency oscillation is localized to the first intrinsic mode
function (IMF 1). The lower frequency oscillation is localized largely to IMF 2, but you can see some
effect also in IMF 3. The trend component in IMF 6 is very similar to the trend component extracted
by the wavelet technique.

Yet another technique for adaptive multiresolution analysis is variational mode decomposition (VMD).
Like EMD, VMD attempts to extract intrinsic mode functions, or modes of oscillation from the signal
without using fixed functions for analysis. But EMD and VMD determine the modes in very different
ways. EMD works recursively on the time-domain signal to extract progressively lower frequency
IMFs. VMD starts by identifying signal peaks in the frequency domain and extracts all modes
concurrently. See [1 on page 11-0 ] for a treatment of VMD.

[imf_vmd,resid_vmd] = vmd(x);
helperMRAPlot(x,imf_vmd,t,'vmd','Variational Mode Decomposition',[2 4 5])
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The key thing to note is that similar to the wavelet and EMD decompositions, VMD segregates the
three components of interest into completely separate modes or into a small number of adjacent
modes. All three techniques allow you to visualize signal components on the same time scale as the
original signal.

There is a data-adaptive technique which actually constructs wavelet filters based on the frequency
content of the data. This technique is the empirical wavelet transform (EWT) [3 on page 11-0 ]. One
of the major criticisms of EMD is that its definition is purely algorithmic. As a result, it is not readily
amenable to mathematical analysis. EWT on the other hand actually constructs Meyer wavelets based
on the frequency content of the analyzed signal. Accordingly, the results of EWT are amenable to
mathematical analysis because the filters used in the analysis are available to the user. Repeat the
analysis of the synthetic signal using the EWT.

[mra_ewt,cfs,wfb,info] = ewt(x,'MaxNumPeaks',5);
helperMRAPlot(x,mra_ewt,t,'EWT','Empirical Wavelet Transform',[1 2 3 5])
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Similar to the previous EMD and wavelet MRA techniques, the EWT has isolated the oscillatory
components and trend to a few intrinsic mode functions. In contrast to EMD however, the filters used
to perform the analysis and their passband information are available to the user.

Nf = length(x)/2+1;
cf = mean(info.FilterBank.Passbands,2);
f = 0:Fs/length(x):Fs-Fs/length(x);
clf
ax = newplot;
plot(ax,f(1:Nf),wfb(1:Nf,:))
ax.XTick = sort(cf.*Fs);
ax.XTickLabel = ax.XTick;
xlabel('Hz')
grid on
title('Empirical Meyer Wavelets')
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Another advantage of the EWT technique is that the analysis coefficients preserve the energy of the
original signal. This property is shared by the non-adaptive wavelet techniques, but is not found in
the non-wavelet adaptive techniques.

EWTEnergy = sum(vecnorm(cfs,2).^2)

EWTEnergy = 875.5768

sigEnergy = norm(x,2)^2

sigEnergy = 875.5768

For a real-world example of useful component separation, consider a seismograph (vertical
acceleration, nm/s2) of the Kobe earthquake, recorded at Tasmania University, Hobart, Australia on
16 January 1995 beginning at 20:56:51 (GMT) and continuing for 51 minutes at 1 second intervals.

load KobeTimeTable
T = KobeTimeTable.t;
kobe = KobeTimeTable.kobe;
figure
plot(T,kobe)
title('Kobe Earthquake Seismograph')
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ylabel('Vertical Acceleration (nm/s^2)')
xlabel('Time')
axis tight
grid on

Obtain and plot a wavelet MRA of the data.

mraKobe = modwtmra(modwt(kobe,8));
figure
helperMRAPlot(kobe,mraKobe,T,'Wavelet','Wavelet MRA Kobe Earthquake',[4 5])
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The plot shows the separation of primary and delayed secondary wave components in MRA
components D∼4 and D∼5. Components in a seismic wave travel at different velocities with primary
(compressional) waves traveling faster than secondary (shear) waves. MRA techniques can enable
you to study these components in isolation on the original time scale.

Reconstructing Signals from MRA

The point of separating signals into components is often to remove certain components or mitigate
their effect on the signal. Crucial to MRA techniques is the ability to reconstruct the original signal.

First, let us demonstrate that all these multiresolution techniques allow you to perfectly reconstruct
the signal from the components.

sigrec_wavelet = sum(mra);
sigrec_emd = sum(imf_emd,2)+resid_emd;
sigrec_vmd = sum(imf_vmd,2)+resid_vmd;
figure
subplot(3,1,1)
plot(t,sigrec_wavelet); title('Wavelet reconstruction');
set(gca,'XTickLabel',[]);
ylabel('Amplitude');
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subplot(3,1,2);
plot(t,sigrec_emd); title('EMD reconstruction');
set(gca,'XTickLabel',[]);
ylabel('Amplitude');
subplot(3,1,3)
plot(t,sigrec_vmd); title('VMD reconstruction');
ylabel('Amplitude');
xlabel('Time');

The maximum reconstruction error on a sample-by-sample basis for each of the methods is on the
order of 10−12 or smaller, indicating they are perfect reconstruction methods. Because the sum of the
MRA components reconstructs the original signal, it stands to reason that including or excluding a
subset of components could produce a useful approximation.

Return to our original wavelet MRA of the synthetic signal and suppose that you were not interested
in the trend term. Because the trend term is localized in the last MRA component, just exclude that
component from the reconstruction.

sigWOtrend = sum(mra(1:end-1,:));
figure
plot(t,sigWOtrend)
xlabel('Time (s)')
ylabel('Amplitude')
title('Trend Term Removed')
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To remove other components, you can create a logical vector with false values in components you
do not wish to include. Here we remove the trend and highest frequency component along with the
first MRA component (which looks to be largely noise). Plot the actual second signal component (60
Hz) along with the reconstruction for comparison.

include = true(size(mra,1),1);
include([1 2 9]) = false;
ts = sum(mra(include,:));
plot(t,comp2,'b')
hold on
plot(t,ts,'r')
title('Trend Term and Highest Frequency Component Removed')
xlabel('Time (s)')
ylabel('Amplitude')
legend('Component 2','Partial Reconstruction')
xlim([0.0 0.4])

 Practical Introduction to Multiresolution Analysis

11-15



In the previous example, we treated the trend term as a nuisance component to be removed. There
are a number of applications where the trend may be the primary component of interest. Let us
visualize the trend terms extracted by our three example MRAs.

figure
plot(t,trend,'LineWidth',2)
hold on
plot(t,[mra(end,:)' imf_vmd(:,end) imf_emd(:,end) mra_ewt(:,end)])
grid on
legend('Trend','Wavelet','VMD','EMD','EWT')
ylabel('Amplitude')
xlabel('Time (s)')
title('Trend in three MRAs')
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Note that the trend is smoother and most accurately captured by the wavelet technique. EMD finds a
smooth trend term, but it is shifted with respect to the true trend amplitude while the VMD technique
seems inherently more biased toward finding oscillations than the wavelet and EMD techniques. The
implications of this are further discussed in the MRA Techniques — Advantages and Disadvantages on
page 11-0  section.

Detecting Transient Changes Using MRA

In the previous examples, the role of multiresolution analysis in the detection of oscillatory
components in the data and an overall trend was emphasized. However, these are not the only signal
features that can be analyzed using multiresolution analysis. MRA can also help localize and detect
transient features in a signal like impulsive events, or reductions or increases in variability in certain
components. Changes in variability localized to certain scales or frequency bands often indicate
significant changes in the process generating the data. These changes are frequently more easily
visualized in the MRA components than in the raw data.

To illustrate this, consider the quarterly chain-weighted U.S. real gross domestic product (GDP) data
for 1947Q1 to 2011Q4. Quarterly samples correspond to a sampling frequency of 4 samples/year. The
vertical black line marks the beginning of the "Great Moderation" signifying a period of decreased
macroeconomic volatility in the U.S. beginning in the mid-1980s. Note that this is difficult to discern
looking at the raw data.

load GDPData
figure
plot(year,realgdp)
hold on
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plot([year(146) year(146)],[-0.06 0.14],'k')
title('GDP Data')
xlabel('Year')
hold off

Obtain a wavelet MRA of the GDP data. Plot the finest resolution MRA component with the period of
the great moderation marked. Because the wavelet MRA is obtained using fixed filters, we can
associate the finest-scale MRA component with frequencies of 1 cycle per year to 2 cycles per year. A
component which oscillated with a period of two quarters has a frequency of 2 cycles per year. In this
case, the finest-resolution MRA component captures changes in the GDP that occur between adjacent
two-quarter intervals to changes that occur from quarter to quarter.

mra = modwtmra(modwt(realgdp,'db2'));
figure
plot(year,mra(1,:))
hold on
plot([year(146) year(146)],[-0.015 0.015],'k')
title('Wavelet MRA - Quarter-to-Quarter Changes')
xlabel('Year')
hold off
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The reduction in variability, or in economic terms volatility, is much more readily apparent in the
finest resolution MRA component than in the raw data. Techniques to detect changes in variance like
the MATLAB findchangepts (Signal Processing Toolbox) often work better on MRA components
than on the raw data.

MRA Techniques — Advantages and Disadvantages

In this example, we discussed wavelet and data-adaptive techniques for multiresolution analysis.
What are some of the advantages and disadvantages of the various techniques? In other words, for
what applications might I choose one over the other? Let us start with wavelets. The wavelet
techniques in this example use fixed filters to obtain the MRA. This means that the wavelet MRA has
a well-defined mathematical explanation and we can predict the behavior of the MRA. We are also
able to tie events in the MRA to specific time scales in the data as was done in the GDP example. The
disadvantage is that the wavelet transform divides the signal into octave bands (a reduction in center
frequency by 1/2 in each component) so that at high center frequencies the bandwidths are much
larger than those at lower frequencies. This means two closely spaced high frequency oscillations can
easily end up in the same MRA component with a wavelet technique.

Repeat the first synthetic example but move the two oscillatory components within one octave of each
other.

Fs = 1e3;
t = 0:1/Fs:1-1/Fs;
comp1 = cos(2*pi*150*t).*(t>=0.1 & t<0.3);
comp2 = cos(2*pi*200*t).*(t>0.7);
trend = sin(2*pi*1/2*t);
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rng default;
wgnNoise = 0.4*randn(size(t));
x = comp1+comp2+trend+wgnNoise;
plot(t,x)
xlabel('Seconds')
ylabel('Amplitude')

Repeat and plot the wavelet MRA.

mra = modwtmra(modwt(x,8));
helperMRAPlot(x,mra,t,'wavelet','Wavelet MRA',[2 9])
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Now we see that D∼2 contains both the 150 Hz and 200 Hz components. If you repeat this analysis
using EMD, you see the same result.

Now let us use the VMD.

[imf_vmd,~,info_vmd] = vmd(x);
helperMRAPlot(x,imf_vmd,t,'vmd','VMD',[1 2 3 5]);
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VMD is able to separate the two components. The high frequency oscillation localized to IMF 1, while
the second component is spread over two adjacent IMFs. If you look at the estimated central
frequencies of the VMD modes, the technique has localized the first two components around 200 and
150 Hz. The third IMF has a center frequency close to 150 Hz, which is why we see the second
component in two MRA components.

info_vmd.CentralFrequencies*Fs

ans = 5×1

  202.7204
  153.3278
  148.8022
   84.2802
    0.2667

VMD is able to do this because it starts by identifying candidate center frequencies for IMFs by
looking at a frequency-domain analysis of the data.

While the wavelet MRA is not able to separate the two high-frequency components, there is an
additional wavelet packet MRA which can.
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wpt = modwptdetails(x,3);
helperMRAPlot(x,flip(wpt),t,'wavelet','Wavelet Packet MRA',[5 6 8]);

Now you see the two oscillations are separated in D∼5 and D∼6. From this example we can extract a
general rule. If an initial wavelet or EMD decomposition shows components with apparently different
rates of oscillation in the same component, consider VMD or a wavelet packet MRA. If you suspect
that your data has high frequency components close together in frequency, VMD or a wavelet packet
approach will generally work better than a wavelet or EMD approach.

Recall the problem of extracting a smooth trend. Repeat both the wavelet MRA and the EMD.

mra = modwtmra(modwt(x,8));
helperMRAPlot(x,mra,t,'wavelet','Wavelet MRA',[2 9])
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imf_emd = emd(x);
helperMRAPlot(x,imf_emd,t,'EMD','Empirical Mode Decomposition',[1 2 6])
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The trends extracted by the wavelet and EMD techniques are closer to the true trend than those
extracted by VMD and the wavelet packet technique. VMD is inherently biased toward finding
narrowband oscillatory components. This is a strength of VMD in detecting closely spaced
oscillations, but a disadvantage when extracting smooth trends in the data. The same is true of
wavelet packet MRAs when the decomposition goes beyond a few levels. This leads to a second
general recommendation. If you are interested in characterizing a smooth trend in your data for
identification or removal, try a wavelet or EMD technique.

What about detecting transient changes as we saw in the GDP data? Let us repeat the GDP analysis
using VMD.

[imf_vmd,~,vmd_info] = vmd(realgdp);
figure
subplot(2,1,1)
plot(year,realgdp)
title('Real GDP');
hold on
plot([year(146) year(146)],[-0.1 0.15],'k')
hold off
subplot(2,1,2)
plot(year,imf_vmd(:,1));
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title('First VMD IMF');
xlabel('Year')
hold on
plot([year(146) year(146)],[-0.02 0.02],'k')
hold off

While the highest-frequency VMD component also appears to show some reduction in variability
beginning in the mid-1980s, it is not as readily apparent as in the wavelet MRA. Because the VMD
technique is biased toward finding oscillations, there is substantial ringing in the first VMD IMF
which obscures the volatility changes.

Repeat this analysis using EMD.

imf_emd = emd(realgdp);
figure
subplot(2,1,1)
plot(year,realgdp)
title('Real GDP');
hold on
plot([year(146) year(146)],[-0.1 0.15],'k')
hold off
subplot(2,1,2)
plot(year,imf_emd(:,1));
title('First EMD IMF')
xlabel('Year')
hold on
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plot([year(146) year(146)],[-0.06 0.05],'k')
hold off

The EMD technique is less useful in finding the change in volatility (variance). In this case, the fixed
functions using in the wavelet MRA were more advantageous than the data adaptive techniques.

This leads to our final general rule. If you are interested in detecting transient changes in a signal
like impulsive events are reductions and increases in variability, try a wavelet technique.

Conclusions

This example showed how multiresolution decomposition techniques such as wavelet, wavelet packet,
empirical mode decomposition, empirical wavelet, and variational mode decomposition allow you to
study signal components in relative isolation on the same time scale as the original data. Each
technique has proven itself powerful in a number of applications. The example has given a few rules
of thumb to get you started, but these should not be regarded as absolute. The following table recaps
properties of the MRA techniques presented here along with some general rules of thumb. Two
plusses denote a particular strength, one plus indicates that the technique is applicable, but not a
particular strength. For a binary property like the preservation of energy in the analysis, a check
mark indicates the technique has this property and an "x" indicates the property is absent.
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• If your data appears to contain oscillatory components close in frequency and if the frequencies
are low, try the wavelet, wavelet packets, empirical wavelet, or VMD techniques.

• If the data appears to contain closely spaced high-frequency oscillatory components, try VMD or
wavelet packets. VMD identifies the important center frequencies directly from the data, while
wavelet packets use a fixed frequency analysis, which may be less flexible than VMD. The wavelet
and empirical wavelet techniques both are constant-Q filterings of the signal, which means the
bandwidths are proportional to the center frequency. At high frequencies, this makes it difficult to
separate closely-spaced components.

• If you are interested in transient events in your data like impulsive events or transient reductions
and increases in variability, try a wavelet or empirical wavelet MRA. In any MRA, these events are
usually localized to the finest scale (highest center frequency) MRA components.

• If you are interested in representing a smooth trend term in the data, consider EMD or a wavelet
MRA.

With Signal Multiresolution Analyzer, you can perform multiresolution analysis on a signal, obtain
metrics on various MRA components, experiment with partial reconstructions, and generate MATLAB
scripts to reproduce the analysis at the command line.
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Wavelet Analysis for 3D Data
This example shows how to analyze 3D data using the three-dimensional wavelet analysis tool, and
how to display low-pass and high-pass components along a given slice. The example focuses on
magnetic resonance images.

A key feature of this analysis is to track the optimal, or at least a good, wavelet-based sparsity of the
image which is the lowest percentage of transform coefficients sufficient for diagnostic-quality
reconstruction.

To illustrate this, we keep the approximation of a 3D MRI to show the complexity reduction. The
result can be improved if the images were transformed and reconstructed from the largest transform
coefficients where the definition of the quality is assessed by medical specialists.

We will see that Wavelet transform for brain images allows efficient and accurate reconstructions
involving only 5-10% of the coefficients.

Load and Display 3D MRI Data

First, load the wmri.mat file which is built from the MRI data set that comes with MATLAB®.

load wmri

We now display some slices along the Z-orientation of the original brain data.

map = pink(90);
idxImages = 1:3:size(X,3);
figure('DefaultAxesXTick',[],'DefaultAxesYTick',[],...
    'DefaultAxesFontSize',8,'Color','w')
colormap(map)
for k = 1:9
    j = idxImages(k);
    subplot(3,3,k)
    image(X(:,:,j))
    xlabel(['Z = ' int2str(j)])
    if k==2
        title('Some slices along the Z-orientation of the original brain data')
    end
end
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We now switch to the Y-orientation slice.

perm = [1 3 2];
XP = permute(X,perm);
figure('DefaultAxesXTick',[],'DefaultAxesYTick',[],...
    'DefaultAxesFontSize',8,'Color','w')
colormap(map)
for k = 1:9
    j = idxImages(k);
    subplot(3,3,k)
    image(XP(:,:,j))
    xlabel(['Y = ' int2str(j)])
    if k==2
        title('Some slices along the Y-orientation')
    end
end
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clear XP

Multilevel 3D Wavelet Decomposition

Compute the wavelet decomposition of the 3D data at level 3.

n = 3;                   % Decomposition Level 
w = 'sym4';              % Near symmetric wavelet
WT = wavedec3(X,n,w);    % Multilevel 3D wavelet decomposition.

Multilevel 3D Wavelet Reconstruction

Reconstruct from coefficients the approximations and details for levels 1 to 3.

A = cell(1,n);
D = cell(1,n);
for k = 1:n
    A{k} = waverec3(WT,'a',k);   % Approximations (low-pass components)
    D{k} = waverec3(WT,'d',k);   % Details (high-pass components)
end

Check for perfect reconstruction.

err = zeros(1,n);
for k = 1:n
    E = double(X)-A{k}-D{k};
    err(k) = max(abs(E(:)));
end
disp(err)
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   1.0e-09 *

    0.3043    0.3043    0.3044

Display Low-Pass and High-Pass Components

The reconstructed approximations and details along the Z-orientation are displayed below.

nbIMG = 6;
idxImages_New = [1 7 10 16 19 25];
for ik = 1:nbIMG
    j = idxImages_New(ik);
    figure('DefaultAxesXTick',[],'DefaultAxesYTick',[],...
        'DefaultAxesFontSize',8,'Color','w')
    colormap(map)
    for k = 1:n
        labstr = [int2str(k) ' - Z = ' int2str(j)];
        subplot(2,n,k)
        image(A{k}(:,:,j))
        xlabel(['A' labstr])
        if k==2
            title(['Approximations and details at level 1 to 3 - Slice = ' num2str(j)])
        end
        subplot(2,n,k+n)
        imagesc(abs(D{k}(:,:,j)))
        xlabel(['D' labstr])
    end
end
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3D Display of Original Data and Approximation at Level 2

The size of the 3D original array X is (128 x 128 x 27) = 442368. We can use a 3D display to show
it.

figure('DefaultAxesXTick',[],'DefaultAxesYTick',[],...
        'DefaultAxesFontSize',8,'Color','w')
XR = X;
Ds = smooth3(XR);
hiso = patch(isosurface(Ds,5),'FaceColor',[1,.75,.65],'EdgeColor','none');
hcap = patch(isocaps(XR,5),'FaceColor','interp','EdgeColor','none');
colormap(map)
daspect(gca,[1,1,.4])
lightangle(305,30); 
fig = gcf;
fig.Renderer = 'zbuffer';
lighting phong
isonormals(Ds,hiso)
hcap.AmbientStrength = .6;
hiso.SpecularColorReflectance = 0;
hiso.SpecularExponent = 50;
ax = gca;
ax.View = [215,30];
ax.Box = 'On';
axis tight
title('Original Data')
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The 3D array of the coefficients of approximation at level 2, whose size is (22 x 22 x 9) = 4356, is
less than 1% the size of the original data. With these coefficients, we can reconstruct A2, the
approximation at level 2, which is a kind of compression of the original 3D array. A2 can also be
shown using a 3D display.

figure('DefaultAxesXTick',[],'DefaultAxesYTick',[],...
        'DefaultAxesFontSize',8,'Color','w')
XR = A{2};
Ds = smooth3(XR);
hiso = patch(isosurface(Ds,5),'FaceColor',[1,.75,.65],'EdgeColor','none');
hcap = patch(isocaps(XR,5),'FaceColor','interp','EdgeColor','none');
colormap(map)
daspect(gca,[1,1,.4])
lightangle(305,30); 
fig = gcf;
fig.Renderer = 'zbuffer';
lighting phong
isonormals(Ds,hiso)
hcap.AmbientStrength = .6;
hiso.SpecularColorReflectance = 0;
hiso.SpecularExponent = 50;
ax = gca;
ax.View = [215,30];
ax.Box = 'On';
axis tight
title('Approximation at level 2')
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Summary

This example shows how to use 3D wavelet functions to analyze 3D data. The Wavelet Analyzer app,
waveletAnalyzer, lets you perform the same steps more easily, such as simulating 3D visualization
using an animation across different slices.
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Multisignal 1-D Wavelet Analysis
A 1-D multisignal is a set of 1-D signals of same length stored as a matrix organized rowwise (or
columnwise).

The purpose of this example is to show how to analyze, denoise or compress a multisignal, and then
to cluster different representations or simplified versions of the signals composing the multisignal.

In this example, the signals are first analyzed and different representations or simplified versions are
produced:

• Reconstructed approximations at given levels,

• Denoised versions,

• Compressed versions.

Denoising and compressing are two of the main applications of wavelets, often used as a
preprocessing step before clustering.

The last step of this example performs several clustering strategies and compare them. It allows to
summarize a large set of signals using sparse wavelet representations.

Load and Plot a Multisignal

To illustrate these capabilities, let us consider a real-life multisignal representing 35 days of an
electrical load consumption, centered and standardized.

load elec35_nor;       % Load normalized original data.
X = signals;
[nbSIG,nbVAL] = size(X);
plot(X','r')
axis tight
title('Original Data: 35 days of electrical consumption');
xlabel('Minutes from 1 to 1440');
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We can see that the signals are locally irregular and noisy but nevertheless three different general
shapes can be distinguished.

Surface Representation of Data

In order to highlight the periodicity of the multisignal, let us now examine the data using a 3-D
representation.

surf(X)
shading interp
axis tight
title('Original Data: 35 days of electrical consumption')
xlabel('Minutes from 1 to 1440','Rotation',4)
ylabel('Days from 1 to 35','Rotation',-60)
ax = gca;
ax.View = [-13.5 48];
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The five weeks represented can now be seen more clearly.

Multisignal Row Decomposition

Perform a wavelet decomposition at level 7 using the ' sym4 ' wavelet.

dirDec = 'r';         % Direction of decomposition
level  = 7;           % Level of decomposition
wname  = 'sym4';      % Near symmetric wavelet
decROW = mdwtdec(dirDec,X,level,wname);

The generated decomposition structure is as follows:

decROW

decROW = 

  struct with fields:

        dirDec: 'r'
         level: 7
         wname: 'sym4'
    dwtFilters: [1x1 struct]
       dwtEXTM: 'sym'
      dwtShift: 0
      dataSize: [35 1440]
            ca: [35x18 double]
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            cd: {1x7 cell}

Signals and Approximations at Level 7

Let us reconstruct the approximations at level 7 for each row signal. Then, to compare the
approximations with the original signals, let us display two plots (see figure below). The first one
shows all the original signals and the second one shows all the corresponding approximations at level
7.

A7_ROW  = mdwtrec(decROW,'a',7);

subplot(2,1,1)
plot(X(:,:)','r')
title('Original Data')
axis tight
subplot(2,1,2)
plot(A7_ROW(:,:)','b')
axis tight
title('Corresponding approximations at level 7')

As it can be seen, the general shape is captured by the approximations at level 7, but some
interesting features are lost. For example, the bumps at the beginning and at the end of the signals
disappeared.
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Superimposed Signals and Approximations

To compare more closely the original signals with their corresponding approximations at level 7, let
us display two plots (see figure below). The first one concerns the four first signals and the second
one the five last signals. Each of these plots represents the original signals superimposed with their
corresponding approximation at level 7.

subplot(2,1,1)
idxDays = 1:4;
plot(X(idxDays,:)','r')
hold on
plot(A7_ROW(idxDays,:)','b')
axis tight
title(['Days ' int2str(idxDays), ' - Signals and Approximations at level 7'])
subplot(2,1,2)
idxDays = 31:35;
plot(X(idxDays,:)','r')
hold on
plot(A7_ROW(idxDays,:)','b')
axis tight
title(['Days ' int2str(idxDays), ' - Signals and Approximations at level 7'])

As it can be seen, the approximation of the original signal is visually accurate in terms of general
shape.
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Multisignal Denoising

To perform a more subtle simplification of the multisignal preserving these bumps which are clearly
attributable to the electrical signal, let us denoise the multisignal.

The denoising procedure is performed using three steps:

1) Decomposition : Choose a wavelet and a level of decomposition N, and then compute the wavelet
decompositions of the signals at level N.

2) Thresholding : For each level from 1 to N and for each signal, a threshold is selected and
thresholding is applied to the detail coefficients.

3) Reconstruction : Compute wavelet reconstructions using the original approximation coefficients
of level N and the modified detail coefficients of levels from 1 to N.

Let us choose now the level of decomposition N = 5 instead of N = 7 used previously.

dirDec = 'r';         % Direction of decomposition
level  = 5;           % Level of decomposition
wname  = 'sym4';      % Near symmetric wavelet
decROW = mdwtdec(dirDec,X,level,wname);

[XD,decDEN] = mswden('den',decROW,'sqtwolog','mln');
Residuals = X-XD;

subplot(3,1,1)
plot(X','r')
axis tight
title('Original Data: 35 days of electrical consumption')
subplot(3,1,2)
plot(XD','b')
axis tight
title('Denoised Data: 35 days of electrical consumption')
subplot(3,1,3)
plot(Residuals','k')
axis tight
title('Residuals')
xlabel('Minutes from 1 to 1440')
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The quality of the results is good. The bumps at the beginning and at the end of the signals are well
recovered and, conversely, the residuals look like a noise except for some remaining bumps due to the
signals. Furthermore, the magnitude of these remaining bumps is of a small order.

Multisignal Compressing Row Signals

Like denoising, the compression procedure is performed using three steps (see above).

The difference with the denoising procedure is found in step 2. There are two compression
approaches available:

• The first one consists of taking the wavelet expansions of the signals and keeping the largest
absolute value coefficients. In this case, you can set a global threshold, a compression
performance, or a relative square norm recovery performance. Thus, only a single signal-
dependent parameter needs to be selected.

• The second approach consists of applying visually determined level-dependent thresholds.

To simplify the data representation and to make more efficient the compression, let us go back to the
decomposition at level 7 and compress each row of the multisignal by applying a global threshold
leading to recover 99% of the energy.

dirDec = 'r';         % Direction of decomposition
level  = 7;           % Level of decomposition
wname  = 'sym4';      % Near symmetric wavelet
decROW = mdwtdec(dirDec,X,level,wname);
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[XC,decCMP,THRESH] = mswcmp('cmp',decROW,'L2_perf',99);

subplot(3,1,1)
plot(X','r')
axis tight
title('Original Data: 35 days of electrical consumption')
subplot(3,1,2)
plot(XC','b')
axis tight
title('Compressed Data: 35 days of electrical consumption')
subplot(3,1,3)
plot((X-XC)','k')
axis tight
title('Residuals')
xlabel('Minutes from 1 to 1440')

As it can be seen, the general shape is preserved while the local irregularities are neglected. The
residuals contain noise as well as components due to the small scales essentially.

Compression Performance

Let us now compute the corresponding densities of nonzero elements.

cfs = cat(2,[decCMP.cd{:},decCMP.ca]);
cfs = sparse(cfs);
perf = zeros(1,nbSIG);
for k = 1:nbSIG
    perf(k) = 100*nnz(cfs(k,:))/nbVAL;
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end

figure
plot(perf,'r-*')
title('Percentages of nonzero coefficients for the 35 days')
xlabel('Signal indices')
ylabel('% of nonzero coefficients')

For each signal, the percentage of required coefficients to recover 99% of the energy lies between
1.25% and 1.75%. This illustrates the capacity of wavelets to concentrate signal energy in few
coefficients.

Clustering Row Signals

Clustering offers a convenient procedure to summarize a large set of signals using sparse wavelet
representations. You can implement hierarchical clustering using mdwtcluster. You must have the
Statistics and Machine Learning Toolbox™ to use mdwtcluster.

Compare three different clusterings of the 35-day data. The first one is based on the original
multisignal, the second one on the approximation coefficients at level 7, and the last one is based on
the denoised multisignal.

Set to the number of clusters to 3. Compute the structures P1 and P2 which contain respectively the
two first partitions and the third one.
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P1 = mdwtcluster(decROW,'lst2clu',{'s','ca7'},'maxclust',3);
P2 = mdwtcluster(decDEN,'lst2clu',{'s'},'maxclust',3);
Clusters = [P1.IdxCLU P2.IdxCLU];

We can now test the equality of the three partitions.

EqualPART = isequal(max(diff(Clusters,[],2)),[0 0])

EqualPART =

  logical

   1

So the three partitions are the same. Let us now plot and examine the clusters.

figure
stem(Clusters,'filled','b:')
title('The three clusters of the original 35 days')
xlabel('Signal indices')
ylabel('Index of cluster')
ax = gca;
xlim([1 35])
ylim([0.5 3.1])
ax.YTick = 1:3;
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The first cluster (labelled 3) contains 25 mid-week days and the two others (labelled 2 and 1) contain
five Saturdays and five Sundays respectively. This illustrates again the periodicity of the underlying
time series and the three different general shapes seen in the two first plots displayed at the
beginning of this example.

Let us now display the original signals and the corresponding approximation coefficients used to
obtain two of the three partitions.

CA7 = mdwtrec(decROW,'ca');
IdxInCluster = cell(1,3);
for k = 1:3
    IdxInCluster{k} = find(P2.IdxCLU==k);
end
figure('Units','normalized','Position',[0.2 0.2 0.6 0.6])
for k = 1:3
    idxK = IdxInCluster{k};
    subplot(2,3,k)
    plot(X(idxK,:)','r')
    axis tight
    ax = gca;
    ax.XTick = [200 800 1400];
    if k==2
        title('Original signals')
    end
    xlabel(['Cluster: ' int2str(k) ' (' int2str(length(idxK)) ')'])
    subplot(2,3,k+3)
    plot(CA7(idxK,:)','b')
    axis tight
    if k==2
        title('Coefficients of approximations at level 7')
    end
    xlabel(['Cluster: ' int2str(k) ' (' int2str(length(idxK)) ')'])
end
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The same partitions are obtained from the original signals (1440 samples for each signal) and from
the coefficients of approximations at level 7 (18 samples for each signal). This illustrates that using
less than 2% of the coefficients is enough to get the same clustering partitions of the 35 days.

Summary

Denoising, compression and clustering using wavelets are very efficient tools. The capacity of wavelet
representations to concentrate signal energy in few coefficients is the key of efficiency. In addition,
clustering offers a convenient procedure to summarize a large set of signals using sparse wavelet
representations.
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Detecting Discontinuities and Breakdown Points
Signals with very rapid evolutions such as transient signals in dynamic systems may undergo abrupt
changes such as a jump, or a sharp change in the first or second derivative. Fourier analysis is usually
not able to detect those events. The purpose of this example is to show how analysis by wavelets can
detect the exact instant when a signal changes and also the type (a rupture of the signal, or an abrupt
change in its first or second derivative) and amplitude of the change. In image processing, one of the
major applications is edge detection, which also involves detecting abrupt changes.

Frequency Breakdown

Short wavelets are often more effective than long ones in detecting a signal rupture. Therefore, to
identify a signal discontinuity, we will use the Haar wavelet. The discontinuous signal consists of a
slow sine wave abruptly followed by a medium sine wave.

load freqbrk
x = freqbrk;

Compute the multilevel 1-D wavelet decomposition at level 1.

level = 1;
[c,l] = wavedec(x,level,'haar');

Extract the detail coefficients at level 1 from the wavelet decomposition and visualize the result.
Interpolate the detail coefficients so they and the signal have the same length.

d1 = detcoef(c,l,level);
subplot(2,1,1)
plot(x)
subplot(2,1,2)
plot(interpft(d1,2*length(d1)))
ylabel('d1')
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The first-level details (d1) show the discontinuity most clearly, because the rupture contains the high-
frequency part. The discontinuity is localized very precisely around time = 500.

The presence of noise makes identification of discontinuities more complicated. If the finer levels of
the decomposition can be used to eliminate a large part of the noise, the rupture is sometimes visible
at coarser levels in the decomposition.

Second Derivation Breakdown

The purpose of this example is to show how analysis by wavelets can detect a discontinuity in one of a
signal's derivatives. The signal, while apparently a single smooth curve, is actually composed of two
separate exponentials.

load scddvbrk;
x = scddvbrk;
level = 2;
[c,l] = wavedec(x,level,'db4');
[d1,d2] = detcoef(c,l,1:level);
d1up = dyadup(d1,0);
d2up = dyadup(dyadup(d2,0),0);
subplot(3,1,1)
plot(x)
xlim([400 600])
subplot(3,1,2)
plot(d1up)
ylabel('d1')
xlim([400 600])
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subplot(3,1,3)
plot(d2up)
ylabel('d2')
xlim([400 600])

We have zoomed in on the middle part of the signal to show more clearly what happens around time
= 500. The details are high only in the middle of the signal and are negligible elsewhere. This
suggests the presence of high-frequency information — a sudden change or discontinuity — around
time = 500.

Note that to detect a singularity, the selected wavelet must be sufficiently regular, which implies a
longer filter impulse response. Regularity can be an important criterion in selecting a wavelet. We
have chosen to use db4, which is sufficiently regular for this analysis. Had we chosen the Haar
wavelet, the discontinuity would not have been detected. If you try repeating this analysis using the
Haar wavelet at level two, you will notice that the details are equal to zero at time = 500.

Edge Detection

For images, a two-dimensional discrete wavelet transform leads to a decomposition of approximation
coefficients at level j in four components: the approximation at level j+1, and the details in three
orientations (horizontal, vertical, and diagonal).

load tartan;
level = 1;
[c,s] = wavedec2(X,level,'coif2');
[chd1,cvd1,cdd1] = detcoef2('all',c,s,level);
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subplot(1,2,1)
image(X)
colormap(map)
title('Original Image')
subplot(1,2,2)
image(chd1)
colormap(map)
title('Horizontal Edges')

subplot(1,2,1)
image(cvd1)
colormap(map)
title('Vertical Edges')
subplot(1,2,2)
image(cdd1)
colormap(map)
title('Diagonal Edges')
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See Also
wavedec | wavedec2
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Haar Transforms for Time Series Data and Images
This example shows how to use Haar transforms to analyze time series data and images. To run all
the code in this example, you must have Signal Processing Toolbox™ and Image Processing
Toolbox™.

First, visualize the Haar wavelet.

[~,psi,x] = wavefun('haar',10);
x = x(2:end-1);
psi = psi(2:end-1);
hl = plot(x(1:512),psi(1:512));
grid on
hold on
line(x(513:end),psi(513:end))
xlabel('t')
ylabel('\psi(t)','fontsize',14)
title('Haar Wavelet')

The Haar wavelet is discontinuous. As a result, it is typically not used in denoising or compression
applications where smoothness of the reconstruction wavelet is an important consideration. However,
Haar transforms are useful in a number of applications due to their superior time (spatial)
localization and computational efficiency. The Wavelet Toolbox™ supports Haar analysis in most of the
discrete wavelet analysis tools. This example features Haar lifting implementations which support
integer-to-integer wavelet transforms for both 1-D and 2-D data and multichannel (multivariate) 1-D
data.
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Analyze Signal Variability By Scale

Load and plot the clock_571 dataset. This example is essentially a recreation of the analysis
presented in Percival & Walden [3], pp 13–16.

load clock_571;
figure;
plot(clock_571)
xlabel('Days')
grid on;
title('Daily Average Fractional Frequency Deviates -- Cesium Clock');

The data are daily average fractional frequency deviates for a particular cesium beam atomic clock
with respect to the U.S. Naval Observatory master clock. If the value of the time series is 0, that
means the cesium clock has neither lost nor gained time with respect to the master clock over the
duration of the day. If the value is negative, the clock has lost time that day, a positive value means
that the clock has gained time. For this data, the values are all negative. For certain applications, like
geodesy, it is important to know whether there are certain time scales where the clock's deviation
from the master clock is at its lowest value. In other words, are there certain scales where the clock
agrees most closely with the master clock? The Haar transform is useful here because it possesses
two important properties: It decorrelates data by scale and it partitions signal energy among scale.

To illustrate the decorrelating property, obtain the Haar transform down to level 6. Plot the
autocorrelation sequence of the original data along with the autocorrelation of the wavelet
coefficients by scale for scales of 2,4,8,16, and 32 days. Dashed lines on the plots delineate 95%
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confidence intervals for white noise inputs. Values exceeding those lines are indicative of significant
autocorrelation in the data.

[s,w] = haart(clock_571,6);
helperAutoCorr(clock_571,w);

11 Featured Examples — Discrete Multiresolution Analysis

11-60



The top plot shows the autocorrelation sequence for the original data. Subsequent plots show the
autocorrelation sequences for wavelet coefficients at increasingly coarser scales. It is clear that the
autocorrelation sequence of the original data exhibits correlation at all lags while the Haar transform
coefficients are decorrelated. Next, demonstrate energy conservation.

sigenergy = norm(clock_571,2)^2
energyByScale = cellfun(@(x)norm(x,2)^2,w);
haarenergy = norm(s,2)^2+sum(energyByScale)

sigenergy =

   2.7964e+05

haarenergy =

   2.7964e+05

The total signal energy is preserved by the Haar transform. Because of these properties, you can
make meaningful inferences based on the proportion of signal energy captured by the wavelet
coefficients at each scale.

scales = 2.^(1:6);
figure
plot(scales,energyByScale,'-o')
xlabel('Scale (days)')
set(gca,'xscale','log')
set(gca,'xtick',2.^(1:6))
ylabel('Proportion of Signal Energy')
grid on
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You see that the energy is at a minimum for scales of 16 and 32 days. For the Haar wavelet (and all
Daubechies wavelets), the wavelet coefficients at a given scale represent differences between
weighted averages of the data over a duration 1/2 the length of the scale. This plot indicates scales
over which the cesium clock is in best agreement with the master clock. This means that considering
data over approximately two-week or even one-month periods is more accurate than data on smaller
or longer scales. As previously mentioned, this has important implications for geodesy where
extremely precise time measurements are critical.

Although the Haar wavelet is discontinuous, it is still effective at representing various kinds of time
series. Examples include count data and data where values of a time series are tied to some specific
state, which affects the level of the time series. As an example, consider the relationship between
heart rate and sleep state.

Create Signal Approximations

The data consist of two time series. One time series is the heart rate of a 66-day old infant sampled
every 16 seconds for just over 9 hours. The heart rate time series is integer-valued. The other time
series is the expertly scored sleep state of the same infant over the same period with the same
sampling rate. The sleep state data was scored based on the infant's EEG and EOG (eye movement)
data, not based on the heart rate. The sleep state codes are 1=quiet sleep, 2=between quiet and
active sleep, 3=active sleep, and 4=awake. Both time series were recorded by Prof. Peter Fleming, Dr
Andrew Sawczenko, and Jeanine Young of the Institute of Child Health, Royal Hospital for Sick
Children, Bristol and kindly provided for use in this example. Plot the heart rate data along with the
sleep states.
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load BabyECGData
figure
yyaxis left
plot(times,HR)
ylabel('HR')
xlabel('Hrs')
YLim = [min(HR)-1 max(HR)+1];
yyaxis right
plot(times,SS)
ylabel('Sleep State')
YLim = [0.5 4.5];
title('Baby ECG and Sleep State')

An inspection of the data reveals an apparent correlation between sleep state and heart rate, but the
data is extremely noisy. Because the Haar transform provides a staircase approximation to a signal, it
is often useful in situations where a response is dependent on a predictor variable with a small
number of discrete states. Here the discrete states are the four sleep stages. Obtain the Haar
approximation of the heart rate data using a level 5 approximation. Because the heart rate data is
integer-valued, use the 'integer' flag to ensure that integer-valued data is returned. Plot the
result.

[S,W] = haart(HR,'integer');
HaarHR = ihaart(S,W,5,'integer');
figure
hL = plotyy(times,HaarHR,times,SS);
Ax1 = hL(1);
Ax2 = hL(2);

 Haar Transforms for Time Series Data and Images

11-63



Ax1.YLim = [min(HaarHR)-1 max(HaarHR)+1];
Ax1.YLabel.String = 'HR';
Ax2.YLim = [0.5 4.5];
Ax2.YLabel.String = 'Sleep State';
xlabel('Hrs')
title('Haar Approximation and Sleep State')

The Haar approximation more clearly shows the relationship between the sleep state and the heart
rate data. You can assess this change by looking at the correlation between the raw data and the
sleep state time series.

corr(SS,HR)

ans =

    0.5576

Now compare the value of 0.56 with the correlation between the sleep state data and the Haar
approximation

corr(SS,HaarHR)

ans =
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    0.6907

The correlation has increased from 0.56 to 0.69. More advanced wavelet analysis and modeling of
this data is presented in Nason, von Sachs, & Kroisandt [1] and Nason, Sapatinas, & Sawczenko [2].

Digital Watermarking of Images

Watermarking is an important data protection tool. It is a passive protection technique where a
marker is covertly inserted in some data in order to verify the authenticity or integrity of the data.
Wavelet techniques in general and the Haar transform in particular are frequently employed in
watermarking images. This example illustrates the use of the Haar transform in watermarking an
image and recovering the watermark. The example employs a simple watermarking scheme chosen
for ease of illustration. In this scheme, the watermark is inserted in the approximation coefficients at
level 3.

Watermark an image of a Mandril with one of a honey badger. Read in the Mandrill image. Resize it to
2048x2048 and display the result.

coverIM = imread('mandrill.jpg');
coverIM = rgb2gray(coverIM);
coverIM = imresize(im2double(coverIM),[2048 2048]);
imagesc(coverIM)
colormap gray
title('Original Image to Watermark')
axis off
axis square
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Obtain the Haar transform of the Mandrill image down to level 3.

[LLorig,LHorig,HLorig,HHorig] = haart2(coverIM,3);
imagesc(LLorig)
title('Level 3 Haar Approximation')
axis off
axis square

Read in watermark image and resize it.

watermark = imread('honeybadger.jpg');
watermark = im2double(rgb2gray(watermark));
watermark = imresize(watermark,[2048 2048]);

Obtain the Haar transform of the watermark image down to level 3.

[LLw,LHw,HLw,HHw] = haart2(watermark,3);
imagesc(LLw)
colormap gray
title('Level 3 Haar Approximation--Watermark')
axis off
axis square
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Add the honey badger watermark to the Mandril image by attenuating the level-3 approximation
coefficients of the watermark and inserting the attenuated coefficients into the level-3 Mandrill
approximation coefficients.

LLwatermarked = LLorig+1e-4*LLw;
markedIM = ihaart2(LLwatermarked,LHorig,HLorig,HHorig);
imagesc(markedIM)
title('Watermarked Image')
axis off
axis square
colormap gray
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The watermark (honey badger) is not visible in the watermarked image. Because you know what
algorithm was used to insert the watermark, you can recover the watermark using the Haar
transform.

[LLr,LHr,HLr,HHr] = haart2(markedIM,3);
LLmarked = (LLr-LLorig).*1e4;
imagesc(LLmarked)
title('Recovered Watermark')
colormap gray
axis off
axis square
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Wavelet Analysis of Financial Data
This example shows how to use wavelets to analyze financial data.

The separation of aggregate data into different time scales is a powerful tool for the analysis of
financial data. Different market forces effect economic relationships over varying periods of time.
Economic shocks are localized in time and within that time period exhibit oscillations of varying
frequency.

Some economic indicators lag, lead, or are coincident with other variables. Different actors in
financial markets view market mechanics over shorter and longer scales. Terms like "short-run" and
"long-run" are central in modeling the complex relationships between financial variables.

Wavelets decompose time series data into different scales and can reveal relationships not obvious in
the aggregate data. Further, it is often possible to exploit properties of the wavelet coefficients to
derive scale-based estimators for variance and correlation and test for significant differences.

Maximal Overlap Discrete Wavelet Transform -- Volatility by Scale

There are a number of different variations of the wavelet transform. This example focuses on the
maximal overlap discrete wavelet transform (MODWT). The MODWT is an undecimated wavelet
transform over dyadic (powers of two) scales, which is frequently used with financial data. One nice
feature of the MODWT for time series analysis is that it partitions the data variance by scale. To
illustrate this, consider the quarterly chain-weighted U.S. real GDP data for 1947Q1 to 2011Q4. The
data were transformed by first taking the natural logarithm and then calculating the year-over-year
difference. Obtain the MODWT of the real GDP data down to level six with the 'db2' wavelet. Examine
the variance of the data and compare that to the variances by scale obtained with the MODWT.

load GDPExampleData;
realgdpwt = modwt(realgdp,'db2',6);
vardata = var(realgdp,1);
varwt = var(realgdpwt,1,2);

In vardata you have the variance for the aggregate GDP time series. In varwt you have the variance
by scale for the MODWT. There are seven elements in varwt because you obtained the MODWT down
to level six resulting in six wavelet coefficient variances and one scaling coefficient variance. Sum the
variances by scale to see that the variance is preserved. Plot the wavelet variances by scale ignoring
the scaling coefficient variance.

totalMODWTvar = sum(varwt);
bar(varwt(1:end-1,:))
AX = gca;
AX.XTickLabels = {'[2 4)','[4 8)','[8 16)','[16 32)','[32 64)','[64 128)'};
xlabel('Quarters')
ylabel('Variance')
title('Wavelet Variance by Scale')
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Because this data is quarterly, the first scale captures variations between two and four quarters, the
second scale between four and eight, the third between 8 and 16, and so on.

From the MODWT and a simple bar plot, you see that cycles in the data between 8 and 32 quarters
account for the largest variance in the GDP data. If you consider the wavelet variances at these
scales, they account for 57% of the variability in the GDP data. This means that oscillations in the
GDP over a period of 2 to 8 years account for most of the variability seen in the time series.

Great Moderation -- Testing for Changes in Volatility with the MODWT

Wavelet analysis can often reveal changes in volatility not evident in aggregate data. Begin with a
plot of the GDP data.

helperFinancialDataExample1(realgdp,year,'Year over Year Real U.S. GDP')
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The shaded region is referred to as the "Great Moderation" signifying a period of decreased
macroeconomic volatility in the U.S. beginning in the mid 1980s.

Examining the aggregate data, it is not clear that there is in fact reduced volatility in this period. Use
wavelets to investigate this by first obtaining a multiresolution analysis of the real GDP data using the
'db2' wavelet down to level 6.

realgdpwt = modwt(realgdp,'db2',6,'reflection');
gdpmra = modwtmra(realgdpwt,'db2','reflection');

Plot the level-one details, D1. These details capture oscillations in the data between two and four
quarters in duration.

helperFinancialDataExample1(gdpmra(1,:),year,...
    'Year over Year Real U.S. GDP - D1')
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Examining the level-one details, it appears there is a reduction of variance in the period of the Great
Moderation.

Test the level-one wavelet coefficients for significant variance changepoints.

[pts_Opt,kopt,t_est] = wvarchg(realgdpwt(1,1:numel(realgdp)),2);
years(pts_Opt)

ans = 

  duration

   142 yrs

There is a variance changepoint identified in 1982. This example does not correct for the delay
introduced by the 'db2' wavelet at level one. However, that delay is only two samples so it does not
appreciably affect the results.

To assess changes in the volatility of the GDP data pre and post 1982, split the original data into pre-
and post-changepoint series. Obtain the wavelet transforms of the pre and post datasets. In this case,
the series are relatively short so use the Haar wavelet to minimize the number of boundary
coefficients. Compute unbiased estimates of the wavelet variance by scale and plot the result.

tspre = realgdp(1:pts_Opt);
tspost = realgdp(pts_Opt+1:end);
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wtpre = modwt(tspre,'haar',5);
wtpost = modwt(tspost,'haar',5);
prevar = modwtvar(wtpre,'haar','table');
postvar = modwtvar(wtpost,'haar','table');
xlab = {'[2Q,4Q)','[4Q,8Q)','[8Q,16Q)','[16Q,32Q)','[32Q,64Q)'};
helperFinancialDataExampleVariancePlot(prevar,postvar,'table',xlab)
title('Wavelet Variance By Scale');
legend('Pre 1982 Q2','Post 1982 Q2','Location','NorthWest');

From the preceding plot, it appears there are significant differences between the pre-1982Q2 and
post-1982Q2 variances at scales between 2 and 16 quarters.

Because the time series are so short in this example, it can be useful to use biased estimates of the
variance. Biased estimates do not remove boundary coefficients. Use a 'db2' wavelet filter with four
coefficients.

wtpre = modwt(tspre,'db2',5,'reflection');
wtpost = modwt(tspost,'db2',5,'reflection');
prevar = modwtvar(wtpre,'db2',0.95,'EstimatorType','biased','table');
postvar = modwtvar(wtpost,'db2',0.95,'EstimatorType','biased','table');
xlab = {'[2Q,4Q)','[4Q,8Q)','[8Q,16Q)','[16Q,32Q)','[32Q,64Q)'};
figure;
helperFinancialDataExampleVariancePlot(prevar,postvar,'table',xlab)
title('Wavelet Variance By Scale');
legend('Pre 1982 Q2','Post 1982 Q2','Location','NorthWest');
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The results confirm our original finding that the Great Moderation is manifested in volatility
reductions over scales from 2 to 16 quarters.

Wavelet Correlation Analysis of GDP Component Data

You can also use wavelets to analyze correlation between two datasets by scale. Examine the
correlation between the aggregate data on government spending and private investment. The data
cover the same period as the real GDP data and are transformed in the exact same way.

[rho,pval] = corrcoef(privateinvest,govtexp);

Government spending and personal investment demonstrate a weak, but statistically significant,
negative correlation of -0.215. Repeat this analysis using the MODWT.

wtPI = modwt(privateinvest,'db2',5,'reflection');
wtGE = modwt(govtexp,'db2',5,'reflection');
wcorrtable = modwtcorr(wtPI,wtGE,'db2',0.95,'reflection','table');
display(wcorrtable)

wcorrtable =

  6x6 table

          NJ      Lower        Rho         Upper        Pvalue      AdjustedPvalue
          ___    ________    ________    __________    _________    ______________
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    D1    257    -0.29187    -0.12602      0.047192       0.1531         0.7502   
    D2    251    -0.54836    -0.35147      -0.11766    0.0040933       0.060171   
    D3    239    -0.62443    -0.35248    -0.0043207     0.047857        0.35175   
    D4    215    -0.70466    -0.32112       0.20764      0.22523        0.82773   
    D5    167    -0.63284     0.12965       0.76448      0.75962              1   
    S5    167    -0.63428     0.12728       0.76347      0.76392              1   

The multiscale correlation available with the MODWT shows a significant negative correlation only at
scale 2, which corresponds to cycles in the data between 4 and 8 quarters. Even this correlation is
only marginally significant when adjusting for multiple comparisons.

The multiscale correlation analysis reveals that the slight negative correlation in the aggregate data
is driven by the behavior of the data over scales of four to eight quarters. When you consider the data
over different time periods (scales), there is no significant correlation.

Wavelet Cross-Correlation Sequences -- Leading and Lagging Variables

With financial data, there is often a leading or lagging relationship between variables. In those cases,
it is useful to examine the cross-correlation sequence to determine if lagging one variable with
respect to another maximizes their cross-correlation. To illustrate this, consider the correlation
between two components of the GDP -- personal consumption expenditures and gross private
domestic investment.

piwt = modwt(privateinvest,'fk8',5);
pcwt = modwt(pc,'fk8',5);
figure;
modwtcorr(piwt,pcwt,'fk8')
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Personal expenditure and personal investment are negatively correlated over a period of 2-4 quarters.
At longer scales, there is a strong positive correlation between personal expenditure and personal
investment. Examine the wavelet cross-correlation sequence at the scale representing 2-4 quarter
cycles.

[xcseq,xcseqci,lags] = modwtxcorr(piwt,pcwt,'fk8');
zerolag = floor(numel(xcseq{1})/2)+1;
plot(lags{1}(zerolag:zerolag+20),xcseq{1}(zerolag:zerolag+20));
hold on;
plot(lags{1}(zerolag:zerolag+20),xcseqci{1}(zerolag:zerolag+20,:),'r--');
xlabel('Lag (Quarters)');
grid on;
title('Wavelet Cross-Correlation Sequence -- [2Q,4Q)');
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The finest-scale wavelet cross-correlation sequence shows a peak positive correlation at a lag of one
quarter. This indicates that personal investment lags personal expenditures by one quarter.

Continuous Wavelet Analysis of U.S. Inflation Rate

Using discrete wavelet analysis, you are limited to dyadic scales. This limitation is removed when
using continuous wavelet analysis.

Load U.S. inflation rate data from May, 1961 to November, 2011.

load CPIInflation;
figure
plot(yr,inflation)
AX = gca;
AX.XTick = 1962:10:2011;
title('CPI Inflation -- 1961 to 2011')
axis tight; grid on;
xlabel('Year')
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In the time data, a slow oscillation appears in the early 1970s and seems to dissipate by the late
1980s.

To characterize the periods of increased volatility, obtain the continuous wavelet transform (CWT) of
the data using the analytic Morlet wavelet.

cwt(inflation,'amor',years(1/12));
AX = gca;
AX.XTick = 8/12:10:596/12;
AX.XTickLabels = yr(round(AX.XTick*12));
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The CWT reveals the strongest oscillations in the inflation rate data in the approximate range of 4-6
years. This volatility begins to dissipate by the mid 1980s and is characterized by both a gradual
reduction in inflation and a shift in volatility toward longer periods. The strong volatility cycles in the
1970s and into the early 1980s are a result of the 1970s energy crisis (oil shocks) which resulted in
stagflation (stagnant growth and inflation) in the major industrial economies. See [1] for an in-depth
CWT-based analysis of these and other macroeconomic data. This example reproduces a small part of
the broader and more detailed analysis in that paper.

Conclusions

In this example you learned how to use the MODWT to analyze multiscale volatility and correlation in
financial time series data. The example also demonstrated how wavelets can be used to detect
changes in the volatility of a process over time. Finally, the example showed how the CWT can be
used to characterize periods of increased volatility in financial time series. The references provide
more detail on wavelet applications for financial data and time series analysis.

Appendix

The following helper functions are used in this example.

*helperFinancialDataExample1

*helperFinancialDataExampleVariancePlot
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*helperCWTTimeFreqPlot
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Image Fusion
The principle of image fusion using wavelets is to merge the wavelet decompositions of the two
original images using fusion methods applied to approximations coefficients and details coefficients.
The two images must be of the same size and are supposed to be associated with indexed images on a
common colormap (see wextend to resize images).

Two examples are examined: the first one merges two different images leading to a new image and
the second restores an image from two fuzzy versions of an original image.

Fusion of Two Different Images

Load two original images: a mask and a bust.

load mask; X1 = X;
load bust; X2 = X;

Merge the two images from wavelet decompositions at level 1 using db2 by taking two different
fusion methods: fusion by taking the mean for both approximations and details:

XFUSmean = wfusimg(X1,X2,'db2',1,'mean','mean');

and fusion by taking the maximum for approximations and the minimum for the details.

XFUSmaxmin = wfusimg(X1,X2,'db2',1,'max','min');

Plot original and synthesized images.

colormap(map);
subplot(221), image(X1), axis square, title('Mask')
subplot(222), image(X2), axis square, title('Bust')
subplot(223), image(XFUSmean), axis square, 
title('Synthesized image, mean-mean')
subplot(224), image(XFUSmaxmin), axis square, 
title('Synthesized image, max-min')
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Restoration by Fusion from Fuzzy Images

Load two fuzzy versions of an original image.

load cathe_1; X1 = X;
load cathe_2; X2 = X;

Merge the two images from wavelet decompositions at level 5 using sym4 by taking the maximum of
absolute value of the coefficients for both approximations and details.

XFUS = wfusimg(X1,X2,'sym4',5,'max','max');

Plot original and synthesized images.

figure('Color','white'),colormap(map);
subplot(221), image(X1), axis square, 
title('Catherine 1')
subplot(222), image(X2), axis square, 
title('Catherine 2')
subplot(223), image(XFUS), axis square, 
title('Synthesized image')
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Boundary Effects in Real-Valued Bandlimited Shearlet Systems
This example shows how edge effects can result in shearlet coefficients with nonzero imaginary parts
even in a real-valued shearlet system. The example also discusses two strategies for mitigating these
boundary effects: resizing or padding the image and changing the number of scales.

The bandlimited cone-adapted finite shearlet transform implemented in the shearletSystem object
is developed in [1] on page 11-0  and [2] on page 11-0 . The problem of potential edge effects in
this system is discussed at length in [1] on page 11-0 .

Frequency-Ordering Convention in Shearlet Filters

Bandlimited cone-adapted shearlets are constructed in the frequency domain, see “Shearlet Systems”
on page 3-180 for more detail. The shearlet filters in shearletSystem use a slight modification of
the spatial intrinsic coordinate system described in “Image Coordinate Systems” (Image Processing
Toolbox). If you are familiar with the MATLAB conventions for ordering spatial frequencies in the 2-D
discrete Fourier transform, you can skip this section of the example.

In MATLAB, the 2-D Fourier transform orders frequencies in the X and Y direction starting from (X,Y)
= (0,0) in the top left corner of the image. To see this, create an image consisting of only a DC or
mean component.

imMean = 10*ones(5,5);
imMeanDFT = fft2(imMean)

imMeanDFT = 5×5

   250     0     0     0     0
     0     0     0     0     0
     0     0     0     0     0
     0     0     0     0     0
     0     0     0     0     0

Spatial frequencies increase down the row dimension (Y) and across the columns (X) until reaching
the Nyquist frequency and then decrease again. In the above example, there are no oscillations in the
image, so all the energy is concentrated in imMeanDFT(1,1), which corresponds to (0,0) in spatial
frequencies. Now construct an image consisting of a nonzero mean value and a sinusoid with a low
negative frequency in both the X and Y directions.

x = 0:15;
y = 0:15;
[X,Y] = meshgrid(x,y);
Z = 5+4*exp(2*pi*1j*(12/16*X+12/16*Y));
Zdft = fft2(Z);
imagesc(abs(Zdft))
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The mean component is in the top left corner of the 2-D DFT and the low negative frequency in the X
and Y direction is in the lower right corner of the image as expected.

Now apply fftshift, which for matrices (images) swaps the first quadrant with the third, and the
second quadrant with the fourth. This means that high negative spatial frequencies in X and Y are
now in the top left corner. Spatial frequency decreases in the Y direction to zero and then increases
again up to the Nyquist as you move down the image. Similarly, spatial frequencies in X decrease as
you move along the image to the right until zero and then increase up to the Nyquist. The (0,0)
spatial frequency component is moved to the center of the image.

imagesc(abs(fftshift(Zdft)))
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The frequency ordering of the shearlet filters returned by the filterbank function follows this
shifted convention for the spatial frequencies in X, but the convention is flipped for spatial
frequencies in Y. Spatial frequencies in Y are large and positive in the top left corner, decrease toward
zero as you move down the rows, and increase again toward large negative spatial frequencies.
Accordingly, the Y spatial frequencies are flipped with respect to MATLAB's fftshift output. This
has no impact on the computation of the shearlet coefficients. This needs to be taken into account
only when visualizing the shearlet filters in the 2-D frequency domain.

Real-Valued Band-Limited Shearlets and Symmetry in Frequency

Obtain a real-valued shearlet system with the default image size of 128-by-128. Visualize the three
horizontal cone-adapted shearlets for shearing factors of -1,0,1, respectively, at the coarsest spatial
scale (finest spatial frequency resolution).

sls = shearletSystem;
[psi,scale,shear,cone] = filterbank(sls);
omegax = -1/2:1/128:1/2-1/128;
omegay = -1/2:1/128:1/2-1/128;
figure
subplot(2,2,1)
surf(omegax,flip(omegay),psi(:,:,2),'EdgeColor',"none")
view(0,90)
title('Horizontal Cone — Shear = -1')
xlabel('$\omega_x$','Interpreter',"latex",'FontSize',14)
ylabel('$\omega_y$','Interpreter',"latex","FontSize",14)
subplot(2,2,2)
surf(omegax,flip(omegay),psi(:,:,3),'EdgeColor',"none")
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xlabel('$\omega_x$',"Interpreter","latex",'FontSize',14)
ylabel('$\omega_y$',"Interpreter","latex","FontSize",14)
view(0,90)
title('Horizontal Cone — Shear = 0')
subplot(2,2,3)
surf(omegax,flip(omegay),psi(:,:,4),'EdgeColor',"none")
xlabel('$\omega_x$',"Interpreter","latex","FontSize",14)
ylabel('$\omega_y$',"Interpreter","latex","FontSize",14)
view(0,90)
title('Horizontal Cone — Shear = 1')

As expected and required for the shearlets to be real-valued in the spatial domain, their real-valued
Fourier transforms must be symmetric with respect to the positive and negative X and Y spatial
frequencies. Repeat the steps for the vertical cone-adapted shearlets at the finest spatial frequency
scale.

figure
subplot(2,2,1)
surf(omegax,flip(omegay),psi(:,:,5),'EdgeColor',"none")
view(0,90)
title('Vertical Cone — Shear = -1')
xlabel('$\omega_x$','Interpreter',"latex",'FontSize',14)
ylabel('$\omega_y$','Interpreter',"latex","FontSize",14)
subplot(2,2,2)
surf(omegax,flip(omegay),psi(:,:,6),'EdgeColor',"none")
xlabel('$\omega_x$',"Interpreter","latex",'FontSize',14)
ylabel('$\omega_y$',"Interpreter","latex","FontSize",14)
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view(0,90)
title('Vertical Cone — Shear = 0')
subplot(2,2,3)
surf(omegax,flip(omegay),psi(:,:,7),'EdgeColor',"none")
xlabel('$\omega_x$',"Interpreter","latex","FontSize",14)
ylabel('$\omega_y$',"Interpreter","latex","FontSize",14)
view(0,90)
title('Vertical Cone — Shear = 1')

In a square image, it is easier to ensure the required symmetry for all shearing factors and dilations
than in an image where the aspect ratio differs from one. The more pronounced the difference
between the height and width dimensions of an image, the harder it becomes to ensure the necessary
symmetry. Ensuring perfect symmetry in the 2-D frequency plane is also harder when the shearlet
overlaps the edges of the image.

In shearletSystem, the number of scales determines the support of the lowpass filter. The greater
the number of the scales the more concentrated the frequency support of the lowpass filter around
(0,0). For a real-valued shearlet system, the six scale-0 shearlets (3 horizontal and 3 vertical
shearlets) fill in the frequency support around the lowpass filter. Accordingly, while the number of
shears is constant at a given scale, the actual frequency support of the shearlets is not. To see this,
construct another shearlet system with only one scale and plot the vertical-cone scale-0 shearlets.

sls1 = shearletSystem('NumScales',1);
psi1 = filterbank(sls1);
figure
subplot(2,2,1)
surf(omegax,flip(omegay),psi1(:,:,5),'EdgeColor',"none");
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view(0,90)
title('Vertical Cone — Shear = -1')
xlabel('$\omega_x$','Interpreter',"latex",'FontSize',14)
ylabel('$\omega_y$','Interpreter',"latex","FontSize",14)
subplot(2,2,2)
surf(omegax,flip(omegay),psi1(:,:,6),'EdgeColor',"none");
xlabel('$\omega_x$',"Interpreter","latex",'FontSize',14)
ylabel('$\omega_y$',"Interpreter","latex","FontSize",14)
view(0,90)
title('Vertical Cone — Shear = 0')
subplot(2,2,3)
surf(omegax,flip(omegay),psi1(:,:,7),'EdgeColor',"none");
xlabel('$\omega_x$',"Interpreter","latex","FontSize",14)
ylabel('$\omega_y$',"Interpreter","latex","FontSize",14)
view(0,90)
title('Vertical Cone — Shear = 1')

In this shearlet system, the scale-0 shearlets have all their energy in the highest X and Y spatial
frequencies. At these edges of the 2-D frequency plane, the symmetry required for purely real-valued
shearlet coefficients can suffer numerical instabilities. The important point is that the scale at which
this can happen depends on the number of scales in the shearlet system as well as the aspect ratio of
the analyzed image.

Plot the frequency responses of the lowpass filter and six shearlet filters to show how the 2-D
frequency plane is filled ensuring a perfect reconstruction system.
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figure
for ns = 1:size(psi1,3)
    surf(omegax,flip(omegay),psi1(:,:,ns),'edgecolor','none'); 
    xlabel('$\omega_x$','Interpreter',"latex","FontSize",14)
    ylabel('$\omega_y$','Interpreter',"latex",'FontSize',14)
    view(0,90);
    hold on;
end 
title('One-Scale Shearlet Transform Filters')

With only one scale in the shearlet system, the six shearlets must fill any region of the 2-D frequency
space not covered by the lowpass filter. Accordingly, a breakdown in the symmetry required for
purely real-valued shearlet coefficients may occur when there is only one scale present because those
shearlets have support overlapping the edges. The next section discusses two ways to guard against
the appearance of complex-valued coefficients in a real-valued shearlet transform.

Resize or Pad Rectangular Images

Whenever possible use square images. It is easier to ensure perfect symmetry in the shearlet
frequency response when the aspect ratio is one. This is true even when the shearlet filters overlap
the edge of the image. If you have Image Processing Toolbox™, you can use imresize. Read in the
following image and display the image and its size.

im = imread('pout.tif');
size(im)

ans = 1×2
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   291   240

figure
imshow(im)

The image is 291-by-240. The default number of scales in the shearlet transform for this image size is
4. Obtain the real-valued shearlet transform for the default number of scales. Check whether any of
the coefficients have a nonzero imaginary part.

sls = shearletSystem('ImageSize',size(im));
cfs = sheart2(sls,double(im));
max(imag(cfs(:)))

ans = 0

~any(imag(cfs(:)))

ans = logical
   1

The shearlet coefficients are purely real-valued as expected. Repeat the steps with the maximum
number of scales equal to 2.

sls = shearletSystem('ImageSize',size(im),'NumScales',2);
cfs = sheart2(sls,double(im));
max(imag(cfs(:)))

ans = 9.7239e-05
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~any(imag(cfs(:)))

ans = logical
   0

Now the shearlet coefficients are not purely real. The perfect reconstruction property of the
transform is not affected.

imrec = isheart2(sls,cfs);
max(abs(imrec(:)-double(im(:))))

ans = 2.5580e-13

However, the presence of complex-valued shearlet coefficients may be undesirable.

One strategy to mitigate this if you want a transform with two scales is to resize the image to 291-
by-291.

imr = imresize(im,[291 291]);
imshow(imr)

sls = shearletSystem('ImageSize',size(imr),'NumScales',2);
cfs = sheart2(sls,double(imr));
max(imag(cfs(:)))

ans = 0

~any(imag(cfs(:)))
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ans = logical
   1

By simply resizing the image to have an aspect ratio equal to one, you are able to obtain a purely real
shearlet transform with the desired number of scales.

As an alternative to resizing, you can simply pad the image to the desired size. Use the wextend
function to zero-pad the image columns to 291. Obtain the shearlet transform of the zero-padded
image and verify that the coefficients are purely real. If you are interested only in the analysis
coefficients, you can discard any padding after obtaining the shearlet transform. This is because the
shearlet coefficient images have the same spatial resolution as the original image.

impad = wextend('ac','zpd',im,51,'r');
cfs = sheart2(sls,double(impad));
max(imag(cfs(:)))

ans = 0

~any(imag(cfs(:)))

ans = logical
   1

Adjust Number of Scales

There are cases where simply increasing or decreasing the number of scales by one is enough to
eliminate any edge effects in the symmetry of the shearlet transform. For example, with the original
image, simply incrementing the number of scales by one results in purely real-valued coefficients.

sls = shearletSystem('ImageSize',size(im),'NumScales',3);
cfs = sheart2(sls,double(im));
max(imag(cfs(:)))

ans = 0

~any(imag(cfs(:)))

ans = logical
   1
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More About
• “Shearlet Systems” on page 3-180
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Wavelet Packet Harmonic Interference Removal
This example shows how to use wavelet packets to remove harmonic interference in a signal.
Harmonic interference components are sinusoidal components which contaminate a signal. These
spurious components have undesirable effects on subsequent data processing and analysis.

Frequently, these harmonic interference components are located within the signal's spectrum.
Accordingly, it is desirable to have techniques for removing or mitigating the effect of these spurious
harmonics without adversely affecting the frequency content of the primary signal in the
neighborhood of these harmonics.

A common approach to this problem is to apply notch, or comb filters. While notch filters are
effective, it is impossible to make the notch filter infinitely narrow, or equivalently, design a filter with
an infinite Q factor. As a result, there is inevitably some distortion of the signal's spectrum near the
interference frequency. Additionally, notch filters are typically infinite impulse response (IIR) filters,
which have nonlinear phase responses. This can be problematic in applications where phase
distortion is undesirable.

Wavelet Packet Transform and Baseline Shifting

In this example, we use a wavelet packet approach [3 on page 11-0 ], which has the potential to be
distortion free. See “Wavelet Packets: Decomposing the Details” on page 10-81 for a review of the
wavelet packet transform.

The basis of the wavelet packet technique for harmonic interference consists of the following steps:

1 Note the data sample rate and the fundamental frequency of the harmonic interference, f0.
2 Determine the minimum new sample rate and minimum positive level, J, for the wavelet packet

transform, where decimated samples of the wavelet packet transform correspond to the sampling
of f0at integer multiples of the period.

3 Resample the data the corresponding rate.
4 Determine the baseline level of the coefficients in each detail subband using an iterative

procedure.
5 Subtract the baseline of the detail subband coefficients and reconstruct the data.
6 Resample the data at the original rate. Consult [3] on page 11-0  for technical details.

The above method is based on the fact the detail subband coefficients in a wavelet packet transform
are zero mean and the presence of a nonzero baseline in the resampled data indicates the presence of
the harmonic interference.

60-Hz Interference Component

Load and plot an ECG signal corresponding to record 200 of the MIT-BIH Arrhythmia Database [1] on
page 11-0 ,[2] on page 11-0 . The data is sampled at 360 Hz.

load mit200
plot(tm,ecgsig)
xlabel('Seconds')
ylabel('Amplitude')
axis tight
title('ECG Signal with 60-Hz Interference')
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Plot the power spectrum of the data in order to clearly see the 60-Hz interference. Note this
interference is not artificially injected in the data. It is present in the original recording.

pspectrum(ecgsig,360)
xlim([45 80])
title('Power Spectrum of ECG Signal with 60-Hz Interference')
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There is also a harmonic of 60 Hz visible in the data at 120 Hz. However, the level of that interference
is approximately 20 dB below the level of the 60-Hz interference. Accordingly, we focus here on the
60-Hz component.

First, load and analyze two IIR notch filters designed using iirnotch from DSP System Toolbox™.
The filters were designed with two Q factors, 35 and 100, with the default bandwidth of -3 dB.

load Q100Filter3
load Q35Filter3

Examine the magnitude and phase responses for the two filters with bandwidth levels of -3 dB.

helperFreqPhasePlot(Q100Filter3.num,Q100Filter3.den,...
    Q35Filter3.num,Q35Filter3.den);
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Zero-phase filter the ECG data using the notch filter with a Q-factor of 100. Plot the power spectrum
of the filtered data.

y = filtfilt(Q100Filter3.num,Q100Filter3.den,ecgsig);
figure
pspectrum([ecgsig,y],360)
xlim([55 65])
title('Power Spectrum of ECG Signal and Notch-filtered Signal')
legend('ECG Signal', 'Notch Filtered')

 Wavelet Packet Harmonic Interference Removal

11-99



The notch filter has done a good job of removing the 60-Hz interference, but there is clearly some
corruption of the signal's spectrum around the interference frequency.

If you zoom out to see the entire power spectrum from 0 to the Nyquist, the distortion of the signal's
spectrum near 60 Hz is clearly visible, while overall the spectrum of the filtered signal matches the
original signal's spectrum well.

xlim([0 180])
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The helper function helperWPHarmonicFilter implements the baseline-shifted wavelet packet
method described in [3] on page 11-0 . Here we use the Daubechies least-asymmetric wavelet with
8 vanishing moments (16 coefficients).

sigWP = helperWPHarmonicFilter(ecgsig,60,'sym8',360,'reflection');
pspectrum([ecgsig,sigWP],360)
xlim([55 65])
title({'Power Spectrum of ECG Signal and' ; 'Baseline-Shifted Wavelet Packet Signal'})
legend('ECG Signal', 'Wavelet Packet Cancellation','Location','SouthWest')
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Note that the wavelet packet method has removed the harmonic interference without distorting the
signal's spectrum around 60 hertz.

Zoom out to see the quality of the power spectrum for the wavelet packet method compared against
the original signal from 0 to the Nyquist frequency.

xlim([0 180])
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The overall spectrum of the wavelet packet method matches the signal spectrum quite well. There is
some small distortion near the Nyquist. At this point, it is not clear if this due to the baseline-shifting
algorithm or the resampling process. This warrants further investigation. However, there is no
notable notch near the interference frequency as there is with the notch filter.

One of the advantages of the wavelet packet method is that it has the ability in theory to operate at
multiple harmonics simultaneously. To illustrate this, load the signal ecgHarmonics. This is the
mit200 signal with strong harmonic interference components injected at 60 and 120 Hz.

load ecgHarmonics
figure
pspectrum(ecgHarmonics,360)
title('Power Spectrum of ECG Signal with Artificial Harmonics')
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Remove this harmonic interference using the wavelet packet method. Again, we use the Daubechies'
least asymmetric phase wavelet with 8 vanishing moments.

sigWP = helperWPHarmonicFilter(ecgHarmonics,60,'sym8',360,'reflection');

Plot the original signal and baseline-shifted wavelet packet reconstruction.

subplot(2,1,1)
plot(tm,ecgHarmonics)
ylabel('Amplitude')
axis tight
title('Signal with Interference Components')
subplot(2,1,2)
plot(tm,sigWP)
xlabel('Seconds')
ylabel('Amplitude')
title('Baseline-Shifted Wavelet Packet Signal')
axis tight
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Examine the power spectra of both signals.

figure
pspectrum([ecgHarmonics,sigWP],360)
xlim([30 150])
title({'Power Spectrum of ECG Signal and'; 'Wavelet Packet Baseline-Shifted Signal'})
legend('ECG Signal with Interference', 'Baseline-Shifted Wavelet Packet Signal','Location','NorthEast')
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The result is quite good with both harmonics removed without spectral distortion in the neighborhood
of the interference harmonics.

Compare this against IIR notch filtering. Here we need to filter the data twice, once for a notch filter
operating at 60 Hz and once for a notch filter operating at 120 Hz. Alternatively, you can create a
filter cascade. Here we want to use filtfilt for zero-phase filtering so we elect to implement the
filtering twice.

Load the 120-Hz notch filter designed using iirnotch with a Q factor of 100 and the default
bandwidth level of -3 dB. Filter the signal first with the 60-Hz notch filter and then filter the output of
that operation with the 120-Hz notch filter.

load Q100Filter3_120Hz
filt60Hz = filtfilt(Q100Filter3.num,Q100Filter3.den,ecgHarmonics);
filtCascade = filtfilt(Q100Filter3_120Hz.num,Q100Filter3_120Hz.den,filt60Hz);

Plot the original signal and notch-filtered signal.

subplot(2,1,1)
plot(tm,ecgHarmonics)
ylabel('Amplitude')
axis tight
title('Signal with Interference Components')
subplot(2,1,2)
plot(tm,filtCascade)
xlabel('Seconds')
ylabel('Amplitude')

11 Featured Examples — Discrete Multiresolution Analysis

11-106



title('Notch-filtered Signal')
axis tight

Examine the power spectra of both signals.

figure
pspectrum([ecgHarmonics,filtCascade],360)
xlim([30 150])
title('Power Spectrum of ECG Signal and Notch-filtered Signal')
legend('ECG Signal', 'Notch-Filtered Signal')
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Here again we see distortion of the spectrum at the locations of the notch filters. Baseline shifting of
the wavelet packet coefficients was more effective in removing the high-amplitude sinusoidal
interference components.

Summary

This example looked at harmonic interference cancellation using the baseline-shifted wavelet packet
technique described in [3] on page 11-0 . In the ECG data considered here, the wavelet packet
technique was effective at removing harmonic interference in both true and simulated conditions. The
wavelet packet technique introduced less harmonic distortion in the signal's spectrum near the
interference frequencies than notch filters. There was some distortion introduced by the wavelet
packet technique near the Nyquist frequency, which warrants further investigation.
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function helperFreqPhasePlot(num1,den1,num2,den2)
figure
[H100,W] = freqz(num1,den1,[],360);
phi100 = phasez(num1,den1);
H35 = freqz(num2,den2,[],360);
phi35 = phasez(num2,den2);
subplot(2,2,1)
plot(W,10*log10(abs(H100)))
title('Magnitude - Q-factor 100')
ylabel('dB')
grid on
axis tight
subplot(2,2,2)
plot(W,phi100*180/pi)
title('Phase  - Q-factor 100')
ylabel('Degrees')
grid on
axis tight
subplot(2,2,3)
plot(W,10*log10(abs(H35)))
title('Magnitude - Q-factor 35')
xlabel('Hz')
ylabel('dB')
grid on
axis tight
subplot(2,2,4)
plot(W,phi35*180/pi)
title('Phase - Q-factor 35')
xlabel('Hz')
ylabel('Degrees')
grid on
axis tight

end

See Also
dwpt | pspectrum

Related Examples
• “Wavelet Packets: Decomposing the Details” on page 10-81
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Visualize and Recreate TQWT Decomposition
This example shows how to visualize a TQWT decomposition using Signal Multiresolution
Analyzer. You learn how to compare two different decompositions in the app, and how to recreate a
decomposition in your workspace.

Load an ECG signal.

load wecg

Visualize TQWT

Open Signal Multiresolution Analyzer and click Import. Select the ECG signal and click Import.
By default, a four-level MODWTMRA decomposition appears in the MODWT tab.

To generate an MRA decomposition using the tunable Q-factor wavelet transform (TQWT), go to the
Signal Multiresolution Analyzer tab. Click Add ▼ and select TQWT.

After a few moments, the TQWT decomposition wecg2 appears in the TQWT tab. The app obtains the
decomposition using the tqwt and tqwtmra functions with default settings. You can change the level
of decomposition and TQWT quality factor using the toolstrip. Changing a value enables the
Decompose button.

The Level Selection pane shows the relative energies of the signal across scales, as well as the
theoretical frequency ranges. The ranges are derived from the center frequencies and approximate
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bandwidths of the wavelet subbands, as defined by Selesnick [1 on page 11-0 ]. For more
information, see “Tunable Q-factor Wavelet Transform” on page 9-19.

Adjust Q-factor

According to the Level Selection pane, the approximation contains 71% of the total signal energy. To
investigate the impact of the quality factor on the approximation, first select wecg2 and click
Duplicate on the Signal Multiresolution Analyzer tab. The decomposition wecg2Copy appears.
On the TQWT tab, enter a quality factor value of 4 and click Decompose. The relative energy in the
resulting approximation has increased to 95%.
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Export Script

To recreate the decomposition in your workspace, in the Signal Multiresolution Analyzer tab click
Export > Generate MATLAB Script. An untitled script opens in your editor with the following
executable code. The true-false values in levelForReconstruction correspond to the Include
boxes you selected in the Level Selection pane. You can save the script as is or modify it to apply the
same decomposition settings to other signals. Run the code.

% Logical array for selecting reconstruction elements
levelForReconstruction = [false,false,false,false,true];

% Perform the decomposition using tqwt
[wt,info] = tqwt(wecg, ...
    Level=4, ...
    QualityFactor=4);

% Construct MRA matrix using tqwtmra
mra = tqwtmra(wt, 2048, QualityFactor=4);

% Sum down the rows of the selected multiresolution signals
wecg2Copy = sum(mra(levelForReconstruction,:),1);

The rows in the MRA matrix mra correspond to the levels and approximation in the Level Selection
pane. Plot the first and last rows in mra. Confirm the plots are identical to the first level plot and the
approximation plot in the Decomposition pane.
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subplot(2,1,1)
plot(mra(1,:))
axis tight
title("Level 1")
subplot(2,1,2)
plot(mra(end,:))
title("Approx.")
axis tight

To compare the reconstruction, which consists of only the approximation, with the original signal,
plot the difference between the two.

figure
plot(wecg-wecg2Copy')
axis tight
title("Difference Between Original and Reconstruction")
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Denoising Signals and Images
This example discusses the problem of signal recovery from noisy data. The general denoising
procedure involves three steps. The basic version of the procedure follows the steps described below:

• Decompose: Choose a wavelet, choose a level N. Compute the wavelet decomposition of the signal
at level N.

• Threshold detail coefficients: For each level from 1 to N, select a threshold and apply soft
thresholding to the detail coefficients.

• Reconstruct: Compute wavelet reconstruction using the original approximation coefficients of
level N and the modified detail coefficients of levels from 1 to N.

Two points must be addressed in particular:

• how to choose the threshold,
• and how to perform the thresholding.

Soft or Hard Thresholding?

Thresholding can be done using the function wthresh which returns soft or hard thresholding of the
input signal. Hard thresholding is the simplest method but soft thresholding has nice mathematical
properties. Let thr denote the threshold.

thr = 0.4;

Hard thresholding can be described as the usual process of setting to zero the elements whose
absolute values are lower than the threshold. The hard threshold signal is x if x > thr, and is 0 if x ≤
thr.

y = linspace(-1,1,100); 
ythard = wthresh(y,'h',thr);

Soft thresholding is an extension of hard thresholding, first setting to zero the elements whose
absolute values are lower than the threshold, and then shrinking the nonzero coefficients towards 0.
The soft threshold signal is sign(x)(x-thr) if x > thr and is 0 if x ≤ thr.

ytsoft = wthresh(y,'s',thr);
subplot(1,3,1)
plot(y)
title('Original')
subplot(1,3,2)
plot(ythard)
title('Hard Thresholding')
subplot(1,3,3)
plot(ytsoft)
title('Soft Thresholding')
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As can be seen in the figure above, the hard procedure creates discontinuities at x = ± t, while the
soft procedure does not.

Threshold Selection Rules

Recalling step 2 of the denoise procedure, the function thselect performs a threshold selection, and
then each level is thresholded. This second step can be done using wthcoeff, directly handling the
wavelet decomposition structure of the original signal. Four threshold selection rules are
implemented in the function thselect. Typically it is interesting to show them in action when the
input signal is a Gaussian white noise.

rng default
y = randn(1,1000);

Rule 1: Selection using principle of Stein's Unbiased Risk Estimate (SURE)

thr = thselect(y,'rigrsure')

thr = 2.0518

Rule 2: Fixed form threshold equal to sqrt(2*log(length(y)))

thr = thselect(y,'sqtwolog')

thr = 3.7169

Rule 3: Selection using a mixture of the first two options
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thr = thselect(y,'heursure')

thr = 3.7169

Rule 4: Selection using minimax principle

thr = thselect(y,'minimaxi')

thr = 2.2163

Minimax and SURE threshold selection rules are more conservative and would be more convenient
when small details of the signal lie near the noise range. The two other rules remove the noise more
efficiently.

Let us use the "blocks" test data credited to Donoho and Johnstone as the first example. Generate
original signal xref and a noisy version x adding a standard Gaussian white noise.

sqrt_snr = 4;      % Set signal to noise ratio
init = 2055615866; % Set rand seed
[xref,x] = wnoise(1,11,sqrt_snr,init);

First denoise the signal using wdenoise with default settings. Compare the result with the original
and noisy signals.

xd = wdenoise(x);
subplot(3,1,1)
plot(xref)
axis tight
title('Original Signal')
subplot(3,1,2)
plot(x)
axis tight
title('Noisy Signal')
subplot(3,1,3)
plot(xd)
axis tight
title('Denoised Signal - Signal to Noise Ratio = 4')
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Denoise the noisy signal a second time, this time using soft heuristic SURE thresholding on detail
coefficients obtained from the decomposition of x, at level 3 by sym8 wavelet. Compare with the
previous denoised signal.

xd2 = wdenoise(x,3,'Wavelet','sym8',...
    'DenoisingMethod','SURE',...
    'ThresholdRule','Soft');
figure
subplot(3,1,1)
plot(xref)
axis tight
title('Original Signal')
subplot(3,1,2)
plot(xd)
axis tight
title('First Denoised Signal: Default Settings')
subplot(3,1,3)
plot(xd2)
axis tight
title('Second Denoised Signal')
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Since only a small number of large coefficients characterize the original signal, both denoised signals
compare well with the original signal. You can use the Wavelet Signal Denoiser to explore the effects
other denoising parameters have on the noisy signal.

Dealing with Non-White Noise

When you suspect a non-white noise, thresholds must be rescaled by a level-dependent estimation of
the level noise. As a second example, let us try the method on the highly perturbed part of an
electrical signal. Let us use db3 wavelet and decompose at level 3. To deal with the composite noise
nature, let us try a level-dependent noise size estimation.

load leleccum
indx = 2000:3450; 
x = leleccum(indx); % Load electrical signal and select part of it.

Denoise the signal using soft fixed form thresholding and level-dependent noise size estimation.

xd = wdenoise(x,3,'Wavelet','db3',...
    'DenoisingMethod','UniversalThreshold',...
    'ThresholdRule','Soft',...
    'NoiseEstimate','LevelDependent');
Nx = length(x);
figure
subplot(2,1,1)
plot(indx,x)
axis tight
title('Original Signal')
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subplot(2,1,2)
plot(indx,xd)
axis tight
title('Denoised Signal')

The result is quite good in spite of the time heterogeneity of the nature of the noise after and before
the beginning of the sensor failure around time 2410.

Image Denoising

The denoising method described for the one-dimensional case applies also to images and applies well
to geometrical images. The two-dimensional denoising procedure has the same three steps and uses
two-dimensional wavelet tools instead of one-dimensional ones. For the threshold selection,
prod(size(y)) is used instead of length(y) if the fixed form threshold is used.

Generate a noisy image.

load  woman 
init = 2055615866;
rng(init); 
x = X + 15*randn(size(X));

In this case fixed form threshold is used with estimation of level noise, thresholding mode is soft and
the approximation coefficients are kept.

[thr,sorh,keepapp] = ddencmp('den','wv',x);
thr
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thr = 107.9838

Denoise image using global thresholding option.

xd = wdencmp('gbl',x,'sym4',2,thr,sorh,keepapp);
figure('Color','white')
colormap(pink(255))
sm = size(map,1);
image(wcodemat(X,sm))
title('Original Image')

figure('Color','white')
colormap(pink(255))
image(wcodemat(x,sm))
title('Noisy Image')
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image(wcodemat(xd,sm))
title('Denoised Image')

 Denoising Signals and Images

12-9



Summary

Denoising methods based on wavelet decomposition is one of the most significant applications of
wavelets. See wdenoise and Wavelet Signal Denoiser for more information.

See Also
wdenoise2 | wdenoise

More About
• “Denoise a Signal with the Wavelet Signal Denoiser” on page 6-25
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Wavelet Interval-Dependent Denoising
The example shows how to denoise a signal using interval-dependent thresholds.

Wavelet GUI tools provide an accurate denoising process by allowing us to fine tune the parameters
required to denoise a signal. Then, we can save the denoised signal, the wavelet decomposition and
all denoising parameters.

It can be tedious and sometimes impossible to treat many signals using the same denoising settings.
A batch mode, using the command line, can be much more efficient. This example shows how to work
at the command line to simplify and solve this problem.

In this example, we perform six trials to denoise the electrical signal nelec using these procedures:

1 Using one interval with the minimum threshold value: 4.5
2 Using one interval with the maximum threshold value: 19.5
3 Manually selecting three intervals and three thresholds, and using the wthresh function to

threshold the coefficients.
4 Using the utthrset_cmd function to automatically find the intervals and the thresholds.
5 Using the cmddenoise function to perform all the processes automatically.
6 Using the cmddenoise function with additional parameters.

Denoising Using a Single Interval

Load the electrical consumption signal nelec.

load nelec.mat
sig = nelec;

Now we use the discrete wavelet analysis at level 5 with the sym4 wavelet. We set the thresholding
type to 's' (soft).

wname = 'sym4';
level = 5;
sorh  = 's';

Denoise the signal using the function wdencmp with the threshold set at 4.5, which is the minimum
value provided by the GUI tools.

thr = 4.5;
[sigden_1,~,~,perf0,perfl2] = wdencmp('gbl',sig,wname,level,thr,sorh,1);
res = sig-sigden_1;
subplot(3,1,1)
plot(sig,'r') 
axis tight
title('Original Signal')
subplot(3,1,2)
plot(sigden_1,'b') 
axis tight
title('Denoised Signal')
subplot(3,1,3)
plot(res,'k') 
axis tight
title('Residual')
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perf0,perfl2

perf0 = 66.6995

perfl2 = 99.9756

The obtained result is not good. The denoising is very efficient at the beginning and end of the signal,
but between 100 and 1100 the noise is not removed. Note that the perf0 value gives the percentage
of coefficients set to zero and the perfl2 value gives the percentage of preserved energy.

Now, we denoise the signal with the maximum value provided by the GUI tools for the threshold, 19.5

thr = 19.5;
[sigden_2,cxd,lxd,perf0,perfl2] = wdencmp('gbl',sig,wname,level,thr,sorh,1);
res = sig-sigden_2;
subplot(3,1,1)
plot(sig,'r')
axis tight
title('Original Signal')
subplot(3,1,2)
plot(sigden_2,'b')
axis tight
title('Denoised Signal')
subplot(3,1,3)
plot(res,'k')
axis tight
title('Residual')
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perf0,perfl2

perf0 = 94.7860

perfl2 = 99.9564

The denoised signal is very smooth. It seems quite good, but if we look at the residual after position
1100, we can see that the variance of the underlying noise is not constant. Some components of the
signal have likely remained in the residual, such as, near the position 1300 and between positions
1900 and 2000.

Denoising Using the Interval Dependent Thresholds (IDT)

Now we will use an interval-dependent thresholding, as in the denoising GUI tools.

Perform a discrete wavelet analysis of the signal.

[coefs,longs] = wavedec(sig,level,wname);

Using the GUI tools to perform interval-dependent thresholding for the signal nelec, and setting the
number of intervals at three, we get the content of the denPAR variable, which can be interpreted as
follows:

• I1 = [1 94] with a threshold thr1 = 5.9
• I2 = [94 1110] with a threshold thr2 = 19.5
• I3 = [1110 2000] with a threshold thr3 = 4.5
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Define the interval-dependent thresholds.

denPAR = {[1 94 5.9 ; 94 1110 19.5 ; 1110 2000 4.5]};
thrParams = cell(1,level);
thrParams(:) = denPAR;

Show the wavelet coefficients of the signal and the interval-dependent threshold for each level of the
discrete analysis.

% Replicate the coefficients
cfs_beg = wrepcoef(coefs,longs);

% Display the coefficients of the decomposition
figure
subplot(6,1,1)
plot(sig,'r')
axis tight
title('Original Signal and Detail Coefficients from 1 to 5')
ylabel('S','Rotation',0)
for k = 1:level
    subplot(6,1,k+1)
    plot(cfs_beg(k,:),'Color',[0.5 0.8 0.5])
    ylabel(['D' int2str(k)],'Rotation',0)
    axis tight 
    hold on
    maxi = max(abs(cfs_beg(k,:)));
    hold on
    par = thrParams{k};
    plotPar = {'Color','m','LineStyle','-.'};
    for j = 1:size(par,1)-1
        plot([par(j,2),par(j,2)],[-maxi maxi],plotPar{:})
    end
    for j = 1:size(par,1)
        plot([par(j,1),par(j,2)],[par(j,3) par(j,3)],plotPar{:})
        plot([par(j,1),par(j,2)],-[par(j,3) par(j,3)],plotPar{:})            
    end
    ylim([-maxi*1.05 maxi*1.05])
    %hold off
end
subplot(6,1,level+1)
xlabel('Time or Space')
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For each level k, the variable thrParams{k} contains the intervals and the corresponding thresholds
for the denoising procedure.

Threshold the wavelet coefficients level-by-level, and interval-by- interval, using the values contained
in the thrParams variable.

Using the function wthresh, we threshold the wavelet coefficients values between the horizontal
lines by replacing them with zeros, while other values are either reduced if sorh = 's' or remain
unchanged if sorh = 'h'.

first = cumsum(longs)+1;
first = first(end-2:-1:1);
tmp   = longs(end-1:-1:2);
last  = first+tmp-1;
for k = 1:level
    thr_par = thrParams{k};
    if ~isempty(thr_par)
        cfs = coefs(first(k):last(k));
        nbCFS = longs(end-k);
        NB_int = size(thr_par,1);
        x = [thr_par(:,1) ; thr_par(NB_int,2)];
        alf = (nbCFS-1)/(x(end)-x(1));
        bet = 1 - alf*x(1);
        x = round(alf*x+bet);
        x(x<1) = 1;
        x(x>nbCFS) = nbCFS;
        thr = thr_par(:,3);
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        for j = 1:NB_int
            if j == 1
                d_beg = 0; 
            else
                d_beg = 1;
            end
            j_beg = x(j)+ d_beg;
            j_end = x(j+1);
            j_ind = (j_beg:j_end);
            cfs(j_ind) = wthresh(cfs(j_ind),sorh,thr(j));
        end
        coefs(first(k):last(k)) = cfs;
    end
end

Show the thresholded wavelet coefficients of the signal.

% Replicate the coefficients.
cfs_beg = wrepcoef(coefs,longs);

% Display the decomposition coefficients.
figure
subplot(6,1,1)
plot(sig,'r')
axis tight
title('Original Signal and Detail Coefficients from 1 to 5')
ylabel('S','Rotation',0)
for k = 1:level
    subplot(6,1,k+1)
    plot(cfs_beg(k,:),'Color',[0.5 0.8 0.5])
    ylabel(['D' int2str(k)],'Rotation',0)
    axis tight
    hold on
    maxi = max(abs(cfs_beg(k,:)));
    %hold on
    par = thrParams{k};
    plotPar = {'Color','m','LineStyle','-.'};
    for j = 1:size(par,1)-1
        plot([par(j,2),par(j,2)],[-maxi maxi],plotPar{:})
    end
    for j = 1:size(par,1)
        plot([par(j,1),par(j,2)], [par(j,3) par(j,3)],plotPar{:})
        plot([par(j,1),par(j,2)],-[par(j,3) par(j,3)],plotPar{:})
    end
    ylim([-maxi*1.05 maxi*1.05])
    hold off
end
subplot(6,1,level+1)
xlabel('Time or Space')
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Reconstruct the denoised signal.

sigden = waverec(coefs,longs,wname);
res = sig - sigden;

Display the original, denoised, and residual signals.

figure
subplot(3,1,1)
plot(sig,'r')
hold on 
plot(sigden,'b')
axis tight
title('Original and Denoised Signals')
subplot(3,1,2)
plot(sigden,'b')
axis tight
title('Denoised Signal')
subplot(3,1,3)
plot(res,'k')
axis tight
title('Residual')
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Compare the three denoised versions of the signal.

figure
plot(sigden_1,'g')
hold on 
plot(sigden_2,'r')
plot(sigden,'k')
axis tight
hold off
legend('Denoised Min','Denoised Max','Denoised IDT','Location','North')
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Looking at the first half of the signals, it is clear that denoising using the minimum value of the
threshold is not good. Now, we zoom on the end of the signal for more details.

xlim([1200 2000])
ylim([180 350])
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We can see that when the maximum threshold value is used, the denoised signal is smoothed too
much and information is lost.

The best result is given by using the threshold based on the interval- dependent thresholding method,
as we will show now.

Automatic Computation of Interval-Dependent Thresholds

Instead of manually setting the intervals and the thresholds for each level, we can use the function
utthrset_cmd to automatically compute the intervals and the thresholds for each interval. Then, we
complete the procedure by applying the thresholds, reconstructing, and displaying the signal.

% Wavelet Analysis.
[coefs,longs] = wavedec(sig,level,wname);
siz = size(coefs);
thrParams = utthrset_cmd(coefs,longs);
first = cumsum(longs)+1;
first = first(end-2:-1:1);
tmp   = longs(end-1:-1:2);
last  = first+tmp-1;
for k = 1:level
    thr_par = thrParams{k};
    if ~isempty(thr_par)
        cfs = coefs(first(k):last(k));
        nbCFS = longs(end-k);
        NB_int = size(thr_par,1);
        x = [thr_par(:,1) ; thr_par(NB_int,2)];
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        alf = (nbCFS-1)/(x(end)-x(1));
        bet = 1 - alf*x(1);
        x = round(alf*x+bet);
        x(x<1) = 1;
        x(x>nbCFS) = nbCFS;
        thr = thr_par(:,3);
        for j = 1:NB_int
            if j==1
                d_beg = 0;
            else
                d_beg = 1;
            end
            j_beg = x(j)+d_beg;
            j_end = x(j+1);
            j_ind = (j_beg:j_end);
            cfs(j_ind) = wthresh(cfs(j_ind),sorh,thr(j));
        end
        coefs(first(k):last(k)) = cfs;
    end
end
sigden = waverec(coefs,longs,wname);
figure
subplot(2,1,1)
plot(sig,'r')
axis tight
hold on
plot(sigden,'k')
title('Original and Denoised Signals')
subplot(2,1,2)
plot(sigden,'k')
axis tight
hold off
title('Denoised Signal')
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Automatic Interval-Dependent Denoising

In command-line mode, we can use the function cmddenoise to automatically compute the denoised
signal and coefficients based on the interval-dependent denoising method. This method performs the
whole process of denoising using only this one function, which includes all the steps described earlier
in this example.

[sigden,~,thrParams] = cmddenoise(sig,wname,level);
thrParams{1}   % Denoising parameters for level 1.

ans = 2×3
103 ×

    0.0010    1.1100    0.0176
    1.1100    2.0000    0.0045

The automatic procedure finds two intervals for denoising:

• I1 = [1 1110] with a threshold thr1 = 17.6
• I2 = [1110 2000] with a threshold thr2 = 4.5.

We can display the result of denoising and see that the result is fine.

figure
subplot(2,1,1)
plot(sig,'r')
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axis tight
hold on
plot(sigden,'k')
title('Original and Denoised Signals')
hold off
subplot(2,1,2)
plot(sigden,'k')
axis tight
title('Denoised Signal')

Advanced Automatic Interval-Dependent Denoising

Now, we look at a more complete example of the automatic denoising.

Rather than using the default values for the input parameters, we can specify them when calling the
function. Here, the type of threshold is chosen as s (soft) and the number of intervals is set at 3.

load nelec.mat;
sig = nelec;   % Signal to analyze.
wname  = 'sym4';               % Wavelet for analysis.
level  = 5;                    % Level for wavelet decomposition.
sorh   = 's';                  % Type of thresholding.
nb_Int = 3;                    % Number of intervals for thresholding.

[sigden,coefs,thrParams,int_DepThr_Cell,BestNbOfInt] = ...
            cmddenoise(sig,wname,level,sorh,nb_Int);
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For the output parameters, the variable thrParams{1} gives the denoising parameters for levels
from 1 to 5. For example, here are the denoising parameters for level 1.

thrParams{1}

ans = 3×3
103 ×

    0.0010    0.0940    0.0059
    0.0940    1.1100    0.0195
    1.1100    2.0000    0.0045

We find the same values that were set earlier this example. They correspond to the choice we have
made by fixing the number of intervals to three in the input parameter: nb_Int = 3.

The automatic procedure suggests 2 as the best number of intervals for denoising. This output value
BestNbOfInt = 2 is the same as used in the previous step of this example.

BestNbOfInt

BestNbOfInt = 2

The variable int_DepThr_Cell contains the interval locations and the threshold values for a
number of intervals from 1 to 6.

int_DepThr_Cell

int_DepThr_Cell=1×6 cell array
  Columns 1 through 4

    {[1 2000 8.3611]}    {2x3 double}    {3x3 double}    {4x3 double}

  Columns 5 through 6

    {5x3 double}    {6x3 double}

Finally, we look at the values corresponding to the locations and thresholds for 5 intervals.

int_DepThr_Cell{5}

ans = 5×3
103 ×

    0.0010    0.0940    0.0059
    0.0940    0.5420    0.0184
    0.5420    0.5640    0.0056
    0.5640    1.1100    0.0240
    1.1100    2.0000    0.0045
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Summary

This example shows how to use command-line mode to achieve the same capabilities as the GUI tools
for denoising, while giving you more control over particular parameter values to obtain better results.

See Also
Wavelet Signal Denoiser | wdenoise | wdenoise2

More About
• “Denoise a Signal with the Wavelet Signal Denoiser” on page 6-25
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Multivariate Wavelet Denoising
The purpose of this example is to show the features of multivariate denoising provided in Wavelet
Toolbox™.

Multivariate wavelet denoising problems deal with models of the form

X(t) = F(t) + e(t)

where the observation X is p-dimensional, F is the deterministic signal to be recovered, and e is a
spatially-correlated noise signal. This example uses a number of noise signals and performs the
following steps to denoise the deterministic signal.

Loading a Multivariate Signal

To load the multivariate signal, type the following code at the MATLAB® prompt:

 load ex4mwden
 whos

  Name           Size            Bytes  Class     Attributes

  covar          4x4               128  double              
  x           1024x4             32768  double              
  x_orig      1024x4             32768  double              

Usually, only the matrix of data x is available. Here, we also have the true noise covariance matrix
covar and the original signals x_orig. These signals are noisy versions of simple combinations of
the two original signals. The first signal is "Blocks" which is irregular, and the second one is
"HeavySine" which is regular, except around time 750. The other two signals are the sum and the
difference of the two original signals, respectively. Multivariate Gaussian white noise exhibiting
strong spatial correlation is added to the resulting four signals, which produces the observed data
stored in x.

Displaying the Original and Observed Signals

To display the original and observed signals, type:

kp = 0;
for i = 1:4 
    subplot(4,2,kp+1), plot(x_orig(:,i)); axis tight;
    title(['Original signal ',num2str(i)])
    subplot(4,2,kp+2), plot(x(:,i)); axis tight;
    title(['Observed signal ',num2str(i)])
    kp = kp + 2;
end
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The true noise covariance matrix is given by:

covar

covar = 4×4

    1.0000    0.8000    0.6000    0.7000
    0.8000    1.0000    0.5000    0.6000
    0.6000    0.5000    1.0000    0.7000
    0.7000    0.6000    0.7000    1.0000

Removing Noise by Simple Multivariate Thresholding

The denoising strategy combines univariate wavelet denoising in the basis, where the estimated noise
covariance matrix is diagonal with noncentered Principal Component Analysis (PCA) on
approximations in the wavelet domain or with final PCA.

First, perform univariate denoising by typing the following lines to set the denoising parameters:

level = 5;
wname = 'sym4';
tptr  = 'sqtwolog';
sorh  = 's';

Then, set the PCA parameters by retaining all the principal components:
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npc_app = 4;
npc_fin = 4;

Finally, perform multivariate denoising by typing:

x_den = wmulden(x, level, wname, npc_app, npc_fin, tptr, sorh);

Displaying the Original and Denoised Signals

To display the original and denoised signals type the following:

clf
kp = 0;
for i = 1:4 
    subplot(4,3,kp+1), plot(x_orig(:,i)); axis tight; 
    title(['Original signal ',num2str(i)])
    subplot(4,3,kp+2), plot(x(:,i)); axis tight;
    title(['Observed signal ',num2str(i)])
    subplot(4,3,kp+3), plot(x_den(:,i)); axis tight;
    title(['Denoised signal ',num2str(i)])
    kp = kp + 3;
end

Improving the First Result by Retaining Fewer Principal Components

We can see that, overall, the results are satisfactory. Focusing on the two first signals, note that they
are correctly recovered, but we can improve the result by taking advantage of the relationships
between the signals, leading to an additional denoising effect.
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To automatically select the numbers of retained principal components using Kaiser's rule, which
retains components associated with eigenvalues exceeding the mean of all eigenvalues, type:

npc_app = 'kais';
npc_fin = 'kais';

Perform multivariate denoising again by typing:

[x_den, npc, nestco] = wmulden(x, level, wname, npc_app, ...
     npc_fin, tptr, sorh);

Displaying the Number of Retained Principal Components

The second output argument npc is the number of retained principal components for PCA for
approximations and for final PCA.

npc

npc = 1×2

     2     2

As expected, because the signals are combinations of two original signals, Kaiser's rule automatically
detects that only two principal components are of interest.

Displaying the Estimated Noise Covariance Matrix

The third output argument nestco contains the estimated noise covariance matrix:

nestco

nestco = 4×4

    1.0784    0.8333    0.6878    0.8141
    0.8333    1.0025    0.5275    0.6814
    0.6878    0.5275    1.0501    0.7734
    0.8141    0.6814    0.7734    1.0967

As it can be seen by comparing it with the true matrix covar given previously, the estimation is
satisfactory.

Displaying the Original and Final Denoised Signals

To display the original and final denoised signals type:

kp = 0;
for i = 1:4 
    subplot(4,3,kp+1), plot(x_orig(:,i)); axis tight;
    title(['Original signal ',num2str(i)])
    subplot(4,3,kp+2), plot(x(:,i)); axis tight;
    title(['Observed signal ',num2str(i)])
    subplot(4,3,kp+3), plot(x_den(:,i)); axis tight;
    title(['Denoised signal ',num2str(i)])
    kp = kp + 3;
end
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These results are better than those previously obtained. The first signal, which is irregular, is still
correctly recovered, while the second signal, which is more regular, is better denoised after this
second stage of PCA.

Learning More About Multivariate Denoising

You can find more information about multivariate denoising, including some theory, simulations, and
real examples, in the following reference:

M. Aminghafari, N. Cheze and J-M. Poggi (2006), "Multivariate denoising using wavelets and principal
component analysis," Computational Statistics & Data Analysis, 50, pp. 2381-2398.
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Multiscale Principal Components Analysis
The purpose of this example is to show the features of multiscale principal components analysis (PCA)
provided in the Wavelet Toolbox™.

The aim of multiscale PCA is to reconstruct a simplified multivariate signal, starting from a
multivariate signal and using a simple representation at each resolution level. Multiscale principal
components analysis generalizes the PCA of a multivariate signal represented as a matrix by
simultaneously performing a PCA on the matrices of details of different levels. A PCA is also
performed on the coarser approximation coefficients matrix in the wavelet domain as well as on the
final reconstructed matrix. By selecting the numbers of retained principal components, interesting
simplified signals can be reconstructed. This example uses a number of noisy test signals and
performs the following steps.

Load Multivariate Signal

Load the multivariate signal by typing the following at the MATLAB(R) prompt:

 load ex4mwden
 whos

  Name           Size            Bytes  Class     Attributes

  covar          4x4               128  double              
  x           1024x4             32768  double              
  x_orig      1024x4             32768  double              

Usually, only the matrix of data x is available. Here, we also have the true noise covariance matrix
covar and the original signals x_orig. These signals are noisy versions of simple combinations of
the two original signals. The first signal is "Blocks" which is irregular, and the second one is
"HeavySine" which is regular, except around time 750. The other two signals are the sum and the
difference of the two original signals, respectively. Multivariate Gaussian white noise exhibiting
strong spatial correlation is added to the resulting four signals, which produces the observed data
stored in x.

Perform Simple Multiscale PCA

Multiscale PCA combines noncentered PCA on approximations and details in the wavelet domain and
a final PCA. At each level, the most significant principal components are selected.

First, set the wavelet parameters:

level = 5;
wname = 'sym4';

Then, automatically select the number of retained principal components using Kaiser's rule, which
retains components associated with eigenvalues exceeding the mean of all eigenvalues, by typing:

npc = 'kais';

Finally, perform multiscale PCA:

[x_sim, qual, npc] = wmspca(x ,level, wname, npc);

Display the Original and Simplified Signals

To display the original and simplified signals type:
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kp = 0;
for i = 1:4 
    subplot(4,2,kp+1), plot(x (:,i)); axis tight; 
    title(['Original signal ',num2str(i)])
    subplot(4,2,kp+2), plot(x_sim(:,i)); axis tight;
    title(['Simplified signal ',num2str(i)])
    kp = kp + 2;
end

We can see that the results from a compression perspective are good. The percentages reflecting the
quality of column reconstructions given by the relative mean square errors are close to 100%.

qual

qual = 1×4

   98.0545   93.2807   97.1172   98.8603

Improve the First Result by Retaining Fewer Principal Components

We can improve the results by suppressing noise, because the details at levels 1 to 3 are composed
essentially of noise with small contributions from the signal. Removing the noise leads to a crude, but
efficient, denoising effect.

The output argument npc is the number of retained principal components selected by Kaiser's rule:

npc
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npc = 1×7

     1     1     1     1     1     2     2

For d from 1 to 5, npc(d) is the number of retained noncentered principal components (PCs) for
details at level d. npc(6) is the number of retained non-centered PCs for approximations at level 5,
and npc (7) is the number of retained PCs for final PCA after wavelet reconstruction. As expected,
the rule keeps two principal components, both for the PCA approximations and the final PCA, but one
principal component is kept for details at each level.

To suppress the details at levels 1 to 3, update the npc argument as follows:

npc(1:3) = zeros(1,3);
npc

npc = 1×7

     0     0     0     1     1     2     2

Then, perform multiscale PCA again by typing:

[x_sim, qual, npc] = wmspca(x, level, wname, npc);

Display the Original and Final Simplified Signals

To display the original and final simplified signals type:

kp = 0;
for i = 1:4 
    subplot(4,2,kp+1), plot(x (:,i)); axis tight;
    title(['Original signal ',num2str(i)])
    subplot(4,2,kp+2), plot(x_sim(:,i)); axis tight; 
    title(['Simplified signal ',num2str(i)])
    kp = kp + 2;
end
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As we can see above, the results are improved.

More about Multiscale Principal Components Analysis

More about multiscale PCA, including some theory, simulations and real examples, can be found in
the following reference:

Aminghafari, M.; Cheze, N.; Poggi, J-M. (2006), "Multivariate denoising using wavelets and principal
component analysis," Computational Statistics & Data Analysis, 50, pp. 2381-2398.
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Data Compression using 2-D Wavelet Analysis
The purpose of this example is to show how to compress an image using two-dimensional wavelet
analysis. Compression is one of the most important applications of wavelets. Like denoising, the
compression procedure contains three steps:

• Decompose: Choose a wavelet, choose a level N. Compute the wavelet decomposition of the signal
at level N.

• Threshold detail coefficients: For each level from 1 to N, a threshold is selected and hard
thresholding is applied to the detail coefficients.

• Reconstruct: Compute wavelet reconstruction using the original approximation coefficients of
level N and the modified detail coefficients of levels from 1 to N.

The difference with the denoising procedure is found in step 2. There are two compression
approaches available:

• The first consists of taking the wavelet expansion of the signal and keeping the largest absolute
value coefficients. In this case, you can set a global threshold, a compression performance, or a
relative square norm recovery performance. Thus, only a single parameter needs to be selected.

• The second approach consists of applying visually determined level-dependent thresholds.

Load an Image

Let us examine a real-life example of compression for a given and unoptimized wavelet choice, to
produce a nearly complete square norm recovery for an image.

load woman;              % Load original image
image(X)
title('Original Image')
colormap(map)
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x = X(100:200,100:200);  % Select ROI

Method 1: Global Thresholding

The compression features of a given wavelet basis are primarily linked to the relative scarceness of
the wavelet domain representation for the signal. The notion behind compression is based on the
concept that the regular signal component can be accurately approximated using the following
elements: a small number of approximation coefficients (at a suitably chosen level) and some of the
detail coefficients.

n = 5;                   % Decomposition level 
w = 'sym8';              % Near symmetric wavelet
[c,l] = wavedec2(x,n,w); % Multilevel 2-D wavelet decomposition

In this first method, the WDENCMP function performs a compression process from the wavelet
decomposition structure [c,l] of the image.

opt = 'gbl'; % Global threshold
thr = 20;    % Threshold
sorh = 'h';  % Hard thresholding
keepapp = 1; % Approximation coefficients cannot be thresholded
[xd,cxd,lxd,perf0,perfl2] = wdencmp(opt,c,l,w,n,thr,sorh,keepapp);
image(x)
title('Original Image')
colormap(map)
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figure
image(xd)
title('Compressed Image - Global Threshold = 20')
colormap(map)
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Compression score (%)

perf0

perf0 = 74.3067

L2-norm recovery (%)

perfl2

perfl2 = 99.9772

The density of the current decomposition sparse matrix is:

cxd = sparse(cxd);
cxd_density = nnz(cxd)/numel(cxd)

cxd_density = 0.2569

Method 2: Level-Dependent Thresholding

The WDENCMP function also allows level and orientation-dependent thresholds. In this case the
approximation is kept. The level-dependent thresholds in the three orientations horizontal, diagonal,
and vertical are as follows:

opt = 'lvd';        % Level-dependent thresholds
thr_h = [17 18];    % Horizontal thresholds
thr_d = [19 20];    % Diagonal thresholds
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thr_v = [21 22];    % Vertical thresholds
thr = [thr_h ; thr_d ; thr_v];

In this second example, notice that the WDENCMP function performs a compression process from the
image x.

[xd2,cxd2,lxd2,perf02,perfl22] = wdencmp(opt,x,w,2,thr,sorh);
image(x)
title('Original Image')
colormap(map)

figure
image(xd2)
title('Compressed Image - Level-Dependent Thresholding')
colormap(map)
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Compression score (%)

perf02

perf02 = 77.3435

L2-norm recovery (%)

perfl22

perfl22 = 99.6132

The density of the current decomposition sparse matrix is:

cxd2 = sparse(cxd2);
cxd2_density = nnz(cxd2)/numel(cxd2)

cxd2_density = 0.2266

Summary

By using level-dependent thresholding, the density of the wavelet decomposition was reduced by 3%
while improving the L2-norm recovery by 3%. If the wavelet representation is too dense, similar
strategies can be used in the wavelet packet framework to obtain a sparser representation. You can
then determine the best decomposition with respect to a suitably selected entropy-like criterion,
which corresponds to the selected purpose (denoising or compression).
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Smoothing Nonuniformly Sampled Data
This example shows to smooth and denoise nonuniformly sampled data using the multiscale local
polynomial transform (MLPT). The MLPT is a lifting scheme (Jansen, 2013) that shares many
characteristics of the discrete wavelet transform and works with nonuniformly sampled data.

Many real-world time series have observations that are not recorded at regularly spaced intervals.
This may be a result from a nonuniform sampling of the data or from missing or corrupted
observations. The discrete wavelet transform (DWT) is a powerful tool for denoising data or
performing nonparametric regression, but the classic DWT is defined for uniformly sampled data. The
concept of scale, which is central to the DWT, crucially depends on a regular interval between
observations.

The lifting scheme (second-generation wavelets) (Jansen & Oonincx, 2005) provides a way to design
wavelets and implement the wavelet transform entirely in the time (spatial) domain. While the classic
DWT may also be represented by a lifting scheme, lifting is also flexible enough to handle
nonuniformly sampled data.

Denoising Data

Load and plot a noisy nonuniformly sampled time series.

load skyline
plot(T,y)
xlabel('Seconds')
grid on
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If you plot the difference of the sampling times, you see that the data is nonuniformly sampled.

plot(diff(T))
title('First Difference of Sampling Times')
axis tight
ylabel('\Delta T')
xlabel('Sample')
grid on

In this synthetic dataset, you have access to the original noise-free signal. If you plot that data, you
see that the data are characterized by smoothly varying features as well as abrupt transient features
near 0.07, 0.26, and 0.79 seconds.

plot(T,f)
xlabel('Seconds')
grid on
title('Original (Noise-Free) Data')
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In real-world applications, abrupt changes in the data often signify important events. When you
denoise such data, it is important not to smooth out the transients. Wavelets typically excel at
denoising such data because the wavelets stretch to match longer duration smoothly varying features
and shrink to match transients. The MLPT has similar characteristics, but it naturally handles
nonuniformly sampled data. Denoise the data using the MLPT.

xden = mlptdenoise(y,T,3);
hline = plot(T,[f xden]);
grid on
hline(1).LineWidth = 2;
title('MLPT Denoising')
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The MLPT does a good job of denoising the data. The smoothly varying features are well represented
and the transients are preserved. In this synthetic data set, you can actually measure the signal-to-
noise ratio (SNR) of the denoised version.

SNR = 20*log10(norm(f,2)/norm(xden-f,2));
title(['SNR  ' num2str(SNR,'%2.2f') 'dB'])
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The SNR is almost 20 dB. Of course, you can ignore the fact that the data are nonuniformly sampled
and treat the samples as uniformly sampled. Denoise the previous data set using the DWT.

xd = wdenoise(y,3,'Wavelet','bior2.2','DenoisingMethod','SURE','NoiseEstimate','LevelDependent');
SNR = 20*log10(norm(f,2)/norm(xd-f,2));
hline = plot(T,[f xd]);
title(['SNR  ' num2str(SNR,'%2.2f') 'dB'])
grid on
hline(1).LineWidth = 2;
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Here the DWT does a good job of denoising the data, but it is outperformed by the MLPT, which
explicitly takes the nonuniform sampling instants into account.

Compare the wavelet and MLPT denoising results against the Savitzky-Golay method, which
implements a local polynomial approximation of the data. The variant of Savitzky-Golay implemented
in smoothdata handles uniformly and nonuniformly sampled data.

xdsg = smoothdata(y,'sgolay','degree',4,'samplepoints',T);
SNR = 20*log10(norm(f,2)/norm(xdsg-f,2));
hline = plot(T,[f xdsg]);
title(['SNR  ' num2str(SNR,'%2.2f') ' dB'])
grid on
hline(1).LineWidth = 2;
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Both the classic DWT and the MLPT outperform Savitzky-Golay on this data.

Consider another nonuniformly sampled synthetic dataset.

load nonuniformheavisine
plot(t,x)
grid on
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This data is generally smoother than the previous example with the notable exception of two
transients at 0.3 and 0.7 seconds. Data like these present a challenge for methods like Savitzky-Golay
because a low-order polynomial is required to fit the smoothly oscillating data, while a higher-order
polynomial is required to approximate the jumps.

Denoise the data using the MLPT and measure the SNR. Return both the original MLPT coefficients
and the denoised coefficients.

[xden,t,wthr,w] = mlptdenoise(x,t,3,'denoisingmethod','SURE');
plot(t,[f xden])
grid on
SNR = 20*log10(norm(f,2)/norm(xden-f,2));
title({'MLPT Denoising'; ['SNR  ' num2str(SNR,'%2.2f') ' dB']})
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Plot the original and denoised coefficients.

figure
subplot(2,1,1)
stem(w,'ShowBaseLine','off','Marker','None')
title('Original MLPT Coefficients')
subplot(2,1,2)
stem(wthr,'ShowBaseLine','off','Marker','None')
title('Denoised MLPT Coefficients')
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Compare the MLPT result with the Savitzky-Golay method.

xdsg = smoothdata(x,'sgolay','degree',4,'samplepoints',t);
figure
plot(t,[f xdsg])
grid on
SNR = 20*log10(norm(f,2)/norm(xdsg-f,2));
title({'Savitzky-Golay Denoising'; ['SNR  ' num2str(SNR,'%2.2f') ' dB']})
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Here the MLPT method significantly outperforms Savitzky-Golay. This is especially evident in the
inability of the Savitzky-Golay method to capture the transients near 0.3 and 0.7 seconds.

Nonparametric Regression

In many applications, the goal is to estimate some unknown response function as one or more
predictor variables vary. When the exact shape of the response function is unknown, this is an
example of nonparametric regression.

A principal objective in these cases is often to obtain a smooth estimate assuming that the unknown
response function changes smoothly with changes in the predictor.

As an example of nonparametric regression with nonuniformly sampled data, consider the following
data consisting of G-force measurements made on the motorcycle helmet of a crash-test dummy
under crash conditions.

load motorcycledata
plot(times,gmeasurements)
grid on
xlabel('Time')
ylabel('G-force')
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If you plot the difference of the time data, you see that the data is sampled nonuniformly.

plot(diff(times))
title('First Difference of Time Data')
grid on
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The data are noisy but there appears to be a clear overall trend in the data. Specifically, there is an
initial negative G-force experienced which then begins to turn positive over time. The positive
rebound continues past 0 and then recovers to baseline. You can use mlptrecon to obtain a
nonparametric regression for this data.

[w,t,nj,scalingmoments] = mlpt(gmeasurements,times,'dualmoments',4,...
    'primalmoments',4,'prefilter','none');
a4 = mlptrecon('a',w,t,nj,scalingmoments,4,'dualmoments',4);
hline = plot(times,[gmeasurements a4]);
grid on
hline(2).LineWidth = 2;
legend('Original Data','Smooth Fit')
xlabel('Time')
ylabel('G-force')
title('G-Force Measurements')
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The MLPT approximation at level 4 provides a nice smooth fit to the data that allows you to capture
the essential nature of the response without the effect of noise.

Summary

This example demonstrated the multiscale local polynomial transform (MLPT), a lifting scheme which
is amenable to nonuniformly sampled data. The MLPT is useful for denoising or nonparametric
regression in cases of missing or nonuniformly sampled data. Minimally, it is a useful benchmark for
comparison against wavelet denoising techniques designed to work on uniformly sampled data. In
other cases, it outperforms conventional wavelet denoising by explicitly taking the nonuniform
sampling grid into consideration.
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Two-Dimensional True Compression
Starting from a given image, the goal of true compression is to minimize the number of bits needed to
represent it, while storing information of acceptable quality. Wavelets contribute to effective solutions
for this problem. The complete chain of compression includes iterative phases of quantization,
coding, and decoding, in addition to the wavelet processing itself.

The purpose of this example is to show how to decompose, compress, and decompress a grayscale or
truecolor image using various compression methods. To illustrate these capabilities, we consider a
grayscale image of a mask and a truecolor image of peppers.

Compression by Global Thresholding and Huffman Encoding

First we load and display the mask grayscale image.

load mask       
image(X)
axis square
colormap(pink(255))
title('Original Image: mask')

A measure of achieved compression is given by the compression ratio (CR) and the Bit-Per-Pixel (BPP)
ratio. CR and BPP represent equivalent information. CR indicates that the compressed image is
stored using CR % of the initial storage size while BPP is the number of bits used to store one pixel of
the image. For a grayscale image the initial BPP is 8. For a truecolor image the initial BPP is 24,
because 8 bits are used to encode each of the three colors (RGB color space).
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The challenge of compression methods is to find the best compromise between a low compression
ratio and a good perceptual result.

We begin with a simple method of cascading global coefficients thresholding and Huffman encoding.
We use the default wavelet bior4.4 and the default level, which is the maximum possible level (see the
WMAXLEV function) divided by 2. The desired BPP is set to 0.5 and the compressed image is stored in
the file named mask.wtc.

meth   = 'gbl_mmc_h'; % Method name
option = 'c';         % 'c' stands for compression
[CR,BPP] = wcompress(option,X,'mask.wtc',meth,'BPP',0.5)

CR = 6.7200

BPP = 0.5376

The achieved Bit-Per-Pixel ratio is actually about 0.53 (closed to the desired one of 0.5) for a
compression ratio of 6.7%.

Uncompression

Now we decompress the image retrieved from the file mask.wtc and compare it to the original image.

option = 'u';  % 'u' stands for uncompression
Xc = wcompress(option,'mask.wtc');
colormap(pink(255))

subplot(1,2,1); image(X);
axis square;
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title('Original Image')
subplot(1,2,2); image(Xc);
axis square;
title('Compressed Image')
xlabel({['Compression Ratio: ' num2str(CR,'%1.2f %%')], ...
        ['BPP: ' num2str(BPP,'%3.2f')]})

The result is satisfactory, but a better compromise between compression ratio and visual quality can
be obtained using more sophisticated true compression methods, which involve tighter thresholding
and quantization steps.

Compression by Progressive Methods

We now illustrate the use of progressive methods of compression, starting with the EZW algorithm
using the Haar wavelet. The key parameter is the number of loops; increasing it leads to better
recovery, but a worse compression ratio.

meth   = 'ezw';   % Method name
wname  = 'haar';  % Wavelet name
nbloop = 6;       % Number of loops
[CR,BPP] = wcompress('c',X,'mask.wtc',meth,'maxloop', nbloop, ...
                     'wname','haar');
Xc = wcompress('u','mask.wtc');
colormap(pink(255))
subplot(1,2,1); image(X);
axis square;
title('Original Image')
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subplot(1,2,2); image(Xc);
axis square;
title('Compressed Image - 6 steps')
xlabel({['Compression Ratio: ' num2str(CR,'%1.2f %%')], ...
        ['BPP: ' num2str(BPP,'%3.2f')]})

Here, using only 6 steps produces a very coarse decompressed image. Now we examine a slightly
better result using 9 steps and finally a satisfactory result using 12 steps.

[CR,BPP] = wcompress('c',X,'mask.wtc',meth,'maxloop',9,'wname','haar');
Xc = wcompress('u','mask.wtc');
colormap(pink(255))
subplot(1,2,1); image(Xc);
axis square;
title('Compressed Image - 9 steps')
xlabel({['Compression Ratio: ' num2str(CR,'%1.2f %%')],...
        ['BPP: ' num2str(BPP,'%3.2f')]})

[CR,BPP] = wcompress('c',X,'mask.wtc',meth,'maxloop',12,'wname','haar');
Xc = wcompress('u','mask.wtc');
subplot(1,2,2); image(Xc);
axis square;
title('Compressed Image - 12 steps')
xlabel({['Compression Ratio: ' num2str(CR,'%1.2f %%')], ...
        ['BPP: ' num2str(BPP,'%3.2f')]})
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The final BPP ratio is approximately 0.92 when using 12 steps.

Now we try to improve the results by using the wavelet bior4.4 instead of haar and looking at loops of
12 and 11 steps.

[CR,BPP] = wcompress('c',X,'mask.wtc','ezw','maxloop',12, ...
                     'wname','bior4.4');
Xc = wcompress('u','mask.wtc');
colormap(pink(255))
subplot(1,2,1); image(Xc);
axis square;
title('Compressed Image - 12 steps')
xlabel({['Compression Ratio: ' num2str(CR,'%1.2f %%')], ...
        ['BPP: ' num2str(BPP,'%3.2f')]})

[CR,BPP] = wcompress('c',X,'mask.wtc','ezw','maxloop',11, ...
                     'wname','bior4.4');
Xc = wcompress('u','mask.wtc');
subplot(1,2,2); image(Xc);
axis square;
title('Compressed Image - 11 steps')
xlabel({['Compression Ratio: ' num2str(CR,'%1.2f %%')], ...
        ['BPP: ' num2str(BPP,'%3.2f')]})
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For the eleventh loop, we see that the result can be considered satisfactory, and the obtained BPP
ratio is approximately 0.35. By using a more recent method, SPIHT (Set Partitioning in Hierarchical
Trees), the BPP can be improved further.

[CR,BPP] = wcompress('c',X,'mask.wtc','spiht','maxloop',12, ...
                      'wname','bior4.4');
Xc = wcompress('u','mask.wtc');
colormap(pink(255))
subplot(1,2,1); image(X);
axis square;
title('Original Image')
subplot(1,2,2); image(Xc);
axis square;
title('Compressed Image - 12 steps')
xlabel({['Compression Ratio: ' num2str(CR,'%1.2f %%')], ...
        ['BPP: ' num2str(BPP,'%3.2f')]})
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The final compression ratio (2.8%) and Bit-Per-Pixel ratio (0.23) are very satisfactory. Recall that the
CR means that the compressed image is stored using only 2.8% of the initial storage size.

Handling Truecolor Images

Finally, we illustrate how to compress the wpeppers.jpg truecolor image. Truecolor images can be
compressed using the same scheme as grayscale images by applying the same strategies to each of
the three color components.

The progressive compression method used is SPIHT (Set Partitioning in Hierarchical Trees) and the
number of encoding loops is set to 12.

X = imread('wpeppers.jpg');
[CR,BPP] = wcompress('c',X,'wpeppers.wtc','spiht','maxloop',12);
Xc = wcompress('u','wpeppers.wtc');
colormap(pink(255))
subplot(1,2,1); image(X);
axis square;
title('Original Image')
subplot(1,2,2); image(Xc);
axis square;
title('Compressed Image - 12 steps')
xlabel({['Compression Ratio: ' num2str(CR,'%1.2f %%')], ...
        ['BPP: ' num2str(BPP,'%3.2f')]})
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delete('wpeppers.wtc')

The compression ratio (1.65%) and the Bit-Per-Pixel ratio (0.4) are very satisfactory while maintaining
a good visual perception.

More about True Compression of Images

For more information about True Compression of images, including some theory and examples, see
the following reference:

Misiti, M., Y. Misiti, G. Oppenheim, J.-M. Poggi (2007), "Wavelets and their applications", ISTE DSP
Series.
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Signal Deconvolution and Impulse Denoising Using Pursuit
Methods

We show two examples of sparse recovery algorithms. The first example shows how to use orthogonal
matching pursuit to recover ground profile information from noisy seismic signal measurements. In
the second example, we show how basis pursuit can be used to remove impulse noise from power
system current measurements.

Pursuit methods are popular recovery methods, which attempt to find sparse representations of
signals in overcomplete dictionaries. Orthogonal matching pursuit is a class of iterative algorithms
that chooses dictionary elements in a greedy manner that best approximates the signal. In contrast,
basis pursuit tries to find the best approximation of the signal with respect to the dictionary such that
the recovered signal has a minimum ℓ1 norm.

Example 1: Sparse Seismic Deconvolution With Orthogonal Matching Pursuit

Sparse seismic deconvolution is one of the oldest inverse problems in the field of seismic imaging [1
on page 12-0 ]. The sparse seismic deconvolution process aims to recover the structure of ocean-
bottom sediments from noisy seismic signals. The ocean bottom is modeled as a sparse signal x with a
few impulses that correspond to the interfaces between layers in the ground. The observed noisy
seismic signal y is modeled as follows:

y = Dx + w

where

• D is the convolution operator and the columns of the operator correspond to a wavelet filter

h(t) = 1− t2

s2 exp − t2

2s2 .

• The vector w is the observation noise.

Since the convolution suppresses many low and high frequencies, we need some prior information to
regularize the inverse problem. The sparse seismic deconvolution process employs pursuit algorithms
to recover the sparse signal x. In the first part of this example, we demonstrate how matching pursuit
can be used to deconvolute a sparse impulse signal from a seismic observation vector.

Generate Seismic Filter

The sparse signal, wavelet, and dictionary used in this example are generated following the steps in
[2 on page 12-0 ].

Generate a seismic filter h, which is denoted by the second derivative of a Gaussian.

n = 1024;
s = 13;
% Generate the seismic filter
t = -n/2:n/2-1;
h = (1-t.^2/s^2).*exp( -(t.^2)/(2*s^2) );
h = h-mean(h);
h = h/norm(h);
% Frequency response for the seismic filter
h1 = fftshift(h);
hf = fftshift(abs(fft(h1)));
f = t/n;
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Display the impulse response and frequency response of the seismic filter.

figure
subplot(2,1,1)
plot(t, h)
title('Impulse response for the seismic filter')
xlabel('Time (seconds)')
ylabel('Filter amplitude')
axis tight
subplot(2,1,2)
plot(f, hf)
title('Magnitude response for the seismic filter');
xlabel('Frequency')
ylabel('Magnitude response')
axis tight

Generate the deconvolution operator matrix D that will be used for orthogonal matching pursuit. To
stabilize the recovery, we downsample the impulse response by a factor of 2.

% Build the deconvolution operator matrix D
[Y,X] = meshgrid(1:2:n,1:n);
D = reshape( h1(mod(X-Y,n)+1), [n n/2]);

Observe the columns of the deconvolution operator.

figure
imagesc(D)
colormap('bone')
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Create the sparse signal x using random amplitudes and signs for the impulses. Next, generate the
noisy observations y by first multiplying the sparse signal x with the deconvolution operator matrix D
and adding noise to the product.

% Generate the sparse signal
x = sparseSignal(n/2);
% Obtain noisy observations
sigma = .06*max(h);
w = randn(n,1)*sigma;
y = D*x + w;

Plot the sparse signal and the corresponding noisy observation vector.

figure
subplot(2,1,1)
strng = strcat('No. of non-zero values in sparse signal x = ',num2str(nnz(x)));
stem(x)
title(strng)
xlabel('Sample index')
ylabel('Signal amplitude')

subplot(2,1,2)
plot(y)
axis tight
title('Noisy observation used for sparse recovery');
xlabel('Sample index')
ylabel('Observation value')
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Sparse Spike Deconvolution With Orthogonal Matching Pursuit

Use orthogonal matching pursuit to recover the sparse signal. Orthogonal matching pursuit is a
greedy algorithm that has been popularly employed for sparse signal recovery. The algorithm greedily
picks the column of the dictionary that is orthogonal to the current residual. The indices of the
identified atoms correspond to the nonzero entries in the sparse signal to be recovered.

We perform the deconvolution process using the following steps.

Generate the sensingDictionary that corresponds to the convolution operator matrix D.

A = sensingDictionary('CustomDictionary',D);

Use orthogonal matching pursuit to deconvolute the noisy observation vector y. Then, plot the
deconvoluted signal Xr.

% Use matching pursuit to recover the sparse signal
[Xr, YI, ~, ~] = matchingPursuit(A,y,'Algorithm','OMP');
figure
stem(x) 
hold on
stem(Xr,'k')
hold off
axis tight
title('Original and recovered sparse signals');
legend('Original signal','Recovered sparse signal','Location','southoutside');
xlabel('Sample index')
ylabel('Signal amplitude')
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figure
plot(y) 
hold on
plot(YI,'k')
hold off
axis tight;
title({'Observed noisy measurement and'; 'Best fit recovered from orthogonal matching pursuit'});
legend('Observed noisy measurement','Best orthogonal matching pursuit fit','Location','southoutside')
xlabel('Sample index')
ylabel('Signal amplitude')
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Summary

In this example, we demonstrated how the ocean bottom structure can be recovered from a noisy
seismic observation signal using an orthogonal matching pursuit algorithm. The recovery process
exploited the knowledge that the seismic signal is sparse with respect to the wavelet basis. The
deconvolution process enables researchers to understand more about the structure of ocean bottom
given the seismic signal reflected from it.

Example 2: Impulse Denoising in Line Current Using Basis Pursuit

This section shows how to denoise power line signals using basis pursuit. In power line
communications (PLC) networks, the electrical distribution grid is used as a data transmission
medium for reduced cost and expenditure. Impulse noise in PLC networks is a significant problem as
it can corrupt the data sent by the receiver. This type of corruption arises from the connection and
disconnection of electrical devices, operation of circuit breaks and isolators in the power network,
etc.

The problem at hand is to denoise current measurements by separating the current signal from the
impulse noise. To do this we find a representation domain that emphasizes the distinguishing features
of the signal and the noise. Impulsive noise is normally more distinct and detectable in the time-
domain than in the frequency domain, and it is appropriate to use time domain signal processing for
noise detection and removal.

The time-domain model [3 on page 12-0 ] for the current signal is as follows :

Y = c(t) + n(t) + i(t)
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where

• c(t) is the current signal
• n(t) is the Gaussian noise
• i(t) is the impulse noise

The Middleton Class A [4 on page 12-0 ] model describes impulse noise in the following way:

i(t) = ∑
j = 1

L
a jδ(t − t j)

where

• δ(t − t j) is the j-th unit impulse
• a j, t j are statistically independent with identical distributions
• L is the number of impulses in the observation period

Impulse Denoising Using Basis Pursuit

In this section, we show impulse denoising in power line signal using basis pursuit. A signal is said to
be compressible with respect to a basis, if the absolute value of it's sorted (ascending) coefficients
calculated with the basis is exponentially decreasing. In that case, the signal can be well represented
with only the largest few coefficients.

As the AC line current signal is sinusoidal, the signal is compressible with respect to the Discrete
Cosine Transform (DCT) basis. In contrast, the impulse noise is not compressible in the DCT domain.
Due to its impulsive nature, the noise can be better represented using the Identity basis. We can
employ basis pursuit with a sensing dictionary built from a combination of DCT and identity bases to
separate the underlying signal from the impulsive noise.

Experimental Setup

This example uses main line current signals collected in the BLOND-50 Dataset [5 on page 12-0 ].
This dataset corresponds to the electrical activity in an office space in Germany. In addition to the
current and voltage signals that correspond to activities from appliances in the office space, the
dataset also includes main line current and voltage signals. During the collection of BLOND-50,
connection and disconnection of various appliances and switches resulted in white and impulsive
noise in the data. The data was sampled at 50kHz.

This example uses multiple cycles of the raw recorded current signals in the 3-phase power grid from
a specific day of the year. The data is in the file lineCurrent.mat, which is included with the
example. The 3-phase power grid is characterized by a 120° phase shift between the circuits.

Load the signal from the lineCurrent.mat file. Plot one segment of the recorded noisy line current
signal from all 3-phases.

load lineCurrent
Fs = 50e3;
t = (0:(length(I1)-1))/Fs;

figure
subplot(3,1,1)
plot(t,I1)
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title('Current signal from phase 1')
xlabel('Time (sec)')
ylabel('Current value (A)')
subplot(3,1,2)
plot(t,I2)
title('Current signal from phase 2')
xlabel('Time (sec)')
ylabel('Current value (A)')
subplot(3,1,3)
plot(t,I3)
title('Current signal from phase 3')
ylabel('Current value (A)')
xlabel('Time (sec)')

From the plots we can see that the signals from all three phases are affected by impulse noise. The
impulsive nature of the noise causes the spiky appearance of the signals.

Generate the basis dictionary A that will be used for basis pursuit.

N = length(I1);

% Generate the sensingDictionary
A = sensingDictionary("Size",N,"Type",{'dct','eye'});

Calculate the coefficients of the noisy signal from phase 1 in DCT domain.

% Obtain DCT basis matrix
ADCT = subdict(A,1:N,1:N);
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% Calculate the DCT coefficients
cDCT = ADCT'*double(I1);

Observe the ordered absolute coefficients of the signal in DCT domain. The plot shows that the DCT
coefficients are exponentially decreasing. In other words, the signal can be compressed using a few
DCT bases.

figure
plot(sort(abs(cDCT),'descend'),'LineWidth',2)
title({'Absolute DCT coefficients of the noisy signal'; 'in descending order'})
axis([-200 3200 -2000 max(abs(cDCT))+1000])
xlabel('Index')
ylabel('Absolute value of the DCT Coefficients')

Perform basis pursuit on the noisy current signal using the helper function impulseDenoise and
obtain the denoised signal y1.

% Perform impulse denoising
[y1, y2] = helperImpulseDenoise(A,I1,N);

Plot the denoised signal and the separated impulse noise.

% Display the denoised signal and the impulse noise
figure
subplot(3,1,1)
plot(t,I1,'LineWidth',2)
xlabel('Time (sec)')
ylabel('Current value (A)')
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title("Noisy current signal from phase 1")
subplot(3,1,2)
plot(t,y1,'LineWidth',2)
xlabel('Time (sec)')
ylabel('Current value (A)')
title("Denoised current signal")
subplot(3,1,3)
plot(y2,'LineWidth',2)
title("Impulse noise")
ylabel('Noise amplitude')
xlabel('Time (sec)')

The plots show that basis pursuit successfully separated the current signal from the impulse noise.
Repeat the impulse denoising process on the current signals on the remaining two phases.

% Perform impulse denoising on the current signals from phase 2 and 3
[y21, ~] = helperImpulseDenoise(A,I2,N);
[y31, ~] = helperImpulseDenoise(A,I3,N);

Plot the impulse denoised current signals from all three phases.

figure
subplot(3,1,1)
plot(t,y1,'LineWidth',2)
xlabel('Samples')
ylabel('Current value (A)')
title("Denoised current signal from phase 1")
subplot(3,1,2)
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plot(t,y21,'LineWidth',2)
xlabel('samples')
ylabel('Current value (A)')
title("Denoised current signal from phase 2")
subplot(3,1,3)
plot(t,y31,'LineWidth',2)
xlabel('samples')
ylabel('Current value (A)')
title("Denoised current signal from phase 3")

Summary

In this example, we demonstrated how sparsity of a signal can be exploited to perform impulse
denoising. As the data transmitted in the PLC networks are more vulnerable to impulse noise than
Gaussian noise, it is essential to perform impulse denoising to ensure data integrity at the receiver
end.
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Helper Functions

sparseSignal - This function generates the sparse signal that corresponds to the 1-D ground profile.

function x = sparseSignal(N)
% This function is only intended to support examples in the Wavelet
% Toolbox. It may be changed or removed in a future release.
m = 5; M = 40;
k = floor( (N+M)*2/(M+m) )-1;
spc = linspace(M,m,k)';

% Location of the impulses
idx = round( cumsum(spc) );
idx(idx>N) = [];

x = zeros(N,1);
si = (-1).^(1:length(idx))';
si = si(randperm(length(si)));
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% Creating the sparse signal.
x(idx) = si;
x = x .* (1-rand(N,1)*.5);
end

impulseDenoise - This function performs the impulse denoising using basis pursuit.

function [y1, y2] = helperImpulseDenoise(A,y,N)
% This function is only intended to support examples in the Wavelet
% Toolbox. It may be changed or removed in a future release.

% Perform basis pursuit on the measurement y
[XBP,~,~] = basisPursuit(A,y);

% Obtain the denoised current signal using DCT basis
A1mat = subdict(A,1:N,1:N);
y1 = A1mat*XBP(1:N);

% Separate the impulse noise using Identity basis
A2mat = subdict(A,1:N,(N+1):(2*N));
y2 = A2mat*XBP((N+1):end);
end

See Also
sensingDictionary | matchingPursuit | basisPursuit

More About
• “Matching Pursuit Algorithms” on page 7-2
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Signal Classification Using Wavelet-Based Features and
Support Vector Machines

This example shows how to classify human electrocardiogram (ECG) signals using wavelet-based
feature extraction and a support vector machine (SVM) classifier. The problem of signal classification
is simplified by transforming the raw ECG signals into a much smaller set of features that serve in
aggregate to differentiate different classes. You must have Wavelet Toolbox™, Signal Processing
Toolbox™, and Statistics and Machine Learning Toolbox™ to run this example. The data used in this
example are publicly available from PhysioNet.

Data Description

This example uses ECG data obtained from three groups, or classes, of people: persons with cardiac
arrhythmia, persons with congestive heart failure, and persons with normal sinus rhythms. The
example uses 162 ECG recordings from three PhysioNet databases: MIT-BIH Arrhythmia Database [3]
[7], MIT-BIH Normal Sinus Rhythm Database [3], and The BIDMC Congestive Heart Failure Database
[1][3]. In total, there are 96 recordings from persons with arrhythmia, 30 recordings from persons
with congestive heart failure, and 36 recordings from persons with normal sinus rhythms. The goal is
to train a classifier to distinguish between arrhythmia (ARR), congestive heart failure (CHF), and
normal sinus rhythm (NSR).

Download Data

The first step is to download the data from the GitHub repository. To download the data, click Code
and select Download ZIP. Save the file physionet_ECG_data-main.zip in a folder where you
have write permission. The instructions for this example assume you have downloaded the file to your
temporary directory, (tempdir in MATLAB). Modify the subsequent instructions for unzipping and
loading the data if you choose to download the data in folder different from tempdir.

The file physionet_ECG_data-main.zip contains

• ECGData.zip
• README.md

and ECGData.zip contains

• ECGData.mat
• Modified_physionet_data.txt
• License.txt.

ECGData.mat holds the data used in this example. The .txt file, Modified_physionet_data.txt, is
required by PhysioNet's copying policy and provides the source attributions for the data as well as a
description of the pre-processing steps applied to each ECG recording.

Load Files

If you followed the download instructions in the previous section, enter the following commands to
unzip the two archive files.

unzip(fullfile(tempdir,'physionet_ECG_data-main.zip'),tempdir)
unzip(fullfile(tempdir,'physionet_ECG_data-main','ECGData.zip'),...
    fullfile(tempdir,'ECGData'))

After you unzip the ECGData.zip file, load the data into MATLAB.
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load(fullfile(tempdir,'ECGData','ECGData.mat'))

ECGData is a structure array with two fields: Data and Labels. Data is a 162-by-65536 matrix
where each row is an ECG recording sampled at 128 hertz. Labels is a 162-by-1 cell array of
diagnostic labels, one for each row of Data. The three diagnostic categories are: 'ARR' (arrhythmia),
'CHF' (congestive heart failure), and 'NSR' (normal sinus rhythm).

Create Training and Test Data

Randomly split the data into two sets - training and test data sets. The helper function
helperRandomSplit performs the random split. helperRandomSplit accepts the desired split
percentage for the training data and ECGData. The helperRandomSplit function outputs two data
sets along with a set of labels for each. Each row of trainData and testData is an ECG signal.
Each element of trainLabels and testLabels contains the class label for the corresponding row
of the data matrices. In this example, we randomly assign 70% percent of the data in each class to
the training set. The remaining 30% is held out for testing (prediction) and are assigned to the test
set.

percent_train = 70;
[trainData,testData,trainLabels,testLabels] = ...
    helperRandomSplit(percent_train,ECGData);

There are 113 records in the trainData set and 49 records in testData. By design the training
data contains 69.75% (113/162) of the data. Recall that the ARR class represents 59.26% of the data
(96/162), the CHF class represents 18.52% (30/162), and the NSR class represents 22.22% (36/162).
Examine the percentage of each class in the training and test sets. The percentages in each are
consistent with the overall class percentages in the data set.

Ctrain = countcats(categorical(trainLabels))./numel(trainLabels).*100

Ctrain = 3×1

   59.2920
   18.5841
   22.1239

Ctest = countcats(categorical(testLabels))./numel(testLabels).*100

Ctest = 3×1

   59.1837
   18.3673
   22.4490

Plot Samples

Plot the first few thousand samples of four randomly selected records from ECGData. The helper
function helperPlotRandomRecords does this. helperPlotRandomRecords accepts ECGData
and a random seed as input. The initial seed is set at 14 so that at least one record from each class is
plotted. You can execute helperPlotRandomRecords with ECGData as the only input argument as
many times as you wish to get a sense of the variety of ECG waveforms associated with each class.
You can find the source code for this helper function in the Supporting Functions section at the end of
this example.

helperPlotRandomRecords(ECGData,14)
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Feature Extraction

Extract the features used in the signal classification for each signal. This example uses the following
features extracted on 8 blocks of each signal approximately one minute in duration (8192 samples):

• Autoregressive model (AR) coefficients of order 4 [8].
• Shannon entropy (SE) values for the maximal overlap discrete wavelet packet transform

(MODPWT) at level 4 [5].
• Multifractal wavelet leader estimates of the second cumulant of the scaling exponents and the

range of Holder exponents, or singularity spectrum [4].

Additionally, multiscale wavelet variance estimates are extracted for each signal over the entire data
length [6]. An unbiased estimate of the wavelet variance is used. This requires that only levels with at
least one wavelet coefficient unaffected by boundary conditions are used in the variance estimates.
For a signal length of 2^16 (65,536) and the 'db2' wavelet this results in 14 levels.

These features were selected based on published research demonstrating their effectiveness in
classifying ECG waveforms. This is not intended to be an exhaustive or optimized list of features.

The AR coefficients for each window are estimated using the Burg method, arburg. In [8], the
authors used model order selection methods to determine that an AR(4) model provided the best fit
for ECG waveforms in a similar classification problem. In [5], an information theoretic measure, the
Shannon entropy, was computed on the terminal nodes of a wavelet packet tree and used with a
random forest classifier. Here we use the nondecimated wavelet packet transform, modwpt, down to
level 4.

13 Featured Examples — Machine Learning and Deep Learning

13-4



The definition of the Shannon entropy for the undecimated wavelet packet transform following [5] is

given by: SE j = − ∑
k = 1

N
p j, k * logp j, k where N is the number of the corresponding coefficients in the j-

th node and p j, k are the normalized squares of the wavelet packet coefficients in the j-th terminal
node.

Two fractal measures estimated by wavelet methods are used as features. Following [4], we use the
width of the singularity spectrum obtained from dwtleader as a measure of the multifractal nature
of the ECG signal. We also use the second cumulant of the scaling exponents. The scaling exponents
are scale-based exponents describing power-law behavior in the signal at different resolutions. The
second cumulant broadly represents the departure of the scaling exponents from linearity.

The wavelet variance for the entire signal is obtained using modwtvar. Wavelet variance measures
variability in a signal by scale, or equivalently variability in a signal over octave-band frequency
intervals.

In total there are 190 features: 32 AR features (4 coefficients per block), 128 Shannon entropy values
(16 values per block), 16 fractal estimates (2 per block), and 14 wavelet variance estimates.

The helperExtractFeatures function computes these features and concatenates them into a
feature vector for each signal. You can find the source code for this helper function in the Supporting
Functions section at the end of this example.

timeWindow = 8192;
ARorder = 4;
MODWPTlevel = 4;
[trainFeatures,testFeatures,featureindices] = ...
    helperExtractFeatures(trainData,testData,timeWindow,ARorder,MODWPTlevel);

trainFeatures and testFeatures are 113-by-190 and 49-by-190 matrices, respectively. Each row
of these matrices is a feature vector for the corresponding ECG data in trainData and testData,
respectively. In creating feature vectors, the data is reduced from 65536 samples to 190 element
vectors. This is a significant reduction in data, but the goal is not just a reduction in data. The goal is
to reduce the data to a much smaller set of features which captures the difference between the
classes so that a classifier can accurately separate the signals. The indices for the features, which
make up both trainFeatures and testFeatures are contained in the structure array,
featureindices. You can use these indices to explore features by group. As an example, examine
the range of Holder exponents in the singularity spectra for the first time window. Plot the data for
the entire data set.

allFeatures = [trainFeatures;testFeatures];
allLabels = [trainLabels;testLabels];
figure
boxplot(allFeatures(:,featureindices.HRfeatures(1)),allLabels,'notch','on')
ylabel('Holder Exponent Range')
title('Range of Singularity Spectrum by Group (First Time Window)')
grid on
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You can perform a one-way analysis of variance on this feature and confirm what appears in the
boxplot, namely that the ARR and NSR groups have a significantly larger range than the CHF group.

[p,anovatab,st] = anova1(allFeatures(:,featureindices.HRfeatures(1)),...
    allLabels);
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c = multcompare(st,'display','off')

c = 3×6

    1.0000    2.0000    0.0176    0.1144    0.2112    0.0155
    1.0000    3.0000   -0.1591   -0.0687    0.0218    0.1764
    2.0000    3.0000   -0.2975   -0.1831   -0.0687    0.0005

As an additional example, consider the difference in variance in the second-lowest frequency (second-
largest scale) wavelet subband for the three groups.

boxplot(allFeatures(:,featureindices.WVARfeatures(end-1)),allLabels,'notch','on')
ylabel('Wavelet Variance')
title('Wavelet Variance by Group')
grid on

 Signal Classification Using Wavelet-Based Features and Support Vector Machines

13-7



If you perform an analysis of variance on this feature, you find that the NSR group has significantly
lower variance in this wavelet subband than the ARR and CHF groups. These examples are just
intended to illustrate how individual features serve to separate the classes. While one feature alone is
not sufficient, the goal is to obtain a rich enough feature set to enable a classifier to separate all three
classes.

Signal Classification

Now that the data has been reduced to a feature vector for each signal, the next step is to use these
feature vectors for classifying the ECG signals. You can use the Classification Learner app to quickly
evaluate a large number of classifiers. In this example, a multi-class SVM with a quadratic kernel is
used. Two analyses are performed. First we use the entire dataset (training and testing sets) and
estimate the misclassification rate and confusion matrix using 5-fold cross-validation.

features = [trainFeatures; testFeatures];
rng(1)
template = templateSVM(...
    'KernelFunction','polynomial',...
    'PolynomialOrder',2,...
    'KernelScale','auto',...
    'BoxConstraint',1,...
    'Standardize',true);
model = fitcecoc(...
    features,...
    [trainLabels;testLabels],...
    'Learners',template,...
    'Coding','onevsone',...
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    'ClassNames',{'ARR','CHF','NSR'});
kfoldmodel = crossval(model,'KFold',5);
classLabels = kfoldPredict(kfoldmodel);
loss = kfoldLoss(kfoldmodel)*100

loss = 8.0247

[confmatCV,grouporder] = confusionmat([trainLabels;testLabels],classLabels);

The 5-fold classification error is 8.02% (91.98% correct). The confusion matrix, confmatCV, shows
which records were misclassified. grouporder gives the ordering of the groups. Two of the ARR
group were misclassified as CHF, eight of the CHF group were misclassified as ARR and one as NSR,
and two from the NSR group were misclassified as ARR.

Precision, Recall, and F1 Score

In a classification task, the precision for a class is the number of correct positive results divided by
the number of positive results. In other words, of all the records that the classifier assigns a given
label, what proportion actually belong to the class. Recall is defined as the number of correct labels
divided by the number of labels for a given class. Specifically, of all the records belonging to a class,
what proportion did our classifier label as that class. In judging the accuracy your machine learning
system, you ideally want to do well on both precision and recall. For example, suppose we had a
classifier that labeled every single record as ARR. Then our recall for the ARR class would be 1
(100%). All records belonging to the ARR class would be labeled ARR. However, the precision would
be low. Because our classifier labeled all records as ARR, there would be 66 false positives in this
case for a precision of 96/162, or 0.5926. The F1 score is the harmonic mean of precision and recall
and therefore provides a single metric that summarizes the classifier performance in terms of both
recall and precision. The following helper function computes the precision, recall, and F1 scores for
the three classes. You can see how helperPrecisionRecall computes precision, recall, and the F1
score based on the confusion matrix by examining the code in the Supporting Functions section.

CVTable = helperPrecisionRecall(confmatCV);

You can display the table returned by helperPrecisionRecall with the following command.

disp(CVTable)

           Precision    Recall    F1_Score
           _________    ______    ________

    ARR     90.385      97.917         94 
    CHF     91.304          70     79.245 
    NSR     97.143      94.444     95.775 

Both precision and recall are good for the ARR and NSR classes, while recall is significantly lower for
the CHF class.

For the next analysis, we fit a multi-class quadratic SVM to the training data only (70%) and then use
that model to make predictions on the 30% of the data held out for testing. There are 49 data records
in the test set.

model = fitcecoc(...
     trainFeatures,...
     trainLabels,...
     'Learners',template,...
     'Coding','onevsone',...
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     'ClassNames',{'ARR','CHF','NSR'});
predLabels = predict(model,testFeatures);

Use the following to determine the number of correct predictions and obtain the confusion matrix.

correctPredictions = strcmp(predLabels,testLabels);
testAccuracy = sum(correctPredictions)/length(testLabels)*100

testAccuracy = 97.9592

[confmatTest,grouporder] = confusionmat(testLabels,predLabels);

The classification accuracy on the test dataset is approximately 98% and the confusion matrix shows
that one CHF record was misclassified as NSR.

Similar to what was done in the cross-validation analysis, obtain precision, recall, and the F1 scores
for the test set.

testTable = helperPrecisionRecall(confmatTest);
disp(testTable)

           Precision    Recall    F1_Score
           _________    ______    ________

    ARR        100         100        100 
    CHF        100      88.889     94.118 
    NSR     91.667         100     95.652 

Classification on Raw Data and Clustering

Two natural questions arise from the previous analysis. Is feature extraction necessary in order to
achieve good classification results? Is a classifier necessary, or can these features separate the
groups without a classifier? To address the first question, repeat the cross-validation results for the
raw time series data. Note that the following is a computationally expensive step because we are
applying the SVM to a 162-by-65536 matrix. If you do not wish to run this step yourself, the results
are described in the next paragraph.

rawData = [trainData;testData];
Labels = [trainLabels;testLabels];
rng(1)
template = templateSVM(...
    'KernelFunction','polynomial', ...
    'PolynomialOrder',2, ...
    'KernelScale','auto', ...
    'BoxConstraint',1, ...
    'Standardize',true);
model = fitcecoc(...
    rawData,...
    [trainLabels;testLabels],...
    'Learners',template,...
    'Coding','onevsone',...
    'ClassNames',{'ARR','CHF','NSR'});
kfoldmodel = crossval(model,'KFold',5);
classLabels = kfoldPredict(kfoldmodel);
loss = kfoldLoss(kfoldmodel)*100

loss = 33.3333
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[confmatCVraw,grouporder] = confusionmat([trainLabels;testLabels],classLabels);
rawTable = helperPrecisionRecall(confmatCVraw);
disp(rawTable)

           Precision    Recall    F1_Score
           _________    ______    ________

    ARR        64          100     78.049 
    CHF       100       13.333     23.529 
    NSR       100       22.222     36.364 

The misclassification rate for the raw time series data is 33.3%. Repeating the precision, recall, and
F1 score analysis reveals very poor F1 scores for both the CHF (23.52) and NSR groups (36.36).
Obtain the magnitude discrete Fourier transform (DFT) coefficients for each signal to perform the
analysis in frequency domain. Because the data are real-valued, we can achieve some data reduction
using the DFT by exploiting the fact that Fourier magnitudes are an even function.

rawDataDFT = abs(fft(rawData,[],2));
rawDataDFT = rawDataDFT(:,1:2^16/2+1);
rng(1)
template = templateSVM(...
    'KernelFunction','polynomial',...
    'PolynomialOrder',2,...
    'KernelScale','auto',...
    'BoxConstraint',1,...
    'Standardize',true);
model = fitcecoc(...
    rawDataDFT,...
    [trainLabels;testLabels],...
    'Learners',template,...
    'Coding','onevsone',...
    'ClassNames',{'ARR','CHF','NSR'});
kfoldmodel = crossval(model,'KFold',5);
classLabels = kfoldPredict(kfoldmodel);
loss = kfoldLoss(kfoldmodel)*100

loss = 19.1358

[confmatCVDFT,grouporder] = confusionmat([trainLabels;testLabels],classLabels);
dftTable = helperPrecisionRecall(confmatCVDFT);
disp(dftTable)

           Precision    Recall    F1_Score
           _________    ______    ________

    ARR     76.423      97.917     85.845 
    CHF        100      26.667     42.105 
    NSR     93.548      80.556     86.567 

Using the DFT magnitudes reduces the misclassification rate to 19.13% but that is still more than
twice the error rate obtained with our 190 features. These analyses demonstrate that the classifier
has benefited from a careful selection of features.

To answer the question concerning the role of the classifier, attempt to cluster the data using only the
feature vectors. Use k-means clustering along with the gap statistic to determine both the optimal
number of clusters and cluster assignment. Allow for the possibility of 1 to 6 clusters for the data.
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rng default
eva = evalclusters(features,'kmeans','gap','KList',[1:6]);
eva

eva = 
  GapEvaluation with properties:

    NumObservations: 162
         InspectedK: [1 2 3 4 5 6]
    CriterionValues: [1.2777 1.3539 1.3644 1.3570 1.3591 1.3752]
           OptimalK: 3

The gap statistic indicates that the optimal number of clusters is three. However, if you look at the
number of records in each of the three clusters, you see that the k-means clustering based on the
feature vectors has done a poor job of separating the three diagnostic categories.

countcats(categorical(eva.OptimalY))

ans = 3×1

    61
    74
    27

Recall that there are 96 persons in the ARR class, 30 in the CHF class, and 36 in the NSR class.

Summary

This example used signal processing to extract wavelet features from ECG signals and used those
features to classify ECG signals into three classes. Not only did the feature extraction result in a
significant amount of data reduction, it also captured the differences between the ARR, CHF, and
NSR classes as demonstrated by the cross-validation results and the performance of the SVM
classifier on the test set. The example further demonstrated that applying a SVM classifier to the raw
data resulted in poor performance as did clustering the feature vectors without using a classifier.
Neither the classifier nor the features alone were sufficient to separate the classes. However, when
feature extraction was used as a data reduction step prior to the use of a classifier, the three classes
were well separated.
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Supporting Functions

helperPlotRandomRecords Plots four ECG signals randomly chosen from ECGData.

function helperPlotRandomRecords(ECGData,randomSeed)
% This function is only intended to support the XpwWaveletMLExample. It may
% change or be removed in a future release.

if nargin==2
    rng(randomSeed)
end

M = size(ECGData.Data,1);
idxsel = randperm(M,4);
for numplot = 1:4
    subplot(2,2,numplot)
    plot(ECGData.Data(idxsel(numplot),1:3000))
    ylabel('Volts')
    if numplot > 2
        xlabel('Samples')
    end
    title(ECGData.Labels{idxsel(numplot)})
end

end

helperExtractFeatures Extracts the wavelet features and AR coefficients for blocks of the data of a
specified size. The features are concatenated into feature vectors.

function [trainFeatures, testFeatures,featureindices] = helperExtractFeatures(trainData,testData,T,AR_order,level)
% This function is only in support of XpwWaveletMLExample. It may change or
% be removed in a future release.
trainFeatures = [];
testFeatures = [];

for idx =1:size(trainData,1)
    x = trainData(idx,:);
    x = detrend(x,0);
    arcoefs = blockAR(x,AR_order,T);
    se = shannonEntropy(x,T,level);
    [cp,rh] = leaders(x,T);
    wvar = modwtvar(modwt(x,'db2'),'db2');
    trainFeatures = [trainFeatures; arcoefs se cp rh wvar']; %#ok<AGROW>
    
end

 Signal Classification Using Wavelet-Based Features and Support Vector Machines

13-13



for idx =1:size(testData,1)
    x1 = testData(idx,:);
    x1 = detrend(x1,0);
    arcoefs = blockAR(x1,AR_order,T);
    se = shannonEntropy(x1,T,level);
    [cp,rh] = leaders(x1,T);
    wvar = modwtvar(modwt(x1,'db2'),'db2');
    testFeatures = [testFeatures;arcoefs se cp rh wvar']; %#ok<AGROW>
    
end

featureindices = struct();
% 4*8
featureindices.ARfeatures = 1:32;
startidx = 33;
endidx = 33+(16*8)-1;
featureindices.SEfeatures = startidx:endidx;
startidx = endidx+1;
endidx = startidx+7;
featureindices.CP2features = startidx:endidx;
startidx = endidx+1;
endidx = startidx+7;
featureindices.HRfeatures = startidx:endidx;
startidx = endidx+1;
endidx = startidx+13;
featureindices.WVARfeatures = startidx:endidx;
end

function se = shannonEntropy(x,numbuffer,level)
numwindows = numel(x)/numbuffer;
y = buffer(x,numbuffer);
se = zeros(2^level,size(y,2));
for kk = 1:size(y,2)
    wpt = modwpt(y(:,kk),level);
    % Sum across time
    E = sum(wpt.^2,2);
    Pij = wpt.^2./E;
    % The following is eps(1)
    se(:,kk) = -sum(Pij.*log(Pij+eps),2);
end
se = reshape(se,2^level*numwindows,1);
se = se';
end

function arcfs = blockAR(x,order,numbuffer)
numwindows = numel(x)/numbuffer;
y = buffer(x,numbuffer);
arcfs = zeros(order,size(y,2));
for kk = 1:size(y,2)
    artmp =  arburg(y(:,kk),order);
    arcfs(:,kk) = artmp(2:end);
end
arcfs = reshape(arcfs,order*numwindows,1);
arcfs = arcfs';
end
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function [cp,rh] = leaders(x,numbuffer)
y = buffer(x,numbuffer);
cp = zeros(1,size(y,2));
rh = zeros(1,size(y,2));
for kk = 1:size(y,2)
    [~,h,cptmp] = dwtleader(y(:,kk));
    cp(kk) = cptmp(2);
    rh(kk) = range(h);
end
end

helperPrecisionRecall returns the precision, recall, and F1 scores based on the confusion matrix.
Outputs the results as a MATLAB table.

function PRTable = helperPrecisionRecall(confmat)
% This function is only in support of XpwWaveletMLExample. It may change or
% be removed in a future release.
precisionARR = confmat(1,1)/sum(confmat(:,1))*100;
precisionCHF = confmat(2,2)/sum(confmat(:,2))*100 ;
precisionNSR = confmat(3,3)/sum(confmat(:,3))*100 ;
recallARR = confmat(1,1)/sum(confmat(1,:))*100;
recallCHF = confmat(2,2)/sum(confmat(2,:))*100;
recallNSR = confmat(3,3)/sum(confmat(3,:))*100;
F1ARR = 2*precisionARR*recallARR/(precisionARR+recallARR);
F1CHF = 2*precisionCHF*recallCHF/(precisionCHF+recallCHF);
F1NSR = 2*precisionNSR*recallNSR/(precisionNSR+recallNSR);
% Construct a MATLAB Table to display the results.
PRTable = array2table([precisionARR recallARR F1ARR;...
    precisionCHF recallCHF F1CHF; precisionNSR recallNSR...
    F1NSR],'VariableNames',{'Precision','Recall','F1_Score'},'RowNames',...
    {'ARR','CHF','NSR'});

end

See Also
Functions
modwt | modwtvar | modwpt

Apps
Classification Learner App
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Wavelet Time Scattering for ECG Signal Classification
This example shows how to classify human electrocardiogram (ECG) signals using wavelet time
scattering and a support vector machine (SVM) classifier. In wavelet scattering, data is propagated
through a series of wavelet transforms, nonlinearities, and averaging to produce low-variance
representations of time series. Wavelet time scattering yields signal representations insensitive to
shifts in the input signal without sacrificing class discriminability. You must have the Wavelet
Toolbox™ and the Statistics and Machine Learning Toolbox™ to run this example. The data used in
this example are publicly available from PhysioNet. You can find a deep learning approach to this
classification problem in this example “Classify Time Series Using Wavelet Analysis and Deep
Learning” on page 13-69 and a machine learning approach in this example “Signal Classification
Using Wavelet-Based Features and Support Vector Machines” on page 13-2.

Data Description

This example uses ECG data obtained from three groups, or classes, of people: persons with cardiac
arrhythmia, persons with congestive heart failure, and persons with normal sinus rhythms. The
example uses 162 ECG recordings from three PhysioNet databases: MIT-BIH Arrhythmia Database [3]
[5], MIT-BIH Normal Sinus Rhythm Database [3], and The BIDMC Congestive Heart Failure Database
[2][3]. In total, there are 96 recordings from persons with arrhythmia, 30 recordings from persons
with congestive heart failure, and 36 recordings from persons with normal sinus rhythms. The goal is
to train a classifier to distinguish between arrhythmia (ARR), congestive heart failure (CHF), and
normal sinus rhythm (NSR).

Download Data

The first step is to download the data from the GitHub repository. To download the data, click Code
and select Download ZIP. Save the file physionet_ECG_data-main.zip in a folder where you
have write permission. The instructions for this example assume you have downloaded the file to your
temporary directory, (tempdir in MATLAB). Modify the subsequent instructions for unzipping and
loading the data if you choose to download the data in a folder different from tempdir.

The file physionet_ECG_data-main.zip contains

• ECGData.zip
• README.md

and ECGData.zip contains

• ECGData.mat
• Modified_physionet_data.txt
• License.txt.

ECGData.mat holds the data used in this example. The .txt file, Modified_physionet_data.txt, is
required by PhysioNet's copying policy and provides the source attributions for the data as well as a
description of the pre-processing steps applied to each ECG recording.

Load Files

If you followed the download instructions in the previous section, enter the following commands to
unzip the two archive files.
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unzip(fullfile(tempdir,'physionet_ECG_data-main.zip'),tempdir)
unzip(fullfile(tempdir,'physionet_ECG_data-main','ECGData.zip'),...
    fullfile(tempdir,'ECGData'))

After you unzip the ECGData.zip file, load the data into MATLAB.

load(fullfile(tempdir,'ECGData','ECGData.mat'))

ECGData is a structure array with two fields: Data and Labels. Data is a 162-by-65536 matrix
where each row is an ECG recording sampled at 128 hertz. Each ECG time series has a total duration
of 512 seconds. Labels is a 162-by-1 cell array of diagnostic labels, one for each row of Data. The
three diagnostic categories are: 'ARR' (arrhythmia), 'CHF' (congestive heart failure), and 'NSR'
(normal sinus rhythm).

Create Training and Test Data

Randomly split the data into two sets - training and test data sets. The helper function
helperRandomSplit performs the random split. helperRandomSplit accepts the desired split
percentage for the training data and ECGData. The helperRandomSplit function outputs two data
sets along with a set of labels for each. Each row of trainData and testData is an ECG signal.
Each element of trainLabels and testLabels contains the class label for the corresponding row
of the data matrices. In this example, we randomly assign 70% percent of the data in each class to
the training set. The remaining 30% is held out for testing (prediction) and are assigned to the test
set.

percent_train = 70;
[trainData,testData,trainLabels,testLabels] = ...
    helperRandomSplit(percent_train,ECGData);

There are 113 records in the trainData set and 49 records in testData. By design the training
data contains 69.75% (113/162) of the data. Recall that the ARR class represents 59.26% of the data
(96/162), the CHF class represents 18.52% (30/162), and the NSR class represents 22.22% (36/162).
Examine the percentage of each class in the training and test sets. The percentages in each are
consistent with the overall class percentages in the data set.

Ctrain = countcats(categorical(trainLabels))./numel(trainLabels).*100

Ctrain = 3×1

   59.2920
   18.5841
   22.1239

Ctest = countcats(categorical(testLabels))./numel(testLabels).*100

Ctest = 3×1

   59.1837
   18.3673
   22.4490

Plot Samples

Plot the first few thousand samples of four randomly selected records from ECGData. The helper
function helperPlotRandomRecords does this. helperPlotRandomRecords accepts ECGData

 Wavelet Time Scattering for ECG Signal Classification

13-17



and a random seed as input. The initial seed is set at 14 so that at least one record from each class is
plotted. You can execute helperPlotRandomRecords with ECGData as the only input argument as
many times as you wish to get a sense of the variety of ECG waveforms associated with each class.
You can find the source code for this and all helper functions in the Supporting Functions section at
the end of this example.

helperPlotRandomRecords(ECGData,14)

Wavelet Time Scattering

The key parameters to specify in a wavelet time scattering network are the scale of the time
invariant, the number of wavelet transforms, and the number of wavelets per octave in each of the
wavelet filter banks. In many applications, the cascade of two filter banks is sufficient to achieve good
performance. In this example, we construct a wavelet time scattering network with the default filter
banks: 8 wavelets per octave in the first filter bank and 1 wavelet per octave in the second filter bank.
The invariance scale is set to 150 seconds.

N = size(ECGData.Data,2);
sn = waveletScattering('SignalLength',N, 'InvarianceScale',150,'SamplingFrequency',128);

You can visualize the wavelet filters in the two filter banks with the following.

[fb,f,filterparams] = filterbank(sn);
figure
subplot(211)
plot(f,fb{2}.psift)
xlim([0 128])
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grid on
title('1st Filter Bank Wavelet Filters');
subplot(212)
plot(f,fb{3}.psift)
xlim([0 128])
grid on
title('2nd Filter Bank Wavelet Filters');
xlabel('Hz');

To demonstrate the invariance scale, obtain the inverse Fourier transform of the scaling function and
center it at 0 seconds in time. The two vertical black lines mark the -75 and 75 second boundaries.
Additionally, plot the real and imaginary parts of the coarsest-scale (lowest frequency) wavelet from
the first filter bank. Note that the coarsest-scale wavelet does not exceed the invariant scale
determined by the time support of the scaling function. This is an important property of wavelet time
scattering.

figure;
phi = ifftshift(ifft(fb{1}.phift));
psiL1 = ifftshift(ifft(fb{2}.psift(:,end)));
t = (-2^15:2^15-1).*1/128;
scalplt = plot(t,phi);
hold on
grid on
ylim([-1.5e-4 1.6e-4]);
plot([-75 -75],[-1.5e-4 1.6e-4],'k--');
plot([75 75],[-1.5e-4 1.6e-4],'k--');
xlabel('Seconds'); ylabel('Amplitude');
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wavplt = plot(t,[real(psiL1) imag(psiL1)]);
legend([scalplt wavplt(1) wavplt(2)],{'Scaling Function','Wavelet-Real Part','Wavelet-Imaginary Part'});
title({'Scaling Function';'Coarsest-Scale Wavelet First Filter Bank'})
hold off

After constructing the scattering network, obtain the scattering coefficients for the training data as a
matrix. When you run featureMatrix with multiple signals, each column is treated as a single
signal.

scat_features_train = featureMatrix(sn,trainData');

The output of featureMatrix in this case is 409-by-16-by-113. Each page of the tensor,
scat_features_train, is the scattering transform of one signal. The wavelet scattering transform
is critically downsampled in time based on the bandwidth of the scaling function. In this case, this
results in 16 time windows for each of the 409 scattering paths.

In order to obtain a matrix compatible with the SVM classifier, reshape the multisignal scattering
transform into a matrix where each column corresponds to a scattering path and each row is a
scattering time window. In this case, you obtain 1808 rows because there are 16 time windows for
each of the 113 signals in the training data.

Nwin = size(scat_features_train,2);
scat_features_train = permute(scat_features_train,[2 3 1]);
scat_features_train = reshape(scat_features_train,...
    size(scat_features_train,1)*size(scat_features_train,2),[]);
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Repeat the process for the test data. Initially, scat_features_test is 409-by-16-by-49 because
there are 49 ECG waveforms in the training set. After reshaping for the SVM classifier, the feature
matrix is 784-by-416.

scat_features_test = featureMatrix(sn,testData');
scat_features_test = permute(scat_features_test,[2 3 1]);
scat_features_test = reshape(scat_features_test,...
    size(scat_features_test,1)*size(scat_features_test,2),[]);

Because for each signal we obtained 16 scattering windows, we need to create labels to match the
number of windows. The helper function createSequenceLabels does this based on the number of
windows.

[sequence_labels_train,sequence_labels_test] = createSequenceLabels(Nwin,trainLabels,testLabels);

Cross Validation

For classification, two analyses are performed. The first uses all the scattering data and fits a multi-
class SVM with a quadratic kernel. In total there 2592 scattering sequences in the entire dataset, 16
for each of the 162 signals. The error rate, or loss, is estimated using 5-fold cross validation.

scat_features = [scat_features_train; scat_features_test];
allLabels_scat = [sequence_labels_train; sequence_labels_test];
rng(1);
template = templateSVM(...
    'KernelFunction', 'polynomial', ...
    'PolynomialOrder', 2, ...
    'KernelScale', 'auto', ...
    'BoxConstraint', 1, ...
    'Standardize', true);
classificationSVM = fitcecoc(...
    scat_features, ...
    allLabels_scat, ...
    'Learners', template, ...
    'Coding', 'onevsone', ...
    'ClassNames', {'ARR';'CHF';'NSR'});
kfoldmodel = crossval(classificationSVM, 'KFold', 5);

Compute the loss and the confusion matrix. Display the accuracy.

predLabels = kfoldPredict(kfoldmodel);
loss = kfoldLoss(kfoldmodel)*100;
confmatCV = confusionmat(allLabels_scat,predLabels)

confmatCV = 3×3

        1535           0           1
           1         479           0
           0           0         576

fprintf('Accuracy is %2.2f percent.\n',100-loss);

Accuracy is 99.92 percent.

The accuracy is 99.88%, which is quite good but the actual results are better considering that here
each time window is classified separately. There are 16 separate classifications for each signal. Use a
simple majority vote to obtain a single class prediction for each scattering representation.
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classes = categorical({'ARR','CHF','NSR'});
[ClassVotes,ClassCounts] = helperMajorityVote(predLabels,[trainLabels; testLabels],classes);

Determine the actual cross-validation accuracy based on the mode of the class predictions for each
set of scattering time windows. If the mode is not unique for a given set, helperMajorityVote
returns a classification error indicated by 'NoUniqueMode'. This results in an extra column in the
confusion matrix, which in this case is all zeros because a unique mode exists for each set of
scattering predictions.

CVaccuracy = sum(eq(ClassVotes,categorical([trainLabels; testLabels])))/162*100;
fprintf('True cross-validation accuracy is %2.2f percent.\n',CVaccuracy);

True cross-validation accuracy is 100.00 percent.

MVconfmatCV = confusionmat(categorical([trainLabels; testLabels]),ClassVotes);
MVconfmatCV

MVconfmatCV = 4×4

    96     0     0     0
     0    30     0     0
     0     0    36     0
     0     0     0     0

Scattering has correctly classified all the signals in the cross-validated model. If you examine
ClassCounts, you see that the 2 misclassified time windows in confmatCV are attributable to 2
signals where 15 of the 16 scattering windows were classified correctly.

SVM Classification

For the next analysis, we fit a multi-class quadratic SVM to the training data only (70%) and then use
that model to make predictions on the 30% of the data held out for testing. There are 49 data records
in the test set. Use a majority vote on the individual scattering windows.

model = fitcecoc(...
     scat_features_train, ...
     sequence_labels_train, ...
     'Learners', template, ...
     'Coding', 'onevsone', ...
     'ClassNames', {'ARR','CHF','NSR'});
predLabels = predict(model,scat_features_test);
[TestVotes,TestCounts] = helperMajorityVote(predLabels,testLabels,classes);
testaccuracy = sum(eq(TestVotes,categorical(testLabels)))/numel(testLabels)*100;
fprintf('The test accuracy is %2.2f percent. \n',testaccuracy);

The test accuracy is 97.96 percent. 

confusionchart(categorical(testLabels),TestVotes)
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The classification accuracy on the test dataset is approximately 98%. The confusion matrix shows that
one CHF record is misclassified as ARR. All 48 other signals are correctly classified.

Summary

This example used wavelet time scattering and an SVM classifier to classify ECG waveforms into one
of three diagnostic classes. Wavelet scattering proved to be a powerful feature extractor, which
required only a minimal set of user-specified parameters to yield a set of robust features for
classification. Compare this with the example “Signal Classification Using Wavelet-Based Features
and Support Vector Machines” on page 13-2, which required a significant amount of expertise to
handcraft features to use in classification. With wavelet time scattering, you are only required to
specify the scale of the time invariance, the number of filter banks (or wavelet transforms), and the
number of wavelets per octave. The combination of a wavelet scattering transform and an SVM
classifier yielded 100% classification on a cross-validated model and 98% correct classification when
applying an SVM to the scattering transforms of a hold-out test set.
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Supporting Functions

helperPlotRandomRecords Plots four ECG signals randomly chosen from ECGData.

function helperPlotRandomRecords(ECGData,randomSeed)
% This function is only intended to support the XpwWaveletMLExample. It may
% change or be removed in a future release.

if nargin==2
    rng(randomSeed)
end

M = size(ECGData.Data,1);
idxsel = randperm(M,4);
for numplot = 1:4
    subplot(2,2,numplot)
    plot(ECGData.Data(idxsel(numplot),1:3000))
    ylabel('Volts')
    if numplot > 2
        xlabel('Samples')
    end
    title(ECGData.Labels{idxsel(numplot)})
end

end

helperMajorityVote Finds the mode in the predicted class labels for each set of scattering time
windows. The function returns both the class label modes and the number of class predictions for
each set of scattering time windows. If there is no unique mode, helperMajorityVote returns a
class label of "error" to indicate that set of scattering windows is a classification error.

function [ClassVotes,ClassCounts] = helperMajorityVote(predLabels,origLabels,classes)
% This function is in support of ECGWaveletTimeScatteringExample. It may
% change or be removed in a future release.

% Make categorical arrays if the labels are not already categorical
predLabels = categorical(predLabels);
origLabels = categorical(origLabels);
% Expects both predLabels and origLabels to be categorical vectors
Npred = numel(predLabels);
Norig = numel(origLabels);
Nwin = Npred/Norig;
predLabels = reshape(predLabels,Nwin,Norig);
ClassCounts = countcats(predLabels);
[mxcount,idx] = max(ClassCounts);
ClassVotes = classes(idx);
% Check for any ties in the maximum values and ensure they are marked as
% error if the mode occurs more than once
modecnt = modecount(ClassCounts,mxcount);
ClassVotes(modecnt>1) = categorical({'error'});

13 Featured Examples — Machine Learning and Deep Learning

13-24



ClassVotes = ClassVotes(:);

%-------------------------------------------------------------------------
function modecnt = modecount(ClassCounts,mxcount)
modecnt = Inf(size(ClassCounts,2),1);
for nc = 1:size(ClassCounts,2)
    modecnt(nc) = histc(ClassCounts(:,nc),mxcount(nc));
end

end

% EOF
end

See Also
waveletScattering

More About
• “Wavelet Scattering” on page 9-2
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Music Genre Classification Using Wavelet Time Scattering
This example shows how to classify the genre of a musical excerpt using wavelet time scattering and
the audio datastore. In wavelet scattering, data is propagated through a series of wavelet transforms,
nonlinearities, and averaging to produce low-variance representations of the data. These low-variance
representations are then used as inputs to a classifier.

GTZAN Dataset

The data set used in this example is the GTZAN Genre Collection [7][8]. The data is provided as a
zipped tar archive which is approximately 1.2 GB. The uncompressed data set requires about 3 GB of
disk space. Extracting the compressed tar file from the link provided in the references creates a
folder with ten subfolders. Each subfolder is named for the genre of music samples it contains. The
genres are: blues, classical, country, disco, hiphop, jazz, metal, pop, reggae, and rock. There are 100
examples of each genre and each audio file consists of about 30 seconds of data sampled at 22050
Hz. In the original paper, the authors used a number of time-domain and frequency-domain features
including mel-frequency cepstral (MFC) coefficients extracted from each music example and a
Gaussian mixture model (GMM) classification to achieve an accuracy of 61 percent [7]. Subsequently,
deep learning networks have been applied to this data. In most cases, these deep learning
approaches consist of convolutional neural networks (CNN) with the MFC coefficients or
spectrograms as the input to the deep CNN. These approaches have resulted in performance of
around 84% [4]. An LSTM approach with spectrogram time slices resulted in 79% accuracy and time-
domain and frequency-domain features coupled with an ensemble learning approach (AdaBoost)
resulted in 82% accuracy on a test set [2][3]. Recently, a sparse representation machine learning
approach achieved approximately 89% accuracy [6].

Download Data

The first step is to download the GTZAN Genre Collection [7][8]. The instructions in this example
assume you download the data set to your temporary directory, tempdir, in MATLAB®. If you choose
to download the data in a folder different from tempdir, change the directory name in the
subsequent instructions. Use gunzip to download and uncompress the data set. Then use untar to
extract the contents of the tar file. The folder genres is created in tempdir. Inside genres are ten
subfolders, one for each music genre.

dataURL = 'http://opihi.cs.uvic.ca/sound/genres.tar.gz';
gunzip(dataURL,tempdir)                       % creates genres.tar in tempdir
untar(fullfile(tempdir,'genres.tar'),tempdir) % creates genres folder

Wavelet Scattering Framework

The only parameters to specify in a wavelet time scattering network are the duration of the time
invariance, the number of wavelet filter banks, and the number of wavelets per octave. For most
applications, cascading the data through two wavelet filter banks is sufficient. In this example, we use
the default scattering network which uses two wavelet filter banks. The first filter bank has 8
wavelets per octave and the second filter bank has 1 wavelet per octave. For this example, set the
invariant scale to be 0.5 seconds, which corresponds to slightly more than 11,000 samples for the
given sampling rate. Create the wavelet time scattering decomposition network.

sn = waveletScattering('SignalLength',2^19,'SamplingFrequency',22050,...
    'InvarianceScale',0.5);

To understand the role of the invariance scale, obtain and plot the scaling filter in time along with the
real and imaginary parts of the coarsest-scale wavelet from the first filter bank. Note that the time-
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support of the scaling filter is essentially 0.5 seconds as designed. Further, the time support of the
coarsest-scale wavelet does not exceed the invariant scale of the wavelet scattering decomposition.

[fb,f,filterparams] = filterbank(sn);
phi = ifftshift(ifft(fb{1}.phift));
psiL1 = ifftshift(ifft(fb{2}.psift(:,end)));
dt = 1/22050;
time = -2^18*dt:dt:2^18*dt-dt;
scalplt = plot(time,phi,'linewidth',1.5);
hold on
grid on
ylimits = [-3e-4 3e-4];
ylim(ylimits)
plot([-0.25 -0.25],ylimits,'k--')
plot([0.25 0.25],ylimits,'k--')
xlim([-0.6 0.6])
xlabel('Seconds')
ylabel('Amplitude')
wavplt = plot(time,[real(psiL1) imag(psiL1)]);
legend([scalplt wavplt(1) wavplt(2)],...
    {'Scaling Function','Wavelet-Real Part','Wavelet-Imaginary Part'})
title({'Scaling Function';'Coarsest-Scale Wavelet First Filter Bank'})
hold off
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Audio Datastore

The audio datastore enables you to manage collections of audio data files. For machine or deep
learning, the audio datastore not only manages the flow of audio data from files and folders, the audio
datastore also manages the association of labels with the data and provides the ability to randomly
partition your data into different sets for training, validation, and testing. In this example, use the
audio datastore to manage the GTZAN music genre collection. Recall each subfolder of the collection
is named for the genre it represents. Set the 'IncludeSubFolders' property to true to instruct
the audio datastore to use subfolders and set the 'LabelSource' property to 'foldernames' to
create data labels based on the subfolder names. This example assumes the top-level directory is
inside your MATLAB tempdir directory and is called 'genres'. Ensure that location is the correct
path to the top-level data folder on your machine. The top-level data folder on your machine should
contain ten subfolders each named for the ten genres and must only contain audio files corresponding
to those genres.

location = fullfile(tempdir,'genres');
ads = audioDatastore(location,'IncludeSubFolders',true,...
    'LabelSource','foldernames');

Run the following to obtain a count of the musical genres in the data set.

countEachLabel(ads)

ans=10×2 table
      Label      Count
    _________    _____

    blues         100 
    classical     100 
    country       100 
    disco         100 
    hiphop        100 
    jazz          100 
    metal         100 
    pop           100 
    reggae        100 
    rock          100 

As previously stated, there are 10 genres with 100 files each.

Training and Test Sets

Create training and test sets to develop and test our classifier. We use 80% of the data for training
and hold out the remaining 20% for testing. The shuffle function of the audio datastore randomly
shuffles the data. Do this prior to splitting the data by label to randomize the data. In this example,
we set the random number generator seed for reproducibility. Use the audio datastore
splitEachLabel function to perform the 80-20 split. splitEachLabel ensures that all classes are
equally represented.

rng(100)
ads = shuffle(ads);
[adsTrain,adsTest] = splitEachLabel(ads,0.8);
countEachLabel(adsTrain)

ans=10×2 table
      Label      Count
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    _________    _____

    blues         80  
    classical     80  
    country       80  
    disco         80  
    hiphop        80  
    jazz          80  
    metal         80  
    pop           80  
    reggae        80  
    rock          80  

countEachLabel(adsTest)

ans=10×2 table
      Label      Count
    _________    _____

    blues         20  
    classical     20  
    country       20  
    disco         20  
    hiphop        20  
    jazz          20  
    metal         20  
    pop           20  
    reggae        20  
    rock          20  

You see that there are 800 records in the training data as expected and 200 records in the test data.
Additionally, there are 80 examples of each genre in the training set and 20 examples of each genre
in the test set.

To obtain the scattering features, use a helper function, helperbatchscatfeatures, that obtains
the natural logarithm of the scattering features for 219 samples of each audio file and subsamples the
number of scattering windows by 6. The source code for helperbatchscatfeatures is listed in the
appendix. Wavelet scattering features are computed using a batch size of 64 signals.

If you have Parallel Computing Toolbox™ and a supported GPU, set useGPU to true in the following
code and the scattering transform will be computed using the GPU. Using an NVIDIA Titan V GPU
with a batch size of 64, the scattering features in this example were computed approximately 9 times
faster than using the CPU.

N = 2^19;
batchsize = 64;
scTrain = [];
useGPU = false; % Set to true to use the GPU

while hasdata(adsTrain)
    sc = helperbatchscatfeatures(adsTrain,sn,N,batchsize,useGPU);
    scTrain = cat(3,scTrain,sc);
end

Record the number of time windows in the scattering transform for label creation.
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numTimeWindows = size(scTrain,2);

In this example, there are 43 time windows, or frames, for each scattering path.

Repeat the same feature extraction process for the test data.

scTest = [];

while hasdata(adsTest)
   sc = helperbatchscatfeatures(adsTest,sn,N,batchsize,useGPU);
   scTest = cat(3,scTest,sc); 
end

Determine the number of paths in the scattering network and reshape the training and test features
into 2-D matrices.

[~,npaths] = sn.paths();
Npaths = sum(npaths);
TrainFeatures = permute(scTrain,[2 3 1]);
TrainFeatures = reshape(TrainFeatures,[],Npaths);
TestFeatures = permute(scTest,[2 3 1]);
TestFeatures = reshape(TestFeatures,[],Npaths);

Each row of TrainFeatures and TestFeatures is one scattering time window across the 334
paths in the scattering transform of each audio signal. For each music sample, we have 43 such time
windows. Accordingly, the feature matrix for the training data is 34400-by-334. The number of rows is
equal to the number of training examples (800) multiplied by the number of scattering windows per
example (43). Similarly, the scattering feature matrix for the test data is 8600-by-334. There are 200
test examples and 43 windows per example. Create a genre label for each of the 43 windows in the
wavelet scattering feature matrix for the training data.

trainLabels = adsTrain.Labels;
numTrainSignals = numel(trainLabels);
trainLabels = repmat(trainLabels,1,numTimeWindows);
trainLabels = reshape(trainLabels',numTrainSignals*numTimeWindows,1);

Repeat the process for the test data.

testLabels = adsTest.Labels;
numTestSignals = numel(testLabels);
testLabels = repmat(testLabels,1,numTimeWindows);
testLabels = reshape(testLabels',numTestSignals*numTimeWindows,1);

In this example, use a multi-class support vector machine (SVM) classifier with a cubic polynomial
kernel. Fit the SVM to the training data.

template = templateSVM(...
    'KernelFunction', 'polynomial', ...
    'PolynomialOrder', 3, ...
    'KernelScale', 'auto', ...
    'BoxConstraint', 1, ...
    'Standardize', true);
Classes = {'blues','classical','country','disco','hiphop','jazz',...
    'metal','pop','reggae','rock'};
classificationSVM = fitcecoc(...
    TrainFeatures, ...
    trainLabels, ...
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    'Learners', template, ...
    'Coding', 'onevsone','ClassNames',categorical(Classes));

Test Set Prediction

Use the SVM model fit to the scattering transforms of the training data to predict the music genres
for the test data. Recall there are 43 time windows for each signal in the scattering transform. Use a
simple majority vote to predict the genre. The helper function helperMajorityVote obtains the
mode of the genre labels over all 43 scattering windows. If there is no unique mode,
helperMajorityVote returns a classification error indicated by 'NoUniqueMode'. This results in
an extra column in the confusion matrix. The source code for helperMajorityVote is listed in the
appendix.

predLabels = predict(classificationSVM,TestFeatures);
[TestVotes,TestCounts] = helperMajorityVote(predLabels,adsTest.Labels,categorical(Classes));
testAccuracy = sum(eq(TestVotes,adsTest.Labels))/numTestSignals*100

testAccuracy = 87.5000

The test accuracy, testAccuracy, is approximately 88 percent. This accuracy is comparable with the
state of the art of the GTZAN dataset.

Display the confusion matrix to inspect the genre-by-genre accuracy rates. Recall there are 20
examples in each class.

cm = confusionchart(adsTest.Labels,TestVotes);
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The diagonal of the confusion matrix plot shows that the classification accuracies for the individual
genres is quite good in general. Extract these genre accuracies and plot separately.

cmat = cm.NormalizedValues;
cmat(end,:) = [];
genreAccuracy = diag(cmat)./20*100;
figure
bar(genreAccuracy)
set(gca,'XTickLabels',Classes)
xtickangle(gca,30)
title('Percentage Correct by Genre - Test Set')

Summary

This example demonstrated the use of wavelet time scattering and the audio datastore in music genre
classification. In this example, wavelet time scattering achieved an classification accuracy
comparable to state of the art performance for the GTZAN dataset. As opposed to other approaches
requiring the extraction of a number of time-domain and frequency-domain features, wavelet
scattering only required the specification of a single parameter, the scale of the time invariant. The
audio datastore enabled us to efficiently manage the transfer of a large dataset from disk into
MATLAB and permitted us to randomize the data and accurately retain genre membership of the
randomized data through the classification workflow.
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Appendix -- Supporting Functions

helperMajorityVote -- This function returns the mode of the class labels predicted over a number of
feature vectors. In wavelet time scattering, we obtain a class label for each time window. If no unique
mode is found a label of 'NoUniqueMode' is returned to denote a classification error.

type helperMajorityVote

function [ClassVotes,ClassCounts] = helperMajorityVote(predLabels,origLabels,classes)
% This function is in support of wavelet scattering examples only. It may
% change or be removed in a future release.

% Make categorical arrays if the labels are not already categorical
predLabels = categorical(predLabels);
origLabels = categorical(origLabels);
% Expects both predLabels and origLabels to be categorical vectors
Npred = numel(predLabels);
Norig = numel(origLabels);
Nwin = Npred/Norig;
predLabels = reshape(predLabels,Nwin,Norig);
ClassCounts = countcats(predLabels);
[mxcount,idx] = max(ClassCounts);
ClassVotes = classes(idx);
% Check for any ties in the maximum values and ensure they are marked as
% error if the mode occurs more than once
tmpsum = sum(ClassCounts == mxcount);
ClassVotes(tmpsum > 1) = categorical({'NoUniqueMode'});
ClassVotes = ClassVotes(:);

helperbatchscatfeatures - This function returns the wavelet time scattering feature matrix for a
given input signal. In this case, we use the natural logarithm of the wavelet scattering coefficients.
The scattering feature matrix is computed on 219 samples of a signal. The scattering features are
subsampled by a factor of 6. If useGPU is set to true, the scattering transform is computed on the
GPU.

function sc = helperbatchscatfeatures(ds,sn,N,batchsize,useGPU)
% This function is only intended to support examples in the Wavelet
% Toolbox. It may be changed or removed in a future release.
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% Read batch of data from audio datastore
batch = helperReadBatch(ds,N,batchsize);
if useGPU
    batch = gpuArray(batch);
end

% Obtain scattering features
S = sn.featureMatrix(batch,'transform','log');
gather(batch);
S = gather(S);
    
% Subsample the features
sc = S(:,1:6:end,:);
end

helperReadBatch - This function reads batches of a specified size from a datastore and returns the
output in single precision. Each column of the output is a separate signal from the datastore. The
output may have fewer columns than the batchsize if the datastore does not have enough records.

function batchout = helperReadBatch(ds,N,batchsize)
% This function is only in support of Wavelet Toolbox examples. It may
% change or be removed in a future release.
%
% batchout = readReadBatch(ds,N,batchsize) where ds is the Datastore and
%   ds is the Datastore
%   batchsize is the batchsize

kk = 1;

while(hasdata(ds)) && kk <= batchsize
    tmpRead = read(ds);
    batchout(:,kk) = cast(tmpRead(1:N),'single'); %#ok<AGROW>
    kk = kk+1;
end

end

See Also
waveletScattering

Related Examples
• “Acoustic Scene Recognition Using Late Fusion” on page 13-103
• “Air Compressor Fault Detection Using Wavelet Scattering” on page 13-208
• “Fault Detection Using Wavelet Scattering and Recurrent Deep Networks” on page 13-216

More About
• “Wavelet Scattering” on page 9-2

13 Featured Examples — Machine Learning and Deep Learning

13-34



Wavelet Time Scattering Classification of Phonocardiogram
Data

This example shows how to classify human phonocardiogram (PCG) recordings using wavelet time
scattering and a support vector machine (SVM) classifier. Phonocardiograms are acoustic recordings
of sounds produced by the systolic and diastolic phases of the heart. Auscultation of the heart
continues to play an important diagnostic role in assessing cardiac health. Unfortunately, many areas
of the world lack sufficient numbers of medical personnel trained in heart auscultation. Accordingly, it
is necessary to develop reliable automated ways of interpreting phonocardiogram data.

This example uses wavelet scattering as a feature extractor for PCG classification. In wavelet
scattering, data is propagated through a series of wavelet transforms, nonlinearities, and averaging
to produce low-variance representations of the data. These low-variance representations are then
used as inputs to a classifier. This example is a binary classification problem where each PCG
recording is either "normal" or "abnormal".

Data Description

This example uses phonocardiogram (PCG) data obtained from persons with normal and abnormal
cardiac function. The dataset consists of 3829 recordings, 2575 from persons with normal cardiac
function and 1254 records from persons with abnormal cardiac function. Each recording is 10,000
samples long and is sampled at 2 kHz. This represents five seconds of phonocardiogram data. The
dataset is constructed from the training and validation data used in the PhysioNet Computing in
Cardiology Challenge 2016 [1][2].

Download Data

The first step is to download the data from the GitHub repository. To download the data, click Code
and select Download ZIP. Save the file physionet_phonocardiogram-main.zip in a folder
where you have write permission. The instructions for this example assume you have downloaded the
file to your temporary directory, (tempdir in MATLAB™). Modify the subsequent instructions for
unzipping and loading the data if you choose to download the data in folder different from tempdir.

The file physionet_phonocardiogram-main.zip contains

• PCG_Data.zip
• README.md

and PCG_Data.zip contains

• heartSoundData.mat
• extrafiles.mat
• Modified_physionet_data.txt
• License.txt.

heartSoundData.mat holds the data and class labels used in this example. The .txt file,
Modified_physionet_data.txt, is required by PhysioNet's copying policy and provides the source
attributions for the data as well as a description of how each signal in heartSoundData.mat
corresponds to a file in the original PhysioNet data. extrafiles.mat also contains source file
attributions and is explained in the Modified_physionet_data.txt file. The only file required to run the
example is heartSoundData.mat.
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Load Data

If you followed the download instructions in the previous section, enter the following commands to
unzip the two archive files.

unzip(fullfile(tempdir,'physionet_phonocardiogram-main.zip'),tempdir)
unzip(fullfile(tempdir,'physionet_phonocardiogram-main','PCG_Data.zip'),...
    fullfile(tempdir,'PCG_Data'))

After you unzip the PCG_Data.zip file, load the data into MATLAB.

load(fullfile(tempdir,'PCG_Data','heartSoundData.mat'))

heartSoundData is a structure array with two fields: Data and Classes. Data is a 10000-by-3829
matrix where each column is an PCG recording. Classes is a 3829-by-1 categorical array of
diagnostic labels, one for each column of Data. Because this is a binary classification problem, the
classes are "normal" and "abnormal". As previously stated, there are 2575 normal records and 1254
abnormal records. Equivalently, 67.25% of the examples in the data are from persons with normal
cardiac function while 32.75% are from persons with abnormal cardiac function. You can verify this
by entering:

summary(heartSoundData.Classes)

     normal        2575 
     abnormal      1254 

countcats(heartSoundData.Classes)./sum(countcats(heartSoundData.Classes))

ans = 2×1

    0.6725
    0.3275

Wavelet Scattering Network

Use waveletScattering to construct a wavelet time scattering network. Set the invariant scale to
match the signal length. The default scattering network has two wavelet transforms (filter banks).
The first wavelet filter bank has eight wavelets per octave. The second filter bank has one wavelet per
octave. Set the 'OptimizePath' property to true.

N = 1e4;
sn = waveletScattering('SignalLength',N,'InvarianceScale',N,'OptimizePath',true);

Create Training and Test Sets

The helper function, partition_heartsounds, partitions the 3829 observations so that 70% (2680)
are in the training set with 1802 normal and 878 abnormal. The remaining 1149 records (773 normal
and 376 abnormal) are held out in the test set for prediction. The random number generator is
seeded inside of the helper function so the results are repeatable. The code for
partition_heartsounds and all other helper functions used in this example is given in the
Supporting Functions section at the end of the example.

[trainData, testData, trainLabels, testLabels] = ...
    partition_heartsounds(70,heartSoundData.Data,heartSoundData.Classes);

You can check the numbers of each class in the training and test sets.
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summary(trainLabels)

     normal        1802 
     abnormal       878 

summary(testLabels)

     normal        773 
     abnormal      376 

Note that the training and test sets have been partitioned so that the proportion of "normal" and
"abnormal" records in the training and test sets are the same as their proportions in the overall data.
You can confirm this with the following.

countcats(trainLabels)./sum(countcats(trainLabels))

ans = 2×1

    0.6724
    0.3276

countcats(testLabels)./sum(countcats(testLabels))

ans = 2×1

    0.6728
    0.3272

Scattering Features

Obtain the scattering transform of all 2680 recordings in the training set. For multivariate time
series, the scattering transform assumes each column is a separate signal. Use the 'log' option to
obtain the natural logarithm of the scattering coefficients.

scat_features_train = featureMatrix(sn,trainData,'Transform','log');

For the given scattering parameters, scat_features_train is a 279-by-5-by-2680 matrix. There
are 279 scattering paths and five scattering windows for each of the 2680 signals. In order to pass
this to the SVM classifier, reshape the tensor into a 13400-by-279 matrix where each row represents
a single scattering window across the 279 scattering paths. The total number of rows is equal to the
product of 5 and 2680 (number of recordings in the training data).

Nseq = size(scat_features_train,2);
scat_features_train = permute(scat_features_train,[2 3 1]);
scat_features_train = reshape(scat_features_train,...
    size(scat_features_train,1)*size(scat_features_train,2),[]);

Repeat the process for the test data.

scat_features_test = featureMatrix(sn,testData,'Transform','log');
scat_features_test = permute(scat_features_test,[2 3 1]);
scat_features_test = reshape(scat_features_test,...
    size(scat_features_test,1)*size(scat_features_test,2),[]);

Here we replicate the labels so that we have a label for each scattering time window.
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[sequence_labels_train,sequence_labels_test] = ...
    createSequenceLabels_heartsounds(Nseq,trainLabels,testLabels);

Fit the SVM to the training data. In this example, we use a cubic polynomial kernel. After fitting the
SVM to the training data, we perform a 5-fold cross-validation to estimate the generalization error on
the training data. Here each scattering window is classified separately.

rng default;
classificationSVM = fitcsvm(...
    scat_features_train, ...
    sequence_labels_train , ...
    'KernelFunction', 'polynomial', ...
    'PolynomialOrder', 3, ...
    'KernelScale', 'auto', ...
    'BoxConstraint', 1, ...
    'Standardize', true, ...
    'ClassNames', categorical({'normal','abnormal'}));
kfoldmodel = crossval(classificationSVM, 'KFold', 5);

Compute the loss as a percentage and display the confusion matrix.

predLabels = kfoldPredict(kfoldmodel);
loss = kfoldLoss(kfoldmodel)*100;
fprintf('Loss is %2.2f percent\n',loss);

Loss is 0.96 percent

accuracy = 100-loss;
fprintf('Accuracy is %2.2f percent\n',accuracy);

Accuracy is 99.04 percent

confmatCV = confusionchart(sequence_labels_train,predLabels);
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Note that the scattering network results in approximately 99 percent accuracy when each time
window is classified separately. However, the performance is actually better than this value because
we have five scattering windows per recording and the 99 percent accuracy is based on classifying all
windows separately. In this case, use a majority vote to obtain a single class assignment per
recording. The class vote corresponds to the mode of the votes for the five windows. If no unique
mode is found, helperMajorityVote classifies that set of scattering windows as 'NoUniqueMode'
to indicate a classification error. This results in an extra column in the confusion matrix.

classes = categorical({'abnormal','normal'});
ClassVotes = helperMajorityVote(predLabels,trainLabels,classes);
CVaccuracy = sum(eq(ClassVotes,trainLabels))./numel(trainLabels)*100;
fprintf('The true cross-validation accuracy is %2.2f percent.\n',CVaccuracy);

The true cross-validation accuracy is 99.89 percent.

Display the confusion matrix for the majority vote classifications.

cmCV = confusionchart(trainLabels,ClassVotes);
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The cross-validation accuracy on the training data is actually 99.89 percent. There are two normal
records, which are misclassified as abnormal. One abnormal record is classified as normal.

Use the SVM model fit to the training data to make class predictions on the held-out test data.

predTestLabels = predict(classificationSVM,scat_features_test);

Determine the accuracy of the predictions on the test set using a majority vote.

ClassVotes = helperMajorityVote(predTestLabels,testLabels,classes);
testaccuracy = sum(eq(ClassVotes,testLabels))./numel(testLabels)*100;
fprintf('The test accuracy is %2.2f percent.\n',testaccuracy);

The test accuracy is 91.82 percent.

cmTest = confusionchart(testLabels,ClassVotes);
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Of the 1149 test records, approximately 92% are correctly classified as "Normal" or "Abnormal". Of
the 773 normal PCG recordings in the test set, 732 are correctly classified. Of the 376 abnormal
recordings in the test set, 323 are correctly classified.

Precision, Recall, and F1 Score

In a classification task, the precision for a class is the number of correct positive results divided by
the number of positive results. In other words, of all the records that the classifier assigns a given
label, what proportion actually belong to the class. Recall is defined as the number of correct labels
divided by the number of labels for a given class. Specifically, of all the records belonging to a class,
what proportion did our classifier label as that class. In judging the accuracy your classifier, you
ideally want to do well on both precision and recall. For example, suppose we had a classifier that
labeled every PCG recording as abnormal. Then our recall for the abnormal class would be 100%. All
records belonging to the abnormal class would be labeled abnormal. However, the precision would be
low. Because our classifier labeled all records as abnormal, there would be 2575 false positives in this
case for a precision of 1254/3829, or 32.75%. The F1 score is the harmonic mean of precision and
recall and provides a single metric that summarizes the classifier performance in terms of both recall
and precision. The helper function, helperF1heartSounds, computes the precision, recall, and F1
scores for the classification results on the test set and returns those results in a table.

PRTable = helperF1heartSounds(cmTest.NormalizedValues);
disp(PRTable)

                Precision    Recall    F1_Score
                _________    ______    ________
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    Abnormal     88.736      85.904     87.297 
    Normal       93.248      94.696     93.967 

In this case, the F1 scores for the abnormal and normal groups confirm that our model has both good
precision and recall. In binary classification it is simple to determine both precision and recall
directly from the confusion matrix. To see this, plot the confusion matrix again for convenience.

cmTest = confusionchart(testLabels,ClassVotes);

The recall for the abnormal class is the number of abnormal records identified as abnormal, which is
the entry in the second row and second column of the confusion matrix divided by the sum of entries
in the second row. Precision for the abnormal class is the proportion of true abnormal records in the
total number identified as abnormal by the classifier. That corresponds to the entry in the second row
and second column of the confusion matrix divided by the sum of entries in the second column. The
F1 score is the harmonic mean of the two.

RecallAbnormal = cmTest.NormalizedValues(2,2)/sum(cmTest.NormalizedValues(2,:));
PrecisionAbnormal = cmTest.NormalizedValues(2,2)/sum(cmTest.NormalizedValues(:,2));
F1Abnormal = harmmean([RecallAbnormal PrecisionAbnormal]);
fprintf('RecallAbnormal = %2.3f\nPrecisionAbnormal = %2.3f\nF1Abnormal = %2.3f\n',...
    100*RecallAbnormal,100*PrecisionAbnormal,100*F1Abnormal);

RecallAbnormal = 85.904
PrecisionAbnormal = 88.736
F1Abnormal = 87.297

Repeat the above for the normal class.
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RecallNormal = cmTest.NormalizedValues(1,1)/sum(cmTest.NormalizedValues(1,:));
PrecisionNormal = cmTest.NormalizedValues(1,1)/sum(cmTest.NormalizedValues(:,1));
F1Normal = harmmean([RecallNormal PrecisionNormal]);
fprintf('RecallNormal = %2.3f\nPrecisionNormal = %2.3f\nF1Normal = %2.3f\n',...
    100*RecallNormal,100*PrecisionNormal,100*F1Normal);

RecallNormal = 94.696
PrecisionNormal = 93.248
F1Normal = 93.967

Summary

This example used wavelet time scattering to robustly identify human phonocardiogram recordings as
normal or abnormal in a binary classification problem. Wavelet scattering required only the
specification of a single parameter, the length of the scale invariant, in order to produce low-variance
representations of the PCG data that enabled the support vector machine classifier to accurately
model the difference between the two groups. The support vector machine classifier with wavelet
scattering was able to achieve superior performance in both precision and recall for both groups in
spite of significantly unbalanced numbers of normal and abnormal PCG recordings in both the
training and test set.
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Supporting Functions

partition_heartsounds creates training and test sets consisting of specified proportions of the
data. The function also preserves the proportion of abnormal and normal PCG recordings in each set.

function [trainData, testData, trainLabels, testLabels] = partition_heartsounds(percent_train_split,Data,Labels)
% This function is only in support of the Wavelet Time Scattering 
% Classification of Phonocardiogram Data example. It may change or be
% removed in a future release.

% Labels in heart sound data are not sequential.
percent_train_split = percent_train_split/100;
% Each column is an observation
NormalData = Data(:,Labels == 'normal');
AbnormalData = Data(:,Labels == 'abnormal');
LabelsNormal = Labels(Labels == 'normal');
LabelsAbnormal = Labels(Labels == 'abnormal');
Nnormal = size(NormalData,2);
Nabnormal = size(AbnormalData,2);
num_train_normal = round(percent_train_split*Nnormal);
num_train_abnormal = round(percent_train_split*Nabnormal);
rng default;
Pnormal = randperm(Nnormal,num_train_normal);
Pabnormal = randperm(Nabnormal,num_train_abnormal);
notPnormal = setdiff(1:Nnormal,Pnormal);
notPabnormal = setdiff(1:Nabnormal,Pabnormal);
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trainNormalData = NormalData(:,Pnormal);
trainNormalLabels = LabelsNormal(Pnormal);
trainAbnormalData = AbnormalData(:,Pabnormal);
trainAbnormalLabels = LabelsAbnormal(Pabnormal);
testNormalData = NormalData(:,notPnormal);
testNormalLabels = LabelsNormal(notPnormal);
testAbnormalData = AbnormalData(:,notPabnormal);
testAbnormalLabels = LabelsAbnormal(notPabnormal);
trainData = [trainNormalData trainAbnormalData];
trainData = (trainData-mean(trainData))./std(trainData,1);
trainLabels = [trainNormalLabels;  trainAbnormalLabels];
testData = [testNormalData  testAbnormalData];
testData = (testData-mean(testData))./std(testData,1);
testLabels = [testNormalLabels; testAbnormalLabels];
   
end

createSequenceLabels_heartsounds creates class labels for the wavelet time scattering
sequences.

function [sequence_labels_train,sequence_labels_test] = createSequenceLabels_heartsounds(Nseq,trainLabels,testLabels)
% This function is only in support of the Wavelet Time Scattering 
% Classification of Phonocardiogram Data example. It may change or be
% removed in a future release.
Ntrain = numel(trainLabels);
trainLabels = repmat(trainLabels',Nseq,1);
sequence_labels_train = reshape(trainLabels,Nseq*Ntrain,1);
Ntest = numel(testLabels);
testLabels = repmat(testLabels',Nseq,1);
sequence_labels_test = reshape(testLabels,Ntest*Nseq,1);
end

helperMajorityVote implements a majority vote for a classification based on the mode. If no
unique mode is present, a vote of NoUniqueMode is returned to ensure a classification error is
recorded.

function [ClassVotes,ClassCounts] = helperMajorityVote(predLabels,origLabels,classes)
% This function is in support of Wavelet Toolbox examples. It may
% change or be removed in a future release.

% Make categorical arrays if the labels are not already categorical
predLabels = categorical(predLabels);
origLabels = categorical(origLabels);
% Expects both predLabels and origLabels to be categorical vectors
Npred = numel(predLabels);
Norig = numel(origLabels);
Nwin = Npred/Norig;
predLabels = reshape(predLabels,Nwin,Norig);
ClassCounts = countcats(predLabels);
[mxcount,idx] = max(ClassCounts);
ClassVotes = classes(idx);
% Check for any ties in the maximum values and ensure they are marked as
% error if the mode occurs more than once
modecnt = modecount(ClassCounts,mxcount);
ClassVotes(modecnt>1) = categorical({'NoUniqueMode'});
ClassVotes = ClassVotes(:);

%-------------------------------------------------------------------------
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function modecnt = modecount(ClassCounts,mxcount)
modecnt = Inf(size(ClassCounts,2),1);
for nc = 1:size(ClassCounts,2)
    modecnt(nc) = histc(ClassCounts(:,nc),mxcount(nc));
end

end

% EOF
end

helperF1heartSounds calculate precision, recall, and F1 scores for the classifier results.

function PRTable = helperF1heartSounds(confmat)
% This function is only in support of the Wavelet Time Scattering 
% Classification of Phonocardiogram Data example. It may change or be
% removed in a future release.

precisionAB = confmat(2,2)/sum(confmat(:,2))*100;
precisionNR = confmat(1,1)/sum(confmat(:,1))*100 ;
recallAB = confmat(2,2)/sum(confmat(2,:))*100;
recallNR = confmat(1,1)/sum(confmat(1,:))*100;
F1AB = 2*(precisionAB*recallAB)/(precisionAB+recallAB);
F1NR = 2*(precisionNR*recallNR)/(precisionNR+recallNR);
% Construct a MATLAB Table to display the results.
PRTable = array2table([precisionAB recallAB F1AB;...
    precisionNR recallNR F1NR],...
    'VariableNames',{'Precision','Recall','F1_Score'},'RowNames',...
    {'Abnormal','Normal'});

end

See Also
waveletScattering

Related Examples
• “Acoustic Scene Recognition Using Late Fusion” on page 13-103
• “Fault Detection Using Wavelet Scattering and Recurrent Deep Networks” on page 13-216

More About
• “Wavelet Scattering” on page 9-2
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Wavelet Time Scattering with GPU Acceleration — Spoken Digit
Recognition

This example shows how to accelerate the computation of wavelet scattering features using
gpuArray (Parallel Computing Toolbox). You must have Parallel Computing Toolbox™ and a
supported GPU. See “GPU Support by Release” (Parallel Computing Toolbox) for details. This example
uses an NVIDIA Titan V GPU with compute capability 7.0. The section of the example that computes
the scattering transform provides the option to use the GPU or CPU if you wish to compare GPU vs
CPU performance.

This example reproduces the exclusively CPU version of the scattering transform found in “Spoken
Digit Recognition with Wavelet Scattering and Deep Learning” on page 13-53.

Data

Clone or download the Free Spoken Digit Dataset (FSDD), available at https://github.com/
Jakobovski/free-spoken-digit-dataset. FSDD is an open data set, which means that it can
grow over time. This example uses the version committed on 08/20/2020 which consists of 3000
recordings of the English digits 0 through 9 obtained from six speakers. The data is sampled at 8000
Hz.

Use audioDatastore to manage data access and ensure random division of the recordings into
training and test sets. Set the location property to the location of the FSDD recordings folder on
your computer. In this example, the data is stored in a folder under tempdir.

location = fullfile(tempdir,'free-spoken-digit-dataset','recordings');
ads = audioDatastore(location);

The helper function, helpergenLabels, defined at the end of this example, creates a categorical
array of labels from the FSDD files. List the classes and the number of examples in each class.

ads.Labels = helpergenLabels(ads);
summary(ads.Labels)

     0      300 
     1      300 
     2      300 
     3      300 
     4      300 
     5      300 
     6      300 
     7      300 
     8      300 
     9      300 

The FSDD dataset consists of 10 balanced classes with 300 recordings each. The recordings in the
FSDD are not of equal duration. Read through the FSDD files and construct a histogram of the signal
lengths.

LenSig = zeros(numel(ads.Files),1);
nr = 1;
while hasdata(ads)
    digit = read(ads);
    LenSig(nr) = numel(digit);
    nr = nr+1;
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end
reset(ads)
histogram(LenSig)
grid on
xlabel('Signal Length (Samples)')
ylabel('Frequency')

The histogram shows that the distribution of recording lengths is positively skewed. For classification,
this example uses a common signal length of 8192 samples. The value 8192, a conservative choice,
ensures that truncating longer recordings does not affect (cut off) the speech content. If the signal is
greater than 8192 samples, or 1.024 seconds, in length, the recording is truncated to 8192 samples.
If the signal is less than 8192 samples in length, the signal is symmetrically prepended and appended
with zeros out to a length of 8192 samples.

Wavelet Time Scattering

Create a wavelet time scattering network using an invariant scale of 0.22 seconds. Because the
feature vectors will be created by averaging the scattering transform over all time samples, set the
OversamplingFactor to 2. Setting the value to 2 will result in a four-fold increase in the number of
scattering coefficients for each path with respect to the critically downsampled value.

sn = waveletScattering('SignalLength',8192,'InvarianceScale',0.22,...
    'SamplingFrequency',8000,'OversamplingFactor',2);

The settings of the scattering network results in 326 paths. You can verify this with the following
code.
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[~,npaths] = paths(sn);
sum(npaths)

ans = 326

Split the FSDD into training and test sets. Allocate 80% of the data to the training set and retain 20%
for the test set. The training data is for training the classifier based on the scattering transform. The
test data is for assessing the model's ability to generalize to unseen data.

rng default;
ads = shuffle(ads);
[adsTrain,adsTest] = splitEachLabel(ads,0.8);
summary(adsTrain.Labels)

     0      240 
     1      240 
     2      240 
     3      240 
     4      240 
     5      240 
     6      240 
     7      240 
     8      240 
     9      240 

summary(adsTest.Labels)

     0      60 
     1      60 
     2      60 
     3      60 
     4      60 
     5      60 
     6      60 
     7      60 
     8      60 
     9      60 

Form a 8192-by-2400 matrix where each column is a spoken-digit recording. The helper function
helperReadSPData truncates or pads the data to length 8192 and normalizes each record by its
maximum value. The helper function casts the data to single precision.

Xtrain = [];
scatds_Train = transform(adsTrain,@(x)helperReadSPData(x));
while hasdata(scatds_Train)
    smat = read(scatds_Train);
    Xtrain = cat(2,Xtrain,smat);
    
end

Repeat the process for the held-out test set. The resulting matrix is 8192-by-600.

Xtest = [];
scatds_Test = transform(adsTest,@(x)helperReadSPData(x));
while hasdata(scatds_Test)
    smat = read(scatds_Test);
    Xtest = cat(2,Xtest,smat);
    
end
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Apply the scattering transform to the training and test sets. Move both the training and test data sets
to the GPU using gpuArray. The use of gpuArray with a CUDA-enabled NVIDIA GPU provides a
significant acceleration. With this scattering network, batch size, and GPU, the GPU implementation
computes the scattering features approximately 15 times faster than the CPU version. If you do not
wish to use the GPU, set useGPU to false. You can also alternate the value of useGPU to compare
GPU vs CPU performance.

useGPU = ;
if useGPU
    Xtrain = gpuArray(Xtrain);
    Strain = sn.featureMatrix(Xtrain);
    Xtrain = gather(Xtrain);
    Xtest = gpuArray(Xtest);
    Stest = sn.featureMatrix(Xtest);
    Xtest = gather(Xtest);
else
    Strain = sn.featureMatrix(Xtrain);
    Stest = sn.featureMatrix(Xtest);
end

Obtain the scattering features for the training and test sets.

TrainFeatures = Strain(2:end,:,:);
TrainFeatures = squeeze(mean(TrainFeatures,2))';
TestFeatures = Stest(2:end,:,:);
TestFeatures = squeeze(mean(TestFeatures,2))';

This example uses a support vector machine (SVM) classifier with a quadratic polynomial kernel. Fit
the SVM model to the scattering features.

template = templateSVM(...
    'KernelFunction', 'polynomial', ...
    'PolynomialOrder', 2, ...
    'KernelScale', 'auto', ...
    'BoxConstraint', 1, ...
    'Standardize', true);
classificationSVM = fitcecoc(...
    TrainFeatures, ...
    adsTrain.Labels, ...
    'Learners', template, ...
    'Coding', 'onevsone', ...
    'ClassNames', categorical({'0'; '1'; '2'; '3'; '4'; '5'; '6'; '7'; '8'; '9'}));

Use k-fold cross-validation to predict the generalization accuracy of the model. Split the training set
into five groups for cross-validation.

partitionedModel = crossval(classificationSVM, 'KFold', 5);
[validationPredictions, validationScores] = kfoldPredict(partitionedModel);
validationAccuracy = (1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError'))*100

validationAccuracy = 97.2500

The estimated generalization accuracy is approximately 97%. Now use the SVM model to predict the
held-out test set.

predLabels = predict(classificationSVM,TestFeatures);
testAccuracy = sum(predLabels==adsTest.Labels)/numel(predLabels)*100
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testAccuracy = 97

The accuracy is also approximately 97% on the held-out test set.

Summarize the performance of the model on the test set with a confusion chart. Display the precision
and recall for each class by using column and row summaries. The table at the bottom of the
confusion chart shows the precision values for each class. The table to the right of the confusion
chart shows the recall values.

figure('Units','normalized','Position',[0.2 0.2 0.5 0.5]);
ccscat = confusionchart(adsTest.Labels,predLabels);
ccscat.Title = 'Wavelet Scattering Classification';
ccscat.ColumnSummary = 'column-normalized';
ccscat.RowSummary = 'row-normalized';

As a final example, read the first two records from the dataset, calculate the scattering features, and
predict the spoken digit using the SVM trained with scattering features.

reset(ads);
sig1 = helperReadSPData(read(ads));
scat1 = sn.featureMatrix(sig1);
scat1 = mean(scat1(2:end,:),2)';
plab1 = predict(classificationSVM,scat1);

Read the next record and predict the digit.

sig2 = helperReadSPData(read(ads));
scat2 = sn.featureMatrix(sig2);
scat2 = mean(scat2(2:end,:),2)';
plab2 = predict(classificationSVM,scat2);
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t = 0:1/8000:(8192*1/8000)-1/8000;
plot(t,[sig1 sig2])
grid on
axis tight
legend(char(plab1),char(plab2))
title('Spoken Digit Prediction - GPU')

Appendix

The following helper functions are used in this example.

helpergenLabels — generates labels based on the file names in the FSDD.

function Labels = helpergenLabels(ads)
% This function is only for use in Wavelet Toolbox examples. It may be
% changed or removed in a future release.
tmp = cell(numel(ads.Files),1);
expression = "[0-9]+_";
for nf = 1:numel(ads.Files)
    idx = regexp(ads.Files{nf},expression);
    tmp{nf} = ads.Files{nf}(idx);
end
Labels = categorical(tmp);

end

helperReadSPData — Ensures that each spoken-digit recording is 8192 samples long.

function x = helperReadSPData(x)
% This function is only for use Wavelet Toolbox examples. It may change or
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% be removed in a future release.
N = numel(x);
if N > 8192
    x = x(1:8192);
elseif N < 8192
    pad = 8192-N;
    prepad = floor(pad/2);
    postpad = ceil(pad/2);
    x = [zeros(prepad,1) ; x ; zeros(postpad,1)];
end
x = single(x./max(abs(x)));

end

See Also
waveletScattering

Related Examples
• “Air Compressor Fault Detection Using Wavelet Scattering” on page 13-208
• “Acoustic Scene Recognition Using Late Fusion” on page 13-103

More About
• “Wavelet Scattering” on page 9-2
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Spoken Digit Recognition with Wavelet Scattering and Deep
Learning

This example shows how to classify spoken digits using both machine and deep learning techniques.
In the example, you perform classification using wavelet time scattering with a support vector
machine (SVM) and with a long short-term memory (LSTM) network. You also apply Bayesian
optimization to determine suitable hyperparameters to improve the accuracy of the LSTM network. In
addition, the example illustrates an approach using a deep convolutional neural network (CNN) and
mel-frequency spectrograms.

Data

Clone or download the Free Spoken Digit Dataset (FSDD), available at https://github.com/Jakobovski/
free-spoken-digit-dataset. FSDD is an open data set, which means that it can grow over time. This
example uses the version committed on January 29, 2019, which consists of 2000 recordings in
English of the digits 0 through 9 obtained from four speakers. In this version, two of the speakers are
native speakers of American English, one speaker is a nonnative speaker of English with a Belgian
French accent, and one speaker is a nonnative speaker of English with a German accent. The data is
sampled at 8000 Hz.

Use audioDatastore to manage data access and ensure the random division of the recordings into
training and test sets. Set the location property to the location of the FSDD recordings folder on
your computer, for example:

pathToRecordingsFolder = fullfile(tempdir,'free-spoken-digit-dataset-master','recordings');
location = pathToRecordingsFolder;

Point audioDatastore to that location.

ads = audioDatastore(location);

The helper function helpergenLabels creates a categorical array of labels from the FSDD files. The
source code for helpergenLabels is listed in the appendix. List the classes and the number of
examples in each class.

ads.Labels = helpergenLabels(ads);
summary(ads.Labels)

     0      300 
     1      300 
     2      300 
     3      300 
     4      300 
     5      300 
     6      300 
     7      300 
     8      300 
     9      300 

The FSDD data set consists of 10 balanced classes with 200 recordings each. The recordings in the
FSDD are not of equal duration. The FSDD is not prohibitively large, so read through the FSDD files
and construct a histogram of the signal lengths.

LenSig = zeros(numel(ads.Files),1);
nr = 1;
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while hasdata(ads)
    digit = read(ads);
    LenSig(nr) = numel(digit);
    nr = nr+1;
end
reset(ads)
histogram(LenSig)
grid on
xlabel('Signal Length (Samples)')
ylabel('Frequency')

The histogram shows that the distribution of recording lengths is positively skewed. For classification,
this example uses a common signal length of 8192 samples, a conservative value that ensures that
truncating longer recordings does not cut off speech content. If the signal is greater than 8192
samples (1.024 seconds) in length, the recording is truncated to 8192 samples. If the signal is less
than 8192 samples in length, the signal is prepadded and postpadded symmetrically with zeros out to
a length of 8192 samples.
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Wavelet Time Scattering

Use waveletScattering to create a wavelet time scattering framework using an invariant scale of
0.22 seconds. In this example, you create feature vectors by averaging the scattering transform over
all time samples. To have a sufficient number of scattering coefficients per time window to average,
set OversamplingFactor to 2 to produce a four-fold increase in the number of scattering
coefficients for each path with respect to the critically downsampled value.

sf = waveletScattering('SignalLength',8192,'InvarianceScale',0.22,...
    'SamplingFrequency',8000,'OversamplingFactor',2);

Split the FSDD into training and test sets. Allocate 80% of the data to the training set and retain 20%
for the test set. The training data is for training the classifier based on the scattering transform. The
test data is for validating the model.

rng default;
ads = shuffle(ads);
[adsTrain,adsTest] = splitEachLabel(ads,0.8);
countEachLabel(adsTrain)

ans=10×2 table
    Label    Count
    _____    _____

      0       240 
      1       240 
      2       240 
      3       240 
      4       240 
      5       240 
      6       240 
      7       240 
      8       240 
      9       240 

countEachLabel(adsTest)

ans=10×2 table
    Label    Count
    _____    _____

      0       60  
      1       60  
      2       60  
      3       60  
      4       60  
      5       60  
      6       60  
      7       60  
      8       60  
      9       60  

The helper function helperReadSPData truncates or pads the data to a length of 8192 and
normalizes each recording by its maximum value. The source code for helperReadSPData is listed
in the appendix. Create an 8192-by-1600 matrix where each column is a spoken-digit recording.
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Xtrain = [];
scatds_Train = transform(adsTrain,@(x)helperReadSPData(x));
while hasdata(scatds_Train)
    smat = read(scatds_Train);
    Xtrain = cat(2,Xtrain,smat);
    
end

Repeat the process for the test set. The resulting matrix is 8192-by-400.

Xtest = [];
scatds_Test = transform(adsTest,@(x)helperReadSPData(x));
while hasdata(scatds_Test)
    smat = read(scatds_Test);
    Xtest = cat(2,Xtest,smat);
    
end

Apply the wavelet scattering transform to the training and test sets.

Strain = sf.featureMatrix(Xtrain);
Stest = sf.featureMatrix(Xtest);

Obtain the mean scattering features for the training and test sets. Exclude the zeroth-order
scattering coefficients.

TrainFeatures = Strain(2:end,:,:);
TrainFeatures = squeeze(mean(TrainFeatures,2))';
TestFeatures = Stest(2:end,:,:);
TestFeatures = squeeze(mean(TestFeatures,2))';

SVM Classifier

Now that the data has been reduced to a feature vector for each recording, the next step is to use
these features for classifying the recordings. Create an SVM learner template with a quadratic
polynomial kernel. Fit the SVM to the training data.

template = templateSVM(...
    'KernelFunction', 'polynomial', ...
    'PolynomialOrder', 2, ...
    'KernelScale', 'auto', ...
    'BoxConstraint', 1, ...
    'Standardize', true);
classificationSVM = fitcecoc(...
    TrainFeatures, ...
    adsTrain.Labels, ...
    'Learners', template, ...
    'Coding', 'onevsone', ...
    'ClassNames', categorical({'0'; '1'; '2'; '3'; '4'; '5'; '6'; '7'; '8'; '9'}));

Use k-fold cross-validation to predict the generalization accuracy of the model based on the training
data. Split the training set into five groups.

partitionedModel = crossval(classificationSVM, 'KFold', 5);
[validationPredictions, validationScores] = kfoldPredict(partitionedModel);
validationAccuracy = (1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError'))*100

validationAccuracy = 97.4167
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The estimated generalization accuracy is approximately 97%. Use the trained SVM to predict the
spoken-digit classes in the test set.

predLabels = predict(classificationSVM,TestFeatures);
testAccuracy = sum(predLabels==adsTest.Labels)/numel(predLabels)*100

testAccuracy = 97.1667

Summarize the performance of the model on the test set with a confusion chart. Display the precision
and recall for each class by using column and row summaries. The table at the bottom of the
confusion chart shows the precision values for each class. The table to the right of the confusion
chart shows the recall values.

figure('Units','normalized','Position',[0.2 0.2 0.5 0.5]);
ccscat = confusionchart(adsTest.Labels,predLabels);
ccscat.Title = 'Wavelet Scattering Classification';
ccscat.ColumnSummary = 'column-normalized';
ccscat.RowSummary = 'row-normalized';

The scattering transform coupled with a SVM classifier classifies the spoken digits in the test set with
an accuracy of 98% (or an error rate of 2%).

Long Short-Term Memory (LSTM) Networks

An LSTM network is a type of recurrent neural network (RNN). RNNs are neural networks that are
specialized for working with sequential or temporal data such as speech data. Because the wavelet
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scattering coefficients are sequences, they can be used as inputs to an LSTM. By using scattering
features as opposed to the raw data, you can reduce the variability that your network needs to learn.

Modify the training and testing scattering features to be used with the LSTM network. Exclude the
zeroth-order scattering coefficients and convert the features to cell arrays.

TrainFeatures = Strain(2:end,:,:);
TrainFeatures = squeeze(num2cell(TrainFeatures,[1 2]));
TestFeatures = Stest(2:end,:,:);
TestFeatures = squeeze(num2cell(TestFeatures, [1 2]));

Construct a simple LSTM network with 512 hidden layers.

[inputSize, ~] = size(TrainFeatures{1});
YTrain = adsTrain.Labels;

numHiddenUnits = 512;
numClasses = numel(unique(YTrain));

layers = [ ...
    sequenceInputLayer(inputSize)
    lstmLayer(numHiddenUnits,'OutputMode','last')
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Set the hyperparameters. Use Adam optimization and a mini-batch size of 50. Set the maximum
number of epochs to 300. Use a learning rate of 1e-4. You can turn off the training progress plot if
you do not want to track the progress using plots. The training uses a GPU by default if one is
available. Otherwise, it uses a CPU. For more information, see trainingOptions (Deep Learning
Toolbox).

maxEpochs = 300;
miniBatchSize = 50;

options = trainingOptions('adam', ...
    'InitialLearnRate',0.0001,...
    'MaxEpochs',maxEpochs, ...
    'MiniBatchSize',miniBatchSize, ...
    'SequenceLength','shortest', ...
    'Shuffle','every-epoch',...
    'Verbose', false, ...
    'Plots','training-progress');

Train the network.

net = trainNetwork(TrainFeatures,YTrain,layers,options);

predLabels = classify(net,TestFeatures);
testAccuracy = sum(predLabels==adsTest.Labels)/numel(predLabels)*100

testAccuracy = 96.3333

Bayesian Optimization

Determining suitable hyperparameter settings is often one of the most difficult parts of training a
deep network. To mitigate this, you can use Bayesian optimization. In this example, you optimize the
number of hidden layers and the initial learning rate by using Bayesian techniques. Create a new
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directory to store the MAT-files containing information about hyperparameter settings and the
network along with the corresponding error rates.

YTrain = adsTrain.Labels;
YTest = adsTest.Labels;

if ~exist("results/",'dir')
    mkdir results
end

Initialize the variables to be optimized and their value ranges. Because the number of hidden layers
must be an integer, set 'type' to 'integer'.

optVars = [
    optimizableVariable('InitialLearnRate',[1e-5, 1e-1],'Transform','log')
    optimizableVariable('NumHiddenUnits',[10, 1000],'Type','integer')
    ];

Bayesian optimization is computationally intensive and can take several hours to finish. For the
purposes of this example, set optimizeCondition to false to download and use predetermined
optimized hyperparameter settings. If you set optimizeCondition to true, the objective function
helperBayesOptLSTM is minimized using Bayesian optimization. The objective function, listed in the
appendix, is the error rate of the network given specific hyperparameter settings. The loaded settings
are for the objective function minimum of 0.02 (2% error rate).

ObjFcn = helperBayesOptLSTM(TrainFeatures,YTrain,TestFeatures,YTest);

optimizeCondition = false;
if optimizeCondition
    BayesObject = bayesopt(ObjFcn,optVars,...
            'MaxObjectiveEvaluations',15,...
            'IsObjectiveDeterministic',false,...
            'UseParallel',true);
else
    url = 'http://ssd.mathworks.com/supportfiles/audio/SpokenDigitRecognition.zip';
    downloadNetFolder = tempdir;
    netFolder = fullfile(downloadNetFolder,'SpokenDigitRecognition');
    if ~exist(netFolder,'dir')
        disp('Downloading pretrained network (1 file - 12 MB) ...')
        unzip(url,downloadNetFolder)
    end
    load(fullfile(netFolder,'0.02.mat'));
end

Downloading pretrained network (1 file - 12 MB) ...

If you perform Bayesian optimization, figures similar to the following are generated to track the
objective function values with the corresponding hyperparameter values and the number of
iterations. You can increase the number of Bayesian optimization iterations to ensure that the global
minimum of the objective function is reached.
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Use the optimized values for the number of hidden units and initial learning rate and retrain the
network.

numHiddenUnits = 768;
numClasses = numel(unique(YTrain));

layers = [ ...
    sequenceInputLayer(inputSize)
    lstmLayer(numHiddenUnits,'OutputMode','last')
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

maxEpochs = 300;
miniBatchSize = 50;

options = trainingOptions('adam', ...
    'InitialLearnRate',2.198827960269379e-04,...
    'MaxEpochs',maxEpochs, ...
    'MiniBatchSize',miniBatchSize, ...
    'SequenceLength','shortest', ...
    'Shuffle','every-epoch',...
    'Verbose', false, ...
    'Plots','training-progress');

net = trainNetwork(TrainFeatures,YTrain,layers,options);
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predLabels = classify(net,TestFeatures);
testAccuracy = sum(predLabels==adsTest.Labels)/numel(predLabels)*100

testAccuracy = 97.5000

As the plot shows, using Bayesian optimization yields an LSTM with a higher accuracy.

Deep Convolutional Network Using Mel-Frequency Spectrograms

As another approach to the task of spoken digit recognition, use a deep convolutional neural network
(DCNN) based on mel-frequency spectrograms to classify the FSDD data set. Use the same signal
truncation/padding procedure as in the scattering transform. Similarly, normalize each recording by
dividing each signal sample by the maximum absolute value. For consistency, use the same training
and test sets as for the scattering transform.

Set the parameters for the mel-frequency spectrograms. Use the same window, or frame, duration as
in the scattering transform, 0.22 seconds. Set the hop between windows to 10 ms. Use 40 frequency
bands.

segmentDuration = 8192*(1/8000);
frameDuration = 0.22;
hopDuration = 0.01;
numBands = 40;

Reset the training and test datastores.

reset(adsTrain);
reset(adsTest);

The helper function helperspeechSpectrograms, defined at the end of this example, uses
melSpectrogram to obtain the mel-frequency spectrogram after standardizing the recording length
and normalizing the amplitude. Use the logarithm of the mel-frequency spectrograms as the inputs to
the DCNN. To avoid taking the logarithm of zero, add a small epsilon to each element.

epsil = 1e-6;
XTrain = helperspeechSpectrograms(adsTrain,segmentDuration,frameDuration,hopDuration,numBands);

Computing speech spectrograms...
Processed 500 files out of 2400
Processed 1000 files out of 2400
Processed 1500 files out of 2400
Processed 2000 files out of 2400
...done

XTrain = log10(XTrain + epsil);

XTest = helperspeechSpectrograms(adsTest,segmentDuration,frameDuration,hopDuration,numBands);

Computing speech spectrograms...
Processed 500 files out of 600
...done

XTest = log10(XTest + epsil);

YTrain = adsTrain.Labels;
YTest = adsTest.Labels;
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Define DCNN Architecture

Construct a small DCNN as an array of layers. Use convolutional and batch normalization layers, and
downsample the feature maps using max pooling layers. To reduce the possibility of the network
memorizing specific features of the training data, add a small amount of dropout to the input to the
last fully connected layer.

sz = size(XTrain);
specSize = sz(1:2);
imageSize = [specSize 1];

numClasses = numel(categories(YTrain));

dropoutProb = 0.2;
numF = 12;
layers = [
    imageInputLayer(imageSize)

    convolution2dLayer(5,numF,'Padding','same')
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(3,'Stride',2,'Padding','same')

    convolution2dLayer(3,2*numF,'Padding','same')
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(3,'Stride',2,'Padding','same')

    convolution2dLayer(3,4*numF,'Padding','same')
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(3,'Stride',2,'Padding','same')

    convolution2dLayer(3,4*numF,'Padding','same')
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,4*numF,'Padding','same')
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(2)

    dropoutLayer(dropoutProb)
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer('Classes',categories(YTrain));
    ];

Set the hyperparameters to use in training the network. Use a mini-batch size of 50 and a learning
rate of 1e-4. Specify Adam optimization. Because the amount of data in this example is relatively
small, set the execution environment to 'cpu' for reproducibility. You can also train the network on
an available GPU by setting the execution environment to either 'gpu' or 'auto'. For more
information, see trainingOptions (Deep Learning Toolbox).
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miniBatchSize = 50;
options = trainingOptions('adam', ...
    'InitialLearnRate',1e-4, ...
    'MaxEpochs',30, ...
    'MiniBatchSize',miniBatchSize, ...
    'Shuffle','every-epoch', ...
    'Plots','training-progress', ...
    'Verbose',false, ...
    'ExecutionEnvironment','cpu');

Train the network.

trainedNet = trainNetwork(XTrain,YTrain,layers,options);

Use the trained network to predict the digit labels for the test set.

[Ypredicted,probs] = classify(trainedNet,XTest,'ExecutionEnvironment','CPU');
cnnAccuracy = sum(Ypredicted==YTest)/numel(YTest)*100

cnnAccuracy = 98.1667

Summarize the performance of the trained network on the test set with a confusion chart. Display the
precision and recall for each class by using column and row summaries. The table at the bottom of
the confusion chart shows the precision values. The table to the right of the confusion chart shows
the recall values.

figure('Units','normalized','Position',[0.2 0.2 0.5 0.5]);
ccDCNN = confusionchart(YTest,Ypredicted);
ccDCNN.Title = 'Confusion Chart for DCNN';
ccDCNN.ColumnSummary = 'column-normalized';
ccDCNN.RowSummary = 'row-normalized';
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The DCNN using mel-frequency spectrograms as inputs classifies the spoken digits in the test set
with an accuracy rate of approximately 98% as well.

Summary

This example shows how to use different machine and deep learning approaches for classifying
spoken digits in the FSDD. The example illustrated wavelet scattering paired with both an SVM and a
LSTM. Bayesian techniques were used to optimize LSTM hyperparameters. Finally, the example
shows how to use a CNN with mel-frequency spectrograms.

The goal of the example is to demonstrate how to use MathWorks® tools to approach the problem in
fundamentally different but complementary ways. All workflows use audioDatastore to manage
flow of data from disk and ensure proper randomization.

All approaches used in this example performed equally well on the test set. This example is not
intended as a direct comparison between the various approaches. For example, you can also use
Bayesian optimization for hyperparameter selection in the CNN. An additional strategy that is useful
in deep learning with small training sets like this version of the FSDD is to use data augmentation.
How manipulations affect class is not always known, so data augmentation is not always feasible.
However, for speech, established data augmentation strategies are available through
audioDataAugmenter.

In the case of wavelet time scattering, there are also a number of modifications you can try. For
example, you can change the invariant scale of the transform, vary the number of wavelet filters per
filter bank, and try different classifiers.
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Appendix: Helper Functions

function Labels = helpergenLabels(ads)
% This function is only for use in Wavelet Toolbox examples. It may be
% changed or removed in a future release.
tmp = cell(numel(ads.Files),1);
expression = "[0-9]+_";
for nf = 1:numel(ads.Files)
    idx = regexp(ads.Files{nf},expression);
    tmp{nf} = ads.Files{nf}(idx);
end
Labels = categorical(tmp);
end

function x = helperReadSPData(x)
% This function is only for use Wavelet Toolbox examples. It may change or
% be removed in a future release.

N = numel(x);
if N > 8192
    x = x(1:8192);
elseif N < 8192
    pad = 8192-N;
    prepad = floor(pad/2);
    postpad = ceil(pad/2);
    x = [zeros(prepad,1) ; x ; zeros(postpad,1)];
end
x = x./max(abs(x));

end

function x = helperBayesOptLSTM(X_train, Y_train, X_val, Y_val)
% This function is only for use in the
% "Spoken Digit Recognition with Wavelet Scattering and Deep Learning"
% example. It may change or be removed in a future release.
x = @valErrorFun;

    function [valError,cons, fileName] = valErrorFun(optVars)
        %% LSTM Architecture
        [inputSize,~] = size(X_train{1});
        numClasses = numel(unique(Y_train));

        layers = [ ...
            sequenceInputLayer(inputSize)
            bilstmLayer(optVars.NumHiddenUnits,'OutputMode','last') % Using number of hidden layers value from optimizing variable
            fullyConnectedLayer(numClasses)
            softmaxLayer
            classificationLayer];
        
        % Plots not displayed during training
        options = trainingOptions('adam', ...
            'InitialLearnRate',optVars.InitialLearnRate, ... % Using initial learning rate value from optimizing variable
            'MaxEpochs',300, ...
            'MiniBatchSize',30, ...
            'SequenceLength','shortest', ...
            'Shuffle','never', ...
            'Verbose', false);
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        %% Train the network
        net = trainNetwork(X_train, Y_train, layers, options);
        %% Training accuracy
        X_val_P = net.classify(X_val);
        accuracy_training  = sum(X_val_P == Y_val)./numel(Y_val);
        valError = 1 - accuracy_training;
        %% save results of network and options in a MAT file in the results folder along with the error value
        fileName = fullfile('results', num2str(valError) + ".mat");
        save(fileName,'net','valError','options')     
        cons = [];
    end % end for inner function
end % end for outer function

function X = helperspeechSpectrograms(ads,segmentDuration,frameDuration,hopDuration,numBands)
% This function is only for use in the 
% "Spoken Digit Recognition with Wavelet Scattering and Deep Learning"
% example. It may change or be removed in a future release.
%
% helperspeechSpectrograms(ads,segmentDuration,frameDuration,hopDuration,numBands)
% computes speech spectrograms for the files in the datastore ads.
% segmentDuration is the total duration of the speech clips (in seconds),
% frameDuration the duration of each spectrogram frame, hopDuration the
% time shift between each spectrogram frame, and numBands the number of
% frequency bands.
disp("Computing speech spectrograms...");

numHops = ceil((segmentDuration - frameDuration)/hopDuration);
numFiles = length(ads.Files);
X = zeros([numBands,numHops,1,numFiles],'single');

for i = 1:numFiles
    
    [x,info] = read(ads);
    x = normalizeAndResize(x);
    fs = info.SampleRate;
    frameLength = round(frameDuration*fs);
    hopLength = round(hopDuration*fs);
    
    spec = melSpectrogram(x,fs, ...
        'Window',hamming(frameLength,'periodic'), ...
        'OverlapLength',frameLength - hopLength, ...
        'FFTLength',2048, ...
        'NumBands',numBands, ...
        'FrequencyRange',[50,4000]);
    
    % If the spectrogram is less wide than numHops, then put spectrogram in
    % the middle of X.
    w = size(spec,2);
    left = floor((numHops-w)/2)+1;
    ind = left:left+w-1;
    X(:,ind,1,i) = spec;
    
    if mod(i,500) == 0
        disp("Processed " + i + " files out of " + numFiles)
    end
    
end
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disp("...done");

end

%--------------------------------------------------------------------------
function x = normalizeAndResize(x)
% This function is only for use in the 
% "Spoken Digit Recognition with Wavelet Scattering and Deep Learning"
% example. It may change or be removed in a future release.

N = numel(x);
if N > 8192
    x = x(1:8192);
elseif N < 8192
    pad = 8192-N;
    prepad = floor(pad/2);
    postpad = ceil(pad/2);
    x = [zeros(prepad,1) ; x ; zeros(postpad,1)];
end
x = x./max(abs(x));
end

Copyright 2018, The MathWorks, Inc.

See Also
waveletScattering

Related Examples
• “Acoustic Scene Recognition Using Late Fusion” on page 13-103
• “Wavelet Time Scattering with GPU Acceleration — Spoken Digit Recognition” on page 13-46

More About
• “Wavelet Scattering” on page 9-2
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Classify Time Series Using Wavelet Analysis and Deep Learning
This example shows how to classify human electrocardiogram (ECG) signals using the continuous
wavelet transform (CWT) and a deep convolutional neural network (CNN).

Training a deep CNN from scratch is computationally expensive and requires a large amount of
training data. In various applications, a sufficient amount of training data is not available, and
synthesizing new realistic training examples is not feasible. In these cases, leveraging existing neural
networks that have been trained on large data sets for conceptually similar tasks is desirable. This
leveraging of existing neural networks is called transfer learning. In this example we adapt two deep
CNNs, GoogLeNet and SqueezeNet, pretrained for image recognition to classify ECG waveforms
based on a time-frequency representation.

GoogLeNet and SqueezeNet are deep CNNs originally designed to classify images in 1000 categories.
We reuse the network architecture of the CNN to classify ECG signals based on images from the CWT
of the time series data. The data used in this example are publicly available from PhysioNet.

Data Description

In this example, you use ECG data obtained from three groups of people: persons with cardiac
arrhythmia (ARR), persons with congestive heart failure (CHF), and persons with normal sinus
rhythms (NSR). In total you use 162 ECG recordings from three PhysioNet databases: MIT-BIH
Arrhythmia Database [3][7], MIT-BIH Normal Sinus Rhythm Database [3], and The BIDMC Congestive
Heart Failure Database [1][3]. More specifically, 96 recordings from persons with arrhythmia, 30
recordings from persons with congestive heart failure, and 36 recordings from persons with normal
sinus rhythms. The goal is to train a classifier to distinguish between ARR, CHF, and NSR.

Download Data

The first step is to download the data from the GitHub repository. To download the data from the
website, click Code and select Download ZIP. Save the file physionet_ECG_data-main.zip in a
folder where you have write permission. The instructions for this example assume you have
downloaded the file to your temporary directory, tempdir, in MATLAB. Modify the subsequent
instructions for unzipping and loading the data if you choose to download the data in folder different
from tempdir.

After downloading the data from GitHub, unzip the file in your temporary directory.

unzip(fullfile(tempdir,'physionet_ECG_data-main.zip'),tempdir)

Unzipping creates the folder physionet-ECG_data-main in your temporary directory. This folder
contains the text file README.md and ECGData.zip. The ECGData.zip file contains

• ECGData.mat
• Modified_physionet_data.txt
• License.txt

ECGData.mat holds the data used in this example. The text file, Modified_physionet_data.txt,
is required by PhysioNet's copying policy and provides the source attributions for the data as well as
a description of the preprocessing steps applied to each ECG recording.

Unzip ECGData.zip in physionet-ECG_data-main. Load the data file into your MATLAB
workspace.
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unzip(fullfile(tempdir,'physionet_ECG_data-main','ECGData.zip'),...
    fullfile(tempdir,'physionet_ECG_data-main'))
load(fullfile(tempdir,'physionet_ECG_data-main','ECGData.mat'))

ECGData is a structure array with two fields: Data and Labels. The Data field is a 162-by-65536
matrix where each row is an ECG recording sampled at 128 hertz. Labels is a 162-by-1 cell array of
diagnostic labels, one for each row of Data. The three diagnostic categories are: 'ARR', 'CHF', and
'NSR'.

To store the preprocessed data of each category, first create an ECG data directory dataDir inside
tempdir. Then create three subdirectories in 'data' named after each ECG category. The helper
function helperCreateECGDirectories does this. helperCreateECGDirectories accepts
ECGData, the name of an ECG data directory, and the name of a parent directory as input arguments.
You can replace tempdir with another directory where you have write permission. You can find the
source code for this helper function in the Supporting Functions section at the end of this example.

parentDir = tempdir;
dataDir = 'data';
helperCreateECGDirectories(ECGData,parentDir,dataDir)

Plot a representative of each ECG category. The helper function helperPlotReps does this.
helperPlotReps accepts ECGData as input. You can find the source code for this helper function in
the Supporting Functions section at the end of this example.

helperPlotReps(ECGData)
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Create Time-Frequency Representations

After making the folders, create time-frequency representations of the ECG signals. These
representations are called scalograms. A scalogram is the absolute value of the CWT coefficients of a
signal.

To create the scalograms, precompute a CWT filter bank. Precomputing the CWT filter bank is the
preferred method when obtaining the CWT of many signals using the same parameters.

Before generating the scalograms, examine one of them. Create a CWT filter bank using
cwtfilterbank for a signal with 1000 samples. Use the filter bank to take the CWT of the first 1000
samples of the signal and obtain the scalogram from the coefficients.

Fs = 128;
fb = cwtfilterbank('SignalLength',1000,...
    'SamplingFrequency',Fs,...
    'VoicesPerOctave',12);
sig = ECGData.Data(1,1:1000);
[cfs,frq] = wt(fb,sig);
t = (0:999)/Fs;figure;pcolor(t,frq,abs(cfs))
set(gca,'yscale','log');shading interp;axis tight;
title('Scalogram');xlabel('Time (s)');ylabel('Frequency (Hz)')

Use the helper function helperCreateRGBfromTF to create the scalograms as RGB images and
write them to the appropriate subdirectory in dataDir. The source code for this helper function is in
the Supporting Functions section at the end of this example. To be compatible with the GoogLeNet
architecture, each RGB image is an array of size 224-by-224-by-3.
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helperCreateRGBfromTF(ECGData,parentDir,dataDir)

Divide into Training and Validation Data

Load the scalogram images as an image datastore. The imageDatastore function automatically
labels the images based on folder names and stores the data as an ImageDatastore object. An image
datastore enables you to store large image data, including data that does not fit in memory, and
efficiently read batches of images during training of a CNN.

allImages = imageDatastore(fullfile(parentDir,dataDir),...
    'IncludeSubfolders',true,...
    'LabelSource','foldernames');

Randomly divide the images into two groups, one for training and the other for validation. Use 80% of
the images for training, and the remainder for validation. For purposes of reproducibility, we set the
random seed to the default value.

rng default
[imgsTrain,imgsValidation] = splitEachLabel(allImages,0.8,'randomized');
disp(['Number of training images: ',num2str(numel(imgsTrain.Files))]);

Number of training images: 130

disp(['Number of validation images: ',num2str(numel(imgsValidation.Files))]);

Number of validation images: 32

GoogLeNet

Load

Load the pretrained GoogLeNet neural network. If Deep Learning Toolbox™ Model for GoogLeNet
Network support package is not installed, the software provides a link to the required support
package in the Add-On Explorer. To install the support package, click the link, and then click Install.

net = googlenet;

Extract and display the layer graph from the network.

lgraph = layerGraph(net);
numberOfLayers = numel(lgraph.Layers);
figure('Units','normalized','Position',[0.1 0.1 0.8 0.8]);
plot(lgraph)
title(['GoogLeNet Layer Graph: ',num2str(numberOfLayers),' Layers']);
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Inspect the first element of the network Layers property. Confirm that GoogLeNet requires RGB
images of size 224-by-224-by-3.

net.Layers(1)

ans = 
  ImageInputLayer with properties:

                Name: 'data'
           InputSize: [224 224 3]

   Hyperparameters
    DataAugmentation: 'none'
       Normalization: 'zerocenter'
                Mean: [224×224×3 single]

Modify GoogLeNet Network Parameters

Each layer in the network architecture can be considered a filter. The earlier layers identify more
common features of images, such as blobs, edges, and colors. Subsequent layers focus on more
specific features in order to differentiate categories. GoogLeNet is pretrained to classify images into
1000 object categories. You must retrain GoogLeNet for our ECG classification problem.

To prevent overfitting, a dropout layer is used. A dropout layer randomly sets input elements to zero
with a given probability. See dropoutLayer (Deep Learning Toolbox) for more information. The
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default probability is 0.5. Replace the final dropout layer in the network, 'pool5-drop_7x7_s1',
with a dropout layer of probability 0.6.

newDropoutLayer = dropoutLayer(0.6,'Name','new_Dropout');
lgraph = replaceLayer(lgraph,'pool5-drop_7x7_s1',newDropoutLayer);

The convolutional layers of the network extract image features that the last learnable layer and final
classification layer use to classify the input image. These two layers, 'loss3-classifier' and
'output' in GoogLeNet, contain information on how to combine the features that the network
extracts into class probabilities, a loss value, and predicted labels. To retrain GoogLeNet to classify
the RGB images, replace these two layers with new layers adapted to the data.

Replace the fully connected layer 'loss3-classifier' with a new fully connected layer with the
number of filters equal to the number of classes. To learn faster in the new layers than in the
transferred layers, increase the learning rate factors of the fully connected layer.

numClasses = numel(categories(imgsTrain.Labels));
newConnectedLayer = fullyConnectedLayer(numClasses,'Name','new_fc',...
    'WeightLearnRateFactor',5,'BiasLearnRateFactor',5);
lgraph = replaceLayer(lgraph,'loss3-classifier',newConnectedLayer);

The classification layer specifies the output classes of the network. Replace the classification layer
with a new one without class labels. trainNetwork automatically sets the output classes of the layer
at training time.

newClassLayer = classificationLayer('Name','new_classoutput');
lgraph = replaceLayer(lgraph,'output',newClassLayer);

Set Training Options and Train GoogLeNet

Training a neural network is an iterative process that involves minimizing a loss function. To minimize
the loss function, a gradient descent algorithm is used. In each iteration, the gradient of the loss
function is evaluated and the descent algorithm weights are updated.

Training can be tuned by setting various options. InitialLearnRate specifies the initial step size in
the direction of the negative gradient of the loss function. MiniBatchSize specifies how large of a
subset of the training set to use in each iteration. One epoch is a full pass of the training algorithm
over the entire training set. MaxEpochs specifies the maximum number of epochs to use for training.
Choosing the right number of epochs is not a trivial task. Decreasing the number of epochs has the
effect of underfitting the model, and increasing the number of epochs results in overfitting.

Use the trainingOptions (Deep Learning Toolbox) function to specify the training options. Set
MiniBatchSize to 10, MaxEpochs to 10, and InitialLearnRate to 0.0001. Visualize training
progress by setting Plots to training-progress. Use the stochastic gradient descent with
momentum optimizer. By default, training is done on a GPU if one is available. Using a GPU requires
Parallel Computing Toolbox™. To see which GPUs are supported, see “GPU Support by Release”
(Parallel Computing Toolbox). For purposes of reproducibility, set ExecutionEnvironment to cpu so
that trainNetwork used the CPU. Set the random seed to the default value. Run times will be faster
if you are able to use a GPU.

options = trainingOptions('sgdm',...
    'MiniBatchSize',15,...
    'MaxEpochs',20,...
    'InitialLearnRate',1e-4,...
    'ValidationData',imgsValidation,...
    'ValidationFrequency',10,...
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    'Verbose',1,...
    'ExecutionEnvironment','cpu',...
    'Plots','training-progress');
rng default

Train the network. The training process usually takes 1-5 minutes on a desktop CPU. The command
window displays training information during the run. Results include epoch number, iteration
number, time elapsed, mini-batch accuracy, validation accuracy, and loss function value for the
validation data.

trainedGN = trainNetwork(imgsTrain,lgraph,options);

Initializing input data normalization.
|======================================================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Validation  |  Mini-batch  |  Validation  |  Base Learning  |
|         |             |   (hh:mm:ss)   |   Accuracy   |   Accuracy   |     Loss     |     Loss     |      Rate       |
|======================================================================================================================|
|       1 |           1 |       00:00:03 |        6.67% |       18.75% |       4.9207 |       2.4141 |      1.0000e-04 |
|       2 |          10 |       00:00:23 |       66.67% |       62.50% |       0.9589 |       1.3191 |      1.0000e-04 |
|       3 |          20 |       00:00:43 |       46.67% |       75.00% |       1.2973 |       0.5928 |      1.0000e-04 |
|       4 |          30 |       00:01:04 |       60.00% |       78.13% |       0.7219 |       0.4576 |      1.0000e-04 |
|       5 |          40 |       00:01:25 |       73.33% |       84.38% |       0.4750 |       0.3367 |      1.0000e-04 |
|       7 |          50 |       00:01:46 |       93.33% |       84.38% |       0.2714 |       0.2892 |      1.0000e-04 |
|       8 |          60 |       00:02:07 |       80.00% |       87.50% |       0.3617 |       0.2433 |      1.0000e-04 |
|       9 |          70 |       00:02:29 |       86.67% |       87.50% |       0.3246 |       0.2526 |      1.0000e-04 |
|      10 |          80 |       00:02:50 |      100.00% |       96.88% |       0.0701 |       0.1876 |      1.0000e-04 |
|      12 |          90 |       00:03:11 |       86.67% |      100.00% |       0.2836 |       0.1681 |      1.0000e-04 |
|      13 |         100 |       00:03:32 |       86.67% |       96.88% |       0.4160 |       0.1607 |      1.0000e-04 |
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|      14 |         110 |       00:03:53 |       86.67% |       96.88% |       0.3237 |       0.1565 |      1.0000e-04 |
|      15 |         120 |       00:04:14 |       93.33% |       96.88% |       0.1646 |       0.1476 |      1.0000e-04 |
|      17 |         130 |       00:04:35 |      100.00% |       96.88% |       0.0551 |       0.1330 |      1.0000e-04 |
|      18 |         140 |       00:04:57 |       93.33% |       96.88% |       0.0927 |       0.1347 |      1.0000e-04 |
|      19 |         150 |       00:05:18 |       93.33% |       93.75% |       0.1666 |       0.1325 |      1.0000e-04 |
|      20 |         160 |       00:05:39 |       93.33% |       96.88% |       0.0873 |       0.1164 |      1.0000e-04 |
|======================================================================================================================|

Inspect the last layer of the trained network. Confirm the Classification Output layer includes the
three classes.

trainedGN.Layers(end)

ans = 
  ClassificationOutputLayer with properties:

            Name: 'new_classoutput'
         Classes: [ARR    CHF    NSR]
      OutputSize: 3

   Hyperparameters
    LossFunction: 'crossentropyex'

Evaluate GoogLeNet Accuracy

Evaluate the network using the validation data.

[YPred,probs] = classify(trainedGN,imgsValidation);
accuracy = mean(YPred==imgsValidation.Labels);
disp(['GoogLeNet Accuracy: ',num2str(100*accuracy),'%'])

GoogLeNet Accuracy: 96.875%

The accuracy is identical to the validation accuracy reported on the training visualization figure. The
scalograms were split into training and validation collections. Both collections were used to train
GoogLeNet. The ideal way to evaluate the result of the training is to have the network classify data it
has not seen. Since there is an insufficient amount of data to divide into training, validation, and
testing, we treat the computed validation accuracy as the network accuracy.

Explore GoogLeNet Activations

Each layer of a CNN produces a response, or activation, to an input image. However, there are only a
few layers within a CNN that are suitable for image feature extraction. The layers at the beginning of
the network capture basic image features, such as edges and blobs. To see this, visualize the network
filter weights from the first convolutional layer. There are 64 individual sets of weights in the first
layer.

wghts = trainedGN.Layers(2).Weights;
wghts = rescale(wghts);
wghts = imresize(wghts,5);
figure
montage(wghts)
title('First Convolutional Layer Weights')
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You can examine the activations and discover which features GoogLeNet learns by comparing areas
of activation with the original image. For more information, see “Visualize Activations of a
Convolutional Neural Network” (Deep Learning Toolbox) and “Visualize Features of a Convolutional
Neural Network” (Deep Learning Toolbox).

Examine which areas in the convolutional layers activate on an image from the ARR class. Compare
with the corresponding areas in the original image. Each layer of a convolutional neural network
consists of many 2-D arrays called channels. Pass the image through the network and examine the
output activations of the first convolutional layer, 'conv1-7x7_s2'.

convLayer = 'conv1-7x7_s2';
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imgClass = 'ARR';
imgName = 'ARR_10.jpg';
imarr = imread(fullfile(parentDir,dataDir,imgClass,imgName));

trainingFeaturesARR = activations(trainedGN,imarr,convLayer);
sz = size(trainingFeaturesARR);
trainingFeaturesARR = reshape(trainingFeaturesARR,[sz(1) sz(2) 1 sz(3)]);
figure
montage(rescale(trainingFeaturesARR),'Size',[8 8])
title([imgClass,' Activations'])

Find the strongest channel for this image. Compare the strongest channel with the original image.
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imgSize = size(imarr);
imgSize = imgSize(1:2);
[~,maxValueIndex] = max(max(max(trainingFeaturesARR)));
arrMax = trainingFeaturesARR(:,:,:,maxValueIndex);
arrMax = rescale(arrMax);
arrMax = imresize(arrMax,imgSize);
figure;
imshowpair(imarr,arrMax,'montage')
title(['Strongest ',imgClass,' Channel: ',num2str(maxValueIndex)])

SqueezeNet

SqueezeNet is a deep CNN whose architecture supports images of size 227-by-227-by-3. Even though
the image dimensions are different for GoogLeNet, you do not have to generate new RGB images at
the SqueezeNet dimensions. You can use the original RGB images.

Load

Load the pretrained SqueezeNet neural network. If Deep Learning Toolbox™ Model for SqueezeNet
Network support package is not installed, the software provides a link to the required support
package in the Add-On Explorer. To install the support package, click the link, and then click Install.

sqz = squeezenet;

Extract the layer graph from the network. Confirm SqueezeNet has fewer layers than GoogLeNet.
Also confirm that SqueezeNet is configured for images of size 227-by-227-by-3

lgraphSqz = layerGraph(sqz);
disp(['Number of Layers: ',num2str(numel(lgraphSqz.Layers))])

Number of Layers: 68

disp(lgraphSqz.Layers(1).InputSize)

   227   227     3
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Modify SqueezeNet Network Parameters

To retrain SqueezeNet to classify new images, make changes similar to those made for GoogLeNet.

Inspect the last six network layers.

lgraphSqz.Layers(end-5:end)

ans = 
  6x1 Layer array with layers:

     1   'drop9'                             Dropout                 50% dropout
     2   'conv10'                            Convolution             1000 1x1x512 convolutions with stride [1  1] and padding [0  0  0  0]
     3   'relu_conv10'                       ReLU                    ReLU
     4   'pool10'                            Average Pooling         14x14 average pooling with stride [1  1] and padding [0  0  0  0]
     5   'prob'                              Softmax                 softmax
     6   'ClassificationLayer_predictions'   Classification Output   crossentropyex with 'tench' and 999 other classes

Replace the 'drop9' layer, the last dropout layer in the network, with a dropout layer of probability
0.6.

tmpLayer = lgraphSqz.Layers(end-5);
newDropoutLayer = dropoutLayer(0.6,'Name','new_dropout');
lgraphSqz = replaceLayer(lgraphSqz,tmpLayer.Name,newDropoutLayer);

Unlike GoogLeNet, the last learnable layer in SqueezeNet is a 1-by-1 convolutional layer, 'conv10',
and not a fully connected layer. Replace the 'conv10' layer with a new convolutional layer with the
number of filters equal to the number of classes. As was done with GoogLeNet, increase the learning
rate factors of the new layer.

numClasses = numel(categories(imgsTrain.Labels));
tmpLayer = lgraphSqz.Layers(end-4);
newLearnableLayer = convolution2dLayer(1,numClasses, ...
        'Name','new_conv', ...
        'WeightLearnRateFactor',10, ...
        'BiasLearnRateFactor',10);
lgraphSqz = replaceLayer(lgraphSqz,tmpLayer.Name,newLearnableLayer);

Replace the classification layer with a new one without class labels.

tmpLayer = lgraphSqz.Layers(end);
newClassLayer = classificationLayer('Name','new_classoutput');
lgraphSqz = replaceLayer(lgraphSqz,tmpLayer.Name,newClassLayer);

Inspect the last six layers of the network. Confirm the dropout, convolutional, and output layers have
been changed.

lgraphSqz.Layers(63:68)

ans = 
  6x1 Layer array with layers:

     1   'new_dropout'       Dropout                 60% dropout
     2   'new_conv'          Convolution             3 1x1 convolutions with stride [1  1] and padding [0  0  0  0]
     3   'relu_conv10'       ReLU                    ReLU
     4   'pool10'            Average Pooling         14x14 average pooling with stride [1  1] and padding [0  0  0  0]
     5   'prob'              Softmax                 softmax
     6   'new_classoutput'   Classification Output   crossentropyex
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Prepare RGB Data for SqueezeNet

The RGB images have dimensions appropriate for the GoogLeNet architecture. Create augmented
image datastores that automatically resize the existing RGB images for the SqueezeNet architecture.
For more information, see augmentedImageDatastore (Deep Learning Toolbox).

augimgsTrain = augmentedImageDatastore([227 227],imgsTrain);
augimgsValidation = augmentedImageDatastore([227 227],imgsValidation);

Set Training Options and Train SqueezeNet

Create a new set of training options to use with SqueezeNet. Set the random seed to the default value
and train the network. The training process usually takes 1-5 minutes on a desktop CPU.

ilr = 3e-4;
miniBatchSize = 10;
maxEpochs = 15;
valFreq = floor(numel(augimgsTrain.Files)/miniBatchSize);
opts = trainingOptions('sgdm',...
    'MiniBatchSize',miniBatchSize,...
    'MaxEpochs',maxEpochs,...
    'InitialLearnRate',ilr,...
    'ValidationData',augimgsValidation,...
    'ValidationFrequency',valFreq,...
    'Verbose',1,...
    'ExecutionEnvironment','cpu',...
    'Plots','training-progress');

rng default
trainedSN = trainNetwork(augimgsTrain,lgraphSqz,opts);
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Initializing input data normalization.
|======================================================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Validation  |  Mini-batch  |  Validation  |  Base Learning  |
|         |             |   (hh:mm:ss)   |   Accuracy   |   Accuracy   |     Loss     |     Loss     |      Rate       |
|======================================================================================================================|
|       1 |           1 |       00:00:01 |       20.00% |       43.75% |       5.2508 |       1.2540 |          0.0003 |
|       1 |          13 |       00:00:11 |       60.00% |       50.00% |       0.9912 |       1.0519 |          0.0003 |
|       2 |          26 |       00:00:20 |       60.00% |       59.38% |       0.8554 |       0.8497 |          0.0003 |
|       3 |          39 |       00:00:30 |       60.00% |       59.38% |       0.8120 |       0.8328 |          0.0003 |
|       4 |          50 |       00:00:38 |       50.00% |              |       0.7885 |              |          0.0003 |
|       4 |          52 |       00:00:40 |       60.00% |       65.63% |       0.7091 |       0.7314 |          0.0003 |
|       5 |          65 |       00:00:49 |       90.00% |       87.50% |       0.4639 |       0.5893 |          0.0003 |
|       6 |          78 |       00:00:59 |       70.00% |       87.50% |       0.6021 |       0.4355 |          0.0003 |
|       7 |          91 |       00:01:08 |       90.00% |       90.63% |       0.2307 |       0.2945 |          0.0003 |
|       8 |         100 |       00:01:15 |       90.00% |              |       0.1827 |              |          0.0003 |
|       8 |         104 |       00:01:18 |       90.00% |       93.75% |       0.2139 |       0.2153 |          0.0003 |
|       9 |         117 |       00:01:28 |      100.00% |       90.63% |       0.0521 |       0.1964 |          0.0003 |
|      10 |         130 |       00:01:38 |       90.00% |       90.63% |       0.1134 |       0.2214 |          0.0003 |
|      11 |         143 |       00:01:47 |      100.00% |       90.63% |       0.0855 |       0.2095 |          0.0003 |
|      12 |         150 |       00:01:52 |       90.00% |              |       0.2394 |              |          0.0003 |
|      12 |         156 |       00:01:57 |      100.00% |       90.63% |       0.0606 |       0.1849 |          0.0003 |
|      13 |         169 |       00:02:06 |      100.00% |       90.63% |       0.0090 |       0.2071 |          0.0003 |
|      14 |         182 |       00:02:16 |      100.00% |       93.75% |       0.0127 |       0.3597 |          0.0003 |
|      15 |         195 |       00:02:25 |      100.00% |       93.75% |       0.0016 |       0.3414 |          0.0003 |
|======================================================================================================================|

Inspect the last layer of the network. Confirm the Classification Output layer includes the three
classes.
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trainedSN.Layers(end)

ans = 
  ClassificationOutputLayer with properties:

            Name: 'new_classoutput'
         Classes: [ARR    CHF    NSR]
      OutputSize: 3

   Hyperparameters
    LossFunction: 'crossentropyex'

Evaluate SqueezeNet Accuracy

Evaluate the network using the validation data.

[YPred,probs] = classify(trainedSN,augimgsValidation);
accuracy = mean(YPred==imgsValidation.Labels);
disp(['SqueezeNet Accuracy: ',num2str(100*accuracy),'%'])

SqueezeNet Accuracy: 93.75%

Conclusion

This example shows how to use transfer learning and continuous wavelet analysis to classify three
classes of ECG signals by leveraging the pretrained CNNs GoogLeNet and SqueezeNet. Wavelet-
based time-frequency representations of ECG signals are used to create scalograms. RGB images of
the scalograms are generated. The images are used to fine-tune both deep CNNs. Activations of
different network layers were also explored.

This example illustrates one possible workflow you can use for classifying signals using pretrained
CNN models. Other workflows are possible. “Deploy Signal Classifier on NVIDIA Jetson Using
Wavelet Analysis and Deep Learning” on page 13-155 and “Deploy Signal Classifier Using Wavelets
and Deep Learning on Raspberry Pi” on page 13-130 show how to deploy code onto hardware for
signal classification. GoogLeNet and SqueezeNet are models pretrained on a subset of the ImageNet
database [10], which is used in the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) [8].
The ImageNet collection contains images of real-world objects such as fish, birds, appliances, and
fungi. Scalograms fall outside the class of real-world objects. In order to fit into the GoogLeNet and
SqueezeNet architecture, the scalograms also underwent data reduction. Instead of fine-tuning
pretrained CNNs to distinguish different classes of scalograms, training a CNN from scratch at the
original scalogram dimensions is an option.
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Supporting Functions

helperCreateECGDataDirectories creates a data directory inside a parent directory, then creates
three subdirectories inside the data directory. The subdirectories are named after each class of ECG
signal found in ECGData.

function helperCreateECGDirectories(ECGData,parentFolder,dataFolder)
% This function is only intended to support the ECGAndDeepLearningExample.
% It may change or be removed in a future release.

rootFolder = parentFolder;
localFolder = dataFolder;
mkdir(fullfile(rootFolder,localFolder))

folderLabels = unique(ECGData.Labels);
for i = 1:numel(folderLabels)
    mkdir(fullfile(rootFolder,localFolder,char(folderLabels(i))));
end
end

helperPlotReps plots the first thousand samples of a representative of each class of ECG signal
found in ECGData.

function helperPlotReps(ECGData)
% This function is only intended to support the ECGAndDeepLearningExample.
% It may change or be removed in a future release.

folderLabels = unique(ECGData.Labels);

for k=1:3
    ecgType = folderLabels{k};
    ind = find(ismember(ECGData.Labels,ecgType));
    subplot(3,1,k)
    plot(ECGData.Data(ind(1),1:1000));
    grid on
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    title(ecgType)
end
end

helperCreateRGBfromTF uses cwtfilterbank to obtain the continuous wavelet transform of the
ECG signals and generates the scalograms from the wavelet coefficients. The helper function resizes
the scalograms and writes them to disk as jpeg images.

function helperCreateRGBfromTF(ECGData,parentFolder,childFolder)
% This function is only intended to support the ECGAndDeepLearningExample.
% It may change or be removed in a future release.

imageRoot = fullfile(parentFolder,childFolder);

data = ECGData.Data;
labels = ECGData.Labels;

[~,signalLength] = size(data);

fb = cwtfilterbank('SignalLength',signalLength,'VoicesPerOctave',12);
r = size(data,1);

for ii = 1:r
    cfs = abs(fb.wt(data(ii,:)));
    im = ind2rgb(im2uint8(rescale(cfs)),jet(128));
    
    imgLoc = fullfile(imageRoot,char(labels(ii)));
    imFileName = strcat(char(labels(ii)),'_',num2str(ii),'.jpg');
    imwrite(imresize(im,[224 224]),fullfile(imgLoc,imFileName));
end
end

See Also
cwtfilterbank | googlenet | squeezenet | trainNetwork | trainingOptions |
imageDatastore | augmentedImageDatastore

Related Examples
• “GPU Acceleration of Scalograms for Deep Learning” on page 13-118
• “Deploy Signal Classifier Using Wavelets and Deep Learning on Raspberry Pi” on page 13-130
• “Deploy Signal Classifier on NVIDIA Jetson Using Wavelet Analysis and Deep Learning” on page

13-155
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Texture Classification with Wavelet Image Scattering
This example shows how to classify textures using wavelet image scattering. In addition to Wavelet
Toolbox™, this example also requires Parallel Computing Toolbox™ and Image Processing Toolbox™.

In a digital image, texture provides information about the spatial arrangement of color or pixel
intensities. Particular spatial arrangements of color or pixel intensities correspond to different
appearances and consistencies of the physical material being imaged. Texture classification and
segmentation of images has a number of important application areas. A particularly important
example is biomedical image analysis where normal and pathologic states are often characterized by
morphological and histological characteristics which manifest as differences in texture [4].

Wavelet Image Scattering

For classification problems, it is often useful to map the data into some alternative representation
which discards irrelevant information while retaining the discriminative properties of each class.
Wavelet image scattering constructs low-variance representations of images which are insensitive to
translations and small deformations. Because translations and small deformations in the image do not
affect class membership, scattering transform coefficients provide features from which you can build
robust classification models.

Wavelet scattering works by cascading the image through a series of wavelet transforms,
nonlinearities, and averaging [1][3][5]. The result of this deep feature extraction is that images in the
same class are moved closer to each other in the scattering transform representation, while images
belonging to different classes are moved farther apart.

KTH-TIPS

This example uses a publicly available texture database, the KTH-TIPS (Textures under varying
Illumination, Pose, and Scale) image database [6]. The KTH-TIPS dataset used in this example is the
grayscale version. There are 810 images in total with 10 textures and 81 images per texture. The
majority of images are 200-by-200 in size. This example assumes you have downloaded the KTH-TIPS
grayscale dataset and untarred it so that the 10 texture classes are contained in separate subfolders
of a common folder. Each subfolder is named for the class of textures it contains. Untarring the
downloaded kth_tips_grey_200x200.tar file is sufficient to provide a top-level folder KTH_TIPS
and the required subfolder structure.

Use the imageDatastore to read the data. Set the location property of the imageDatastore to
the folder containing the KTH-TIPS database that you have access to.

location = fullfile(tempdir,'kth_tips_grey_200x200','KTH_TIPS');
Imds = imageDatastore(location,'IncludeSubFolders',true,'FileExtensions','.png','LabelSource','foldernames');

Randomly select and visualize 20 images from the dataset.

numImages = 810;
perm = randperm(numImages,20);
for np = 1:20
    subplot(4,5,np)
    im = imread(Imds.Files{perm(np)});
    imagesc(im);    
    colormap gray; axis off;
end
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Texture Classification

This example uses MATLAB™'s parallel processing capability through the tall array interface. Start
the parallel pool if one is not currently running.

if isempty(gcp)
    parpool;
end

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

For reproducibility, set the random number generator. Shuffle the files of the KTH-TIPS dataset and
split the 810 images into two randomly selected sets, one for training and one held-out set for testing.
Use approximately 80% of the images for building a predictive model from the scattering transform
and use the remainder for testing the model.

rng(100)
Imds = imageDatastore(location,'IncludeSubFolders',true,'FileExtensions','.png','LabelSource','foldernames');
Imds = shuffle(Imds);
[trainImds,testImds] = splitEachLabel(Imds,0.8);

We now have two datasets. The training set consists of 650 images, with 65 images per texture. The
testing set consists of 160 images, with 16 images per texture. To verify, count the labels in each
dataset.

countEachLabel(trainImds)
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ans=10×2 table
        Label         Count
    ______________    _____

    aluminium_foil     65  
    brown_bread        65  
    corduroy           65  
    cotton             65  
    cracker            65  
    linen              65  
    orange_peel        65  
    sandpaper          65  
    sponge             65  
    styrofoam          65  

countEachLabel(testImds)

ans=10×2 table
        Label         Count
    ______________    _____

    aluminium_foil     16  
    brown_bread        16  
    corduroy           16  
    cotton             16  
    cracker            16  
    linen              16  
    orange_peel        16  
    sandpaper          16  
    sponge             16  
    styrofoam          16  

Create tall arrays for the resized images.

Ttrain = tall(trainImds);
Ttest = tall(testImds);

Create a scattering framework for an image input size of 200-by-200 with an InvarianceScale of
150. The invariance scale hyperparameter is the only one we set in this example. For the other
hyperparameters of the scattering transform, use the default values.

sn = waveletScattering2('ImageSize',[200 200],'InvarianceScale',150);

To extract features for classification for each the training and test sets, use the
helperScatImages_mean function. The code for helperScatImages_mean is at the end of this
example. helperScatImages_mean resizes the images to a common 200-by-200 size and uses the
scattering framework, sn, to obtain the feature matrix. In this case, each feature matrix is 391-by-7-
by-7. There are 391 scattering paths and each scattering coefficient image is 7-by-7. Finally,
helperScatImages_mean obtains the mean along the 2nd and 3rd dimensions to obtain a 391
element feature vector for each image. This is a significant reduction in data from 40,000 elements
down to 391.

trainfeatures = cellfun(@(x)helperScatImages_mean(sn,x),Ttrain,'Uni',0);
testfeatures = cellfun(@(x)helperScatImages_mean(sn,x),Ttest,'Uni',0);

13 Featured Examples — Machine Learning and Deep Learning

13-88



Using tall's gather capability, gather all the training and test feature vectors and concatenate
them into matrices.

Trainf = gather(trainfeatures);

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1 min 39 sec
Evaluation completed in 1 min 39 sec

trainfeatures = cat(2,Trainf{:});
Testf = gather(testfeatures);

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 23 sec
Evaluation completed in 23 sec

testfeatures = cat(2,Testf{:});

The previous code results in two matrices with row dimensions 391 and column dimension equal to
the number of images in the training and test sets, respectively. So each column is a feature vector.

PCA Model and Prediction

This example constructs a simple classifier based on the principal components of the scattering
feature vectors for each class. The classifier is implemented in the functions helperPCAModel and
helperPCAClassifier. The function helperPCAModel determines the principal components for
each digit class based on the scattering features. The code for helperPCAModel is at the end of this
example. The function helperPCAClassifier classifies the held-out test data by finding the closest
match (best projection) between the principal components of each test feature vector with the
training set and assigning the class accordingly. The code for helperPCAClassifier is at the end
of this example.

model = helperPCAModel(trainfeatures,30,trainImds.Labels);
predlabels = helperPCAClassifier(testfeatures,model);

After constructing the model and classifying the test set, determine the accuracy of the test set
classification.

accuracy = sum(testImds.Labels == predlabels)./numel(testImds.Labels)*100

accuracy = 99.3750

We have achieved 99.375% correct classification, or a 0.625% error rate for the 160 images in the
test set. A plot of the confusion matrix shows that our simple model misclassified one texture.

figure
confusionchart(testImds.Labels,predlabels)
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Summary

In this example, we used wavelet image scattering to create low-variance representations of textures
for classification. Using the scattering transform and a simple principal components classifier, we
achieved 99.375% correct classification on a held-out test set. This result is comparable to state-of-
the-art performance on the KTH-TIPS database.[2]
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Appendix — Supporting Functions

helperScatImages_mean

function features = helperScatImages_mean(sf,x)
x = imresize(x,[200 200]);
smat = featureMatrix(sf,x);
features = mean(mean(smat,2),3);
end

helperPCAModel

function model = helperPCAModel(features,M,Labels)
% This function is only to support wavelet image scattering examples in 
% Wavelet Toolbox. It may change or be removed in a future release.
% model = helperPCAModel(features,M,Labels)

% Copyright 2018 MathWorks

% Initialize structure array to hold the affine model
model = struct('Dim',[],'mu',[],'U',[],'Labels',categorical([]),'s',[]);
model.Dim = M;
% Obtain the number of classes
LabelCategories = categories(Labels);
Nclasses = numel(categories(Labels));
for kk = 1:Nclasses
    Class = LabelCategories{kk};
    % Find indices corresponding to each class
    idxClass = Labels == Class;
    % Extract feature vectors for each class
    tmpFeatures = features(:,idxClass);
    % Determine the mean for each class
    model.mu{kk} = mean(tmpFeatures,2);
    [model.U{kk},model.S{kk}] = scatPCA(tmpFeatures);
    if size(model.U{kk},2) > M
        model.U{kk} = model.U{kk}(:,1:M);
        model.S{kk} = model.S{kk}(1:M);
        
    end
    model.Labels(kk) = Class;
end

function [u,s,v] = scatPCA(x,M)
    % Calculate the principal components of x along the second dimension.

    if nargin > 1 && M > 0
        % If M is non-zero, calculate the first M principal components.
        [u,s,v] = svds(x-sig_mean(x),M);
        s = abs(diag(s)/sqrt(size(x,2)-1)).^2;
    else
        % Otherwise, calculate all the principal components.
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        % Each row is an observation, i.e. the number of scattering paths
        % Each column is a class observation
        [u,d] = eig(cov(x'));
        [s,ind] = sort(diag(d),'descend');
        u = u(:,ind);
    end
end
end

helperPCAClassifier

function labels = helperPCAClassifier(features,model)
% This function is only to support wavelet image scattering examples in 
% Wavelet Toolbox. It may change or be removed in a future release.
% model is a structure array with fields, M, mu, v, and Labels
% features is the matrix of test data which is Ns-by-L, Ns is the number of
% scattering paths and L is the number of test examples. Each column of
% features is a test example.

% Copyright 2018 MathWorks

labelIdx = determineClass(features,model); 
labels = model.Labels(labelIdx); 
% Returns as column vector to agree with imageDatastore Labels
labels = labels(:);

%--------------------------------------------------------------------------
function labelIdx = determineClass(features,model)
% Determine number of classes
Nclasses = numel(model.Labels);
% Initialize error matrix
errMatrix = Inf(Nclasses,size(features,2));
for nc = 1:Nclasses
    % class centroid
    mu = model.mu{nc};
    u = model.U{nc};
    % 1-by-L
    errMatrix(nc,:) = projectionError(features,mu,u);
end
% Determine minimum along class dimension
[~,labelIdx] = min(errMatrix,[],1);   

%--------------------------------------------------------------------------
function totalerr = projectionError(features,mu,u)
    %
    Npc = size(u,2);
    L = size(features,2);
    % Subtract class mean: Ns-by-L minus Ns-by-1
    s = features-mu;
    % 1-by-L
    normSqX = sum(abs(s).^2,1)';
    err = Inf(Npc+1,L);
    err(1,:) = normSqX;
    err(2:end,:) = -abs(u'*s).^2;
    % 1-by-L
    totalerr = sqrt(sum(err,1));
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end
end
end

    
    

See Also
waveletScattering2

Related Examples
• “Parasite Classification Using Wavelet Scattering and Deep Learning” on page 13-194

More About
• “Wavelet Scattering” on page 9-2
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Digit Classification with Wavelet Scattering
This example shows how to use wavelet scattering for image classification. This example requires
Wavelet Toolbox™, Deep Learning Toolbox™, and Parallel Computing Toolbox™.

For classification problems, it is often useful to map the data into some alternative representation
which discards irrelevant information while retaining the discriminative properties of each class.
Wavelet image scattering constructs low-variance representations of images which are insensitive to
translations and small deformations. Because translations and small deformations in the image do not
affect class membership, scattering transform coefficients provide features from which you can build
robust classification models.

Wavelet scattering works by cascading the image through a series of wavelet transforms,
nonlinearities, and averaging [1][3][4]. The result of this deep feature extraction is that images in the
same class are moved closer to each other in the scattering transform representation, while images
belonging to different classes are moved farther apart. While the wavelet scattering transform has a
number of architectural similarities with deep convolutional neural networks, including convolution
operators, nonlinearities, and averaging, the filters in a scattering transform are pre-defined and
fixed.

Digit Images

The dataset used in this example contains 10,000 synthetic images of digits from 0 to 9. The images
are generated by applying random transformations to images of those digits created with different
fonts. Each digit image is 28-by-28 pixels. The dataset contains an equal number of images per
category. Use the imageDataStore to read the images.

digitDatasetPath = fullfile(matlabroot,'toolbox','nnet','nndemos','nndatasets','DigitDataset');
Imds = imageDatastore(digitDatasetPath,'IncludeSubfolders',true, 'LabelSource','foldernames');

Randomly select and plot 20 images from the dataset.

figure
numImages = 10000;
rng(100);
perm = randperm(numImages,20);
for np = 1:20
    subplot(4,5,np);
    imshow(Imds.Files{perm(np)});
end
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You can see that the 8s exhibit considerable variability while all being identifiable as an 8. The same
is true of the other repeated digits in the sample. This is consistent with natural handwriting where
any digit differs non-trivially between individuals and even within the same individual's handwriting
with respect to translation, rotation, and other small deformations. Using wavelet scattering, we hope
to build representations of these digits which obscure this irrelevant variability.

Wavelet Image Scattering Feature Extraction

The synthetic images are 28-by-28. Create a wavelet image scattering framework and set the
invariance scale to equal the size of the image. Set the number of rotations to 8 in each of the two
wavelet scattering filter banks. The construction of the wavelet scattering framework requires that
we set only two hyperparameters: the InvarianceScale and NumRotations.

sf = waveletScattering2('ImageSize',[28 28],'InvarianceScale',28, ...
    'NumRotations',[8 8]);

This example uses MATLAB™'s parallel processing capability through the tall array interface. If a
parallel pool is not currently running, you can start one by executing the following code. Alternatively,
the first time you create a tall array, the parallel pool is created.

if isempty(gcp)
    parpool;
end

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).
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For reproducibility, set the random number generator. Shuffle the files of the imageDatastore and
split the 10,000 images into two sets, one for training and one held-out set for testing. Allocate 80%
of the data, or 8,000 images, to the training set and hold out the remaining 2,000 images for testing.
Create tall arrays from the training and test datasets. Use the helper function helperScatImages
to create feature vectors from the scattering transform coefficients. helperScatImages obtains the
log of the scattering transform feature matrix as well as the mean along both the row and column
dimensions of each image. The code for helperScatImages is at the end of this example. For each
image in this example, the helper function creates a 217-by-1 feature vector.

rng(10);
Imds = shuffle(Imds);
[trainImds,testImds] = splitEachLabel(Imds,0.8);
Ttrain = tall(trainImds);
Ttest = tall(testImds);
trainfeatures = cellfun(@(x)helperScatImages(sf,x),Ttrain,'UniformOutput',false);
testfeatures = cellfun(@(x)helperScatImages(sf,x),Ttest,'UniformOutput',false);

Use tall's gather capability to concatenate all the training and test features.

Trainf = gather(trainfeatures);

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 3 min 51 sec
Evaluation completed in 3 min 51 sec

trainfeatures = cat(2,Trainf{:});
Testf = gather(testfeatures);

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 49 sec
Evaluation completed in 49 sec

testfeatures = cat(2,Testf{:});

The previous code results in two matrices with row dimensions 217 and column dimension equal to
the number of images in the training and test sets respectively. Accordingly, each column is a feature
vector for its corresponding image. The original images contained 784 elements. The scattering
coefficients represent an approximate 4-fold reduction in the size of each image.

PCA Model and Prediction

This example constructs a simple classifier based on the principal components of the scattering
feature vectors for each class. The classifier is implemented in the functions helperPCAModel and
helperPCAClassifier. helperPCAModel determines the principal components for each digit class
based on the scattering features. The code for helperPCAModel is at the end of this example.
helperPCAClassifier classifies the held-out test data by finding the closest match (best
projection) between the principal components of each test feature vector with the training set and
assigning the class accordingly. The code for helperPCAClassifier is at the end of this example.

model = helperPCAModel(trainfeatures,30,trainImds.Labels);
predlabels = helperPCAClassifier(testfeatures,model);

After constructing the model and classifying the test set, determine the accuracy of the test set
classification.

accuracy = sum(testImds.Labels == predlabels)./numel(testImds.Labels)*100

accuracy = 99.6000
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We have achieved 99.6% correct classification of the test data. To see how the 2,000 test images have
been classified, plot the confusion matrix. There are 200 examples in the test set for each of the 10
classes.

figure;
confusionchart(testImds.Labels,predlabels)
title('Test-Set Confusion Matrix -- Wavelet Scattering')

CNN

In this section, we train a simple convolutional neural network (CNN) to recognize digits. Construct
the CNN to consist of a convolution layer with 20 5-by-5 filters with 1-by-1 strides. Follow the
convolution layer with a RELU activation and max pooling layer. Use a fully connected layer, followed
by a softmax layer to normalize the output of the fully connected layer to probabilities. Use a cross
entropy loss function for learning.

imageSize = [28 28 1];
layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];
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Use stochastic gradient descent with momentum and a learning rate of 0.0001 for training. Set the
maximum number of epochs to 20. For reproducibility, set the ExecutionEnvironment to 'cpu'.

options = trainingOptions('sgdm', ...
    'MaxEpochs',20,...
    'InitialLearnRate',1e-4, ...
    'Verbose',false, ...
    'Plots','training-progress','ExecutionEnvironment','cpu');

Train the network. For training and testing we use the same data sets used in the scattering
transform.

reset(trainImds);
reset(testImds);
net = trainNetwork(trainImds,layers,options);

By the end of training, the CNN is performing near 100% on the training set. Use the trained network
to make predictions on the held-out test set.

YPred = classify(net,testImds,'ExecutionEnvironment','cpu');
DCNNaccuracy = sum(YPred == testImds.Labels)/numel(YPred)*100

DCNNaccuracy = 95.5000

The simple CNN has achieved 95.5% correct classification on the held-out test set. Plot the confusion
chart for the CNN.

figure;
confusionchart(testImds.Labels,YPred)
title('Test-Set Confusion Chart -- CNN')
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Summary

This example used wavelet image scattering to create low-variance representations of digit images
for classification. Using the scattering transform with fixed filter weights and a simple principal
components classifier, we achieved 99.6% correct classification on a held-out test set. With a simple
CNN in which the filters are learned, we achieved 95.5% correct. This example is not intended as a
direct comparison of the scattering transform and CNNs. There are multiple hyperparameter and
architectural changes you can make in each case, which significantly affect the results. The goal of
this example was simply to demonstrate the potential of deep feature extractors like the wavelet
scattering transform to produce robust representations of data for learning.
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function features = helperScatImages(sf,x)
% This function is only to support examples in the Wavelet Toolbox.
% It may change or be removed in a future release.

% Copyright 2018 MathWorks

smat = featureMatrix(sf,x,'transform','log');
features = mean(mean(smat,2),3);
end

helperPCAModel

function model = helperPCAModel(features,M,Labels)
% This function is only to support wavelet image scattering examples in 
% Wavelet Toolbox. It may change or be removed in a future release.
% model = helperPCAModel(features,M,Labels)

% Copyright 2018 MathWorks

% Initialize structure array to hold the affine model
model = struct('Dim',[],'mu',[],'U',[],'Labels',categorical([]),'s',[]);
model.Dim = M;
% Obtain the number of classes
LabelCategories = categories(Labels);
Nclasses = numel(categories(Labels));
for kk = 1:Nclasses
    Class = LabelCategories{kk};
    % Find indices corresponding to each class
    idxClass = Labels == Class;
    % Extract feature vectors for each class
    tmpFeatures = features(:,idxClass);
    % Determine the mean for each class
    model.mu{kk} = mean(tmpFeatures,2);
    [model.U{kk},model.S{kk}] = scatPCA(tmpFeatures);
    if size(model.U{kk},2) > M
        model.U{kk} = model.U{kk}(:,1:M);
        model.S{kk} = model.S{kk}(1:M);
        
    end
    model.Labels(kk) = Class;
end
    
function [u,s,v] = scatPCA(x,M)
    % Calculate the principal components of x along the second dimension.

    if nargin > 1 && M > 0
        % If M is non-zero, calculate the first M principal components.
        [u,s,v] = svds(x-sig_mean(x),M);
        s = abs(diag(s)/sqrt(size(x,2)-1)).^2;
    else
        % Otherwise, calculate all the principal components.
        % Each row is an observation, i.e. the number of scattering paths
        % Each column is a class observation
        [u,d] = eig(cov(x'));
        [s,ind] = sort(diag(d),'descend');
        u = u(:,ind);
    end
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end
end

helperPCAClassifier

function labels = helperPCAClassifier(features,model)
% This function is only to support wavelet image scattering examples in 
% Wavelet Toolbox. It may change or be removed in a future release.
% model is a structure array with fields, M, mu, v, and Labels
% features is the matrix of test data which is Ns-by-L, Ns is the number of
% scattering paths and L is the number of test examples. Each column of
% features is a test example.

% Copyright 2018 MathWorks

labelIdx = determineClass(features,model); 
labels = model.Labels(labelIdx); 
% Returns as column vector to agree with imageDatastore Labels
labels = labels(:);

%--------------------------------------------------------------------------
function labelIdx = determineClass(features,model)
% Determine number of classes
Nclasses = numel(model.Labels);
% Initialize error matrix
errMatrix = Inf(Nclasses,size(features,2));
for nc = 1:Nclasses
    % class centroid
    mu = model.mu{nc};
    u = model.U{nc};
    % 1-by-L
    errMatrix(nc,:) = projectionError(features,mu,u);
end
% Determine minimum along class dimension
[~,labelIdx] = min(errMatrix,[],1);   

%--------------------------------------------------------------------------
function totalerr = projectionError(features,mu,u)
    %
    Npc = size(u,2);
    L = size(features,2);
    % Subtract class mean: Ns-by-L minus Ns-by-1
    s = features-mu;
    % 1-by-L
    normSqX = sum(abs(s).^2,1)';
    err = Inf(Npc+1,L);
    err(1,:) = normSqX;
    err(2:end,:) = -abs(u'*s).^2;
    % 1-by-L
    totalerr = sqrt(sum(err,1));
end
end
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end
    

See Also
waveletScattering2

Related Examples
• “Parasite Classification Using Wavelet Scattering and Deep Learning” on page 13-194

More About
• “Wavelet Scattering” on page 9-2
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Acoustic Scene Recognition Using Late Fusion
This example shows how to create a multi-model late fusion system for acoustic scene recognition.
The example trains a convolutional neural network (CNN) using mel spectrograms and an ensemble
classifier using wavelet scattering. The example uses the TUT dataset for training and evaluation [1]
on page 13-0 .

Introduction

Acoustic scene classification (ASC) is the task of classifying environments from the sounds they
produce. ASC is a generic classification problem that is foundational for context awareness in
devices, robots, and many other applications [1] on page 13-0 . Early attempts at ASC used mel-
frequency cepstral coefficients (mfcc (Audio Toolbox)) and Gaussian mixture models (GMMs) to
describe their statistical distribution. Other popular features used for ASC include zero crossing rate,
spectral centroid (spectralCentroid (Audio Toolbox)), spectral rolloff (spectralRolloffPoint
(Audio Toolbox)), spectral flux (spectralFlux (Audio Toolbox) ), and linear prediction coefficients
(lpc (Signal Processing Toolbox)) [5] on page 13-0 . Hidden Markov models (HMMs) were trained
to describe the temporal evolution of the GMMs. More recently, the best performing systems have
used deep learning, usually CNNs, and a fusion of multiple models. The most popular feature for top-
ranked systems in the DCASE 2017 contest was the mel spectrogram (melSpectrogram (Audio
Toolbox)). The top-ranked systems in the challenge used late fusion and data augmentation to help
their systems generalize.

To illustrate a simple approach that produces reasonable results, this example trains a CNN using
mel spectrograms and an ensemble classifier using wavelet scattering. The CNN and ensemble
classifier produce roughly equivalent overall accuracy, but perform better at distinguishing different
acoustic scenes. To increase overall accuracy, you merge the CNN and ensemble classifier results
using late fusion.

Load Acoustic Scene Recognition Data Set

To run the example, you must first download the data set [1] on page 13-0 . The full data set is
approximately 15.5 GB. Depending on your machine and internet connection, downloading the data
can take about 4 hours.

downloadFolder = tempdir;
dataset = fullfile(downloadFolder,"TUT-acoustic-scenes-2017");

if ~datasetExists(dataset)
    disp("Downloading TUT-acoustic-scenes-2017 (15.5 GB) ...")
    HelperDownload_TUT_acoustic_scenes_2017(dataset);
end

Read in the development set metadata as a table. Name the table variables FileName,
AcousticScene, and SpecificLocation.

trainMetaData = readtable(fullfile(dataset,"TUT-acoustic-scenes-2017-development","meta"), ...
    Delimiter={'\t'}, ...
    ReadVariableNames=false);
trainMetaData.Properties.VariableNames = ["FileName","AcousticScene","SpecificLocation"];
head(trainMetaData)

ans=8×3 table
             FileName             AcousticScene    SpecificLocation
    __________________________    _____________    ________________
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    {'audio/b020_90_100.wav' }      {'beach'}          {'b020'}    
    {'audio/b020_110_120.wav'}      {'beach'}          {'b020'}    
    {'audio/b020_100_110.wav'}      {'beach'}          {'b020'}    
    {'audio/b020_40_50.wav'  }      {'beach'}          {'b020'}    
    {'audio/b020_50_60.wav'  }      {'beach'}          {'b020'}    
    {'audio/b020_30_40.wav'  }      {'beach'}          {'b020'}    
    {'audio/b020_160_170.wav'}      {'beach'}          {'b020'}    
    {'audio/b020_170_180.wav'}      {'beach'}          {'b020'}    

testMetaData = readtable(fullfile(dataset,"TUT-acoustic-scenes-2017-evaluation","meta"), ...
    Delimiter={'\t'}, ...
    ReadVariableNames=false);
testMetaData.Properties.VariableNames = ["FileName","AcousticScene","SpecificLocation"];
head(testMetaData)

ans=8×3 table
         FileName         AcousticScene    SpecificLocation
    __________________    _____________    ________________

    {'audio/1245.wav'}      {'beach'}          {'b174'}    
    {'audio/1456.wav'}      {'beach'}          {'b174'}    
    {'audio/1318.wav'}      {'beach'}          {'b174'}    
    {'audio/967.wav' }      {'beach'}          {'b174'}    
    {'audio/203.wav' }      {'beach'}          {'b174'}    
    {'audio/777.wav' }      {'beach'}          {'b174'}    
    {'audio/231.wav' }      {'beach'}          {'b174'}    
    {'audio/768.wav' }      {'beach'}          {'b174'}    

Note that the specific recording locations in the test set do not intersect with the specific recording
locations in the development set. This makes it easier to validate that the trained models can
generalize to real-world scenarios.

sharedRecordingLocations = intersect(testMetaData.SpecificLocation,trainMetaData.SpecificLocation);
disp("Number of specific recording locations in both train and test sets = " + numel(sharedRecordingLocations))

Number of specific recording locations in both train and test sets = 0

The first variable of the metadata tables contains the file names. Concatenate the file names with the
file paths.

trainFilePaths = fullfile(dataset,"TUT-acoustic-scenes-2017-development",trainMetaData.FileName);

testFilePaths = fullfile(dataset,"TUT-acoustic-scenes-2017-evaluation",testMetaData.FileName);

If the file listed in the metadata does not exist in the download, remove it.

ads = audioDatastore(dataset,IncludeSubfolders=true);
allFiles = ads.Files;

trainIdxToRemove = ~ismember(trainFilePaths,allFiles);
trainFilePaths(trainIdxToRemove) = [];
trainLabels = categorical(trainMetaData.AcousticScene);
trainLabels(trainIdxToRemove) = [];

testIdxToRemove = ~ismember(testFilePaths,allFiles);
testFilePaths(testIdxToRemove) = [];
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testLabels = categorical(testMetaData.AcousticScene);
testLabels(testIdxToRemove) = [];

Create audio datastores for the train and test sets. Set the Labels property of the audioDatastore
(Audio Toolbox) to the acoustic scene. Call countEachLabel (Audio Toolbox) to verify an even
distribution of labels in both the train and test sets.

adsTrain = audioDatastore(trainFilePaths, ...
    Labels=trainLabels, ...
    IncludeSubfolders=true);
display(countEachLabel(adsTrain))

  15×2 table

         Label          Count
    ________________    _____

    beach                312 
    bus                  312 
    cafe/restaurant      312 
    car                  312 
    city_center          312 
    forest_path          312 
    grocery_store        312 
    home                 312 
    library              312 
    metro_station        312 
    office               312 
    park                 312 
    residential_area     312 
    train                312 
    tram                 312 

adsTest = audioDatastore(testFilePaths, ...
    Labels=categorical(testMetaData.AcousticScene), ...
    IncludeSubfolders=true);
display(countEachLabel(adsTest))

  15×2 table

         Label          Count
    ________________    _____

    beach                108 
    bus                  108 
    cafe/restaurant      108 
    car                  108 
    city_center          108 
    forest_path          108 
    grocery_store        108 
    home                 108 
    library              108 
    metro_station        108 
    office               108 
    park                 108 
    residential_area     108 
    train                108 
    tram                 108 
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You can reduce the data set used in this example to speed up the run time at the cost of performance.
In general, reducing the data set is a good practice for development and debugging. Set
speedupExample to true to reduce the data set.

speedupExample = ;
if speedupExample
    adsTrain = splitEachLabel(adsTrain,20);
    adsTest = splitEachLabel(adsTest,10);
end

Call read (Audio Toolbox) to get the data and sample rate of a file from the train set. Audio in the
database has consistent sample rate and duration. Normalize the audio and listen to it. Display the
corresponding label.

[data,adsInfo] = read(adsTrain);
data = data./max(data,[],"all");

fs = adsInfo.SampleRate;
sound(data,fs)

disp("Acoustic scene = " + string(adsTrain.Labels(1)))

Acoustic scene = beach

Call reset (Audio Toolbox) to return the datastore to its initial condition.

reset(adsTrain)

Feature Extraction for CNN

Each audio clip in the dataset consists of 10 seconds of stereo (left-right) audio. The feature
extraction pipeline and the CNN architecture in this example are based on [3] on page 13-0 .
Hyperparameters for the feature extraction, the CNN architecture, and the training options were
modified from the original paper using a systematic hyperparameter optimization workflow.

First, convert the audio to mid-side encoding. [3] on page 13-0  suggests that mid-side encoded data
provides better spatial information that the CNN can use to identify moving sources (such as a train
moving across an acoustic scene).

dataMidSide = [sum(data,2),data(:,1)-data(:,2)];

Divide the signal into one-second segments with overlap. The final system uses a probability-weighted
average on the one-second segments to predict the scene for each 10-second audio clip in the test
set. Dividing the audio clips into one-second segments makes the network easier to train and helps
prevent overfitting to specific acoustic events in the training set. The overlap helps to ensure all
combinations of features relative to one another are captured by the training data. It also provides
the system with additional data that can be mixed uniquely during augmentation.

segmentLength = 1;
segmentOverlap = 0.5;

[dataBufferedMid,~] = buffer(dataMidSide(:,1),round(segmentLength*fs),round(segmentOverlap*fs),"nodelay");
[dataBufferedSide,~] = buffer(dataMidSide(:,2),round(segmentLength*fs),round(segmentOverlap*fs),"nodelay");
dataBuffered = zeros(size(dataBufferedMid,1),size(dataBufferedMid,2)+size(dataBufferedSide,2));
dataBuffered(:,1:2:end) = dataBufferedMid;
dataBuffered(:,2:2:end) = dataBufferedSide;
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Use melSpectrogram (Audio Toolbox) to transform the data into a compact frequency-domain
representation. Define parameters for the mel spectrogram as suggested by [3] on page 13-0 .

windowLength = 2048;
samplesPerHop = 1024;
samplesOverlap = windowLength - samplesPerHop;
fftLength = 2*windowLength;
numBands = 128;

melSpectrogram operates along channels independently. To optimize processing time, call
melSpectrogram with the entire buffered signal.

spec = melSpectrogram(dataBuffered,fs, ...
    Window=hamming(windowLength,"periodic"), ...
    OverlapLength=samplesOverlap, ...
    FFTLength=fftLength, ...
    NumBands=numBands);

Convert the mel spectrogram into the logarithmic scale.

spec = log10(spec+eps);

Reshape the array to dimensions (Number of bands)-by-(Number of hops)-by-(Number of channels)-
by-(Number of segments). When you feed an image into a neural network, the first two dimensions
are the height and width of the image, the third dimension is the channels, and the fourth dimension
separates the individual images.

X = reshape(spec,size(spec,1),size(spec,2),size(data,2),[]);

Call melSpectrogram without output arguments to plot the mel spectrogram of the mid channel for
the first six of the one-second increments.

tiledlayout(3,2)
for channel = 1:2:11
    nexttile
    melSpectrogram(dataBuffered(:,channel),fs, ...
        Window=hamming(windowLength,"periodic"), ...
        OverlapLength=samplesOverlap, ...
        FFTLength=fftLength, ...
        NumBands=numBands);
    title("Segment " + ceil(channel/2))
end
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The helper function HelperSegmentedMelSpectrograms on page 13-0  performs the feature
extraction steps outlined above.

To speed up processing, extract mel spectrograms of all audio files in the datastores using tall
arrays. Unlike in-memory arrays, tall arrays remain unevaluated until you request that the
calculations be performed using the gather function. This deferred evaluation enables you to work
quickly with large data sets. When you eventually request the output using gather, MATLAB
combines the queued calculations where possible and takes the minimum number of passes through
the data. If you have Parallel Computing Toolbox™, you can use tall arrays in your local MATLAB
session, or on a local parallel pool. You can also run tall array calculations on a cluster if you have
MATLAB® Parallel Server™ installed.

If you do not have Parallel Computing Toolbox™, the code in this example still runs.

train_set_tall = tall(adsTrain);
xTrain = cellfun(@(x)HelperSegmentedMelSpectrograms(x,fs, ...
    SegmentLength=segmentLength, ...
    SegmentOverlap=segmentOverlap, ...
    WindowLength=windowLength, ...
    HopLength=samplesPerHop, ...
    NumBands=numBands, ...
    FFTLength=fftLength), ...
    train_set_tall, ...
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    UniformOutput=false);
xTrain = gather(xTrain);

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: 0% complete
Evaluation 0% complete

- Pass 1 of 1: Completed in 3 min 56 sec
Evaluation completed in 3 min 56 sec

xTrain = cat(4,xTrain{:});

test_set_tall = tall(adsTest);
xTest = cellfun(@(x)HelperSegmentedMelSpectrograms(x,fs, ...
    SegmentLength=segmentLength, ...
    SegmentOverlap=segmentOverlap, ...
    WindowLength=windowLength, ...
    HopLength=samplesPerHop, ...
    NumBands=numBands, ...
    FFTLength=fftLength), ...
    test_set_tall, ...
    UniformOutput=false);
xTest = gather(xTest);

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1 min 26 sec
Evaluation completed in 1 min 26 sec

xTest = cat(4,xTest{:});

Replicate the labels of the training and test sets so that they are in one-to-one correspondence with
the segments.

numSegmentsPer10seconds = size(dataBuffered,2)/2;
yTrain = repmat(adsTrain.Labels,1,numSegmentsPer10seconds)';
yTrain = yTrain(:);
yTest = repmat(adsTest.Labels,1,numSegmentsPer10seconds)';
yTest = yTest(:);

Data Augmentation for CNN

The DCASE 2017 dataset contains a relatively small number of acoustic recordings for the task, and
the development set and evaluation set were recorded at different specific locations. As a result, it is
easy to overfit to the data during training. One popular method to reduce overfitting is mixup. In
mixup, you augment your dataset by mixing the features of two different classes. When you mix the
features, you mix the labels in equal proportion. That is:

x∼ = λxi + 1− λ x j

y∼ = λyi + 1− λ y j

Mixup was reformulated by [2] on page 13-0  as labels drawn from a probability distribution instead
of mixed labels. The implementation of mixup in this example is a simplified version of mixup: each
spectrogram is mixed with a spectrogram of a different label with lambda set to 0.5. The original and
mixed datasets are combined for training.

xTrainExtra = xTrain;
yTrainExtra = yTrain;
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lambda = 0.5;
for ii = 1:size(xTrain,4)
    
    % Find all available spectrograms with different labels.
    availableSpectrograms = find(yTrain~=yTrain(ii));
    
    % Randomly choose one of the available spectrograms with a different label.
    numAvailableSpectrograms = numel(availableSpectrograms);
    idx = randi([1,numAvailableSpectrograms]);
    
    % Mix.
    xTrainExtra(:,:,:,ii) = lambda*xTrain(:,:,:,ii) + (1-lambda)*xTrain(:,:,:,availableSpectrograms(idx));
    
    % Specify the label as randomly set by lambda.
    if rand > lambda
        yTrainExtra(ii) = yTrain(availableSpectrograms(idx));
    end
end
xTrain = cat(4,xTrain,xTrainExtra);
yTrain = [yTrain;yTrainExtra];

Call summary to display the distribution of labels for the augmented training set.

summary(yTrain)

     beach                 11769 
     bus                   11904 
     cafe/restaurant       11873 
     car                   11820 
     city_center           11886 
     forest_path           11936 
     grocery_store         11914 
     home                  11923 
     library               11817 
     metro_station         11804 
     office                11922 
     park                  11871 
     residential_area      11704 
     train                 11773 
     tram                  11924 

Define and Train CNN

Define the CNN architecture. This architecture is based on [1] on page 13-0  and modified through
trial and error. See “List of Deep Learning Layers” (Deep Learning Toolbox) to learn more about deep
learning layers available in MATLAB®.

imgSize = [size(xTrain,1),size(xTrain,2),size(xTrain,3)];
numF = 32;
layers = [ ...
    imageInputLayer(imgSize)
    
    batchNormalizationLayer
    
    convolution2dLayer(3,numF,Padding="same")
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,numF,Padding="same")
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    batchNormalizationLayer
    reluLayer 
    
    maxPooling2dLayer(3,Stride=2,Padding="same")

    convolution2dLayer(3,2*numF,Padding="same")
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,2*numF,Padding="same")
    batchNormalizationLayer
    reluLayer
    
    maxPooling2dLayer(3,Stride=2,Padding="same")
    
    convolution2dLayer(3,4*numF,Padding="same")
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,4*numF,Padding="same")
    batchNormalizationLayer
    reluLayer
    
    maxPooling2dLayer(3,Stride=2,Padding="same")
    
    convolution2dLayer(3,8*numF,Padding="same")
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,8*numF,Padding="same")
    batchNormalizationLayer
    reluLayer
    
    globalAveragePooling2dLayer
    
    dropoutLayer(0.5)
    
    fullyConnectedLayer(15)
    softmaxLayer
    classificationLayer];

Define trainingOptions (Deep Learning Toolbox) for the CNN. These options are based on [3] on
page 13-0  and modified through a systematic hyperparameter optimization workflow.

miniBatchSize = 128;
tuneme = 128;
lr = 0.05*miniBatchSize/tuneme;
options = trainingOptions( ...
    "sgdm", ...
    Momentum=0.9, ...
    L2Regularization=0.005, ...
    ...
    MiniBatchSize=miniBatchSize, ...
    MaxEpochs=8, ...
    Shuffle="every-epoch", ...
    ...
    Plots="training-progress", ...
    Verbose=false, ...
    ...
    InitialLearnRate=lr, ...
    LearnRateSchedule="piecewise", ...
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    LearnRateDropPeriod=2, ...
    LearnRateDropFactor=0.2, ...
    ...
    ValidationData={xTest,yTest}, ...
    ValidationFrequency=floor(size(xTrain,4)/miniBatchSize));

Call trainNetwork (Deep Learning Toolbox) to train the network.

trainedNet = trainNetwork(xTrain,yTrain,layers,options);

Evaluate CNN

Call predict (Deep Learning Toolbox) to predict responses from the trained network using the held-
out test set.

cnnResponsesPerSegment = predict(trainedNet,xTest);

Average the responses over each 10-second audio clip.

classes = trainedNet.Layers(end).Classes;
numFiles = numel(adsTest.Files);

counter = 1;
cnnResponses = zeros(numFiles,numel(classes));
for channel = 1:numFiles
    cnnResponses(channel,:) = sum(cnnResponsesPerSegment(counter:counter+numSegmentsPer10seconds-1,:),1)/numSegmentsPer10seconds;
    counter = counter + numSegmentsPer10seconds;
end

For each 10-second audio clip, choose the maximum of the predictions, then map it to the
corresponding predicted location.
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[~,classIdx] = max(cnnResponses,[],2);
cnnPredictedLabels = classes(classIdx);

Call confusionchart (Deep Learning Toolbox) to visualize the accuracy on the test set.

figure(Units="normalized",Position=[0.2 0.2 0.5 0.5])
confusionchart(adsTest.Labels,cnnPredictedLabels, ...
    title=["Test Accuracy - CNN","Average Accuracy = " + mean(adsTest.Labels==cnnPredictedLabels)*100], ...
    ColumnSummary="column-normalized",RowSummary="row-normalized");

Feature Extraction for Ensemble Classifier

Wavelet scattering has been shown in [4] on page 13-0  to provide a good representation of acoustic
scenes. Define a waveletScattering object. The invariance scale and quality factors were
determined through trial and error.

sf = waveletScattering(SignalLength=size(data,1), ...
                       SamplingFrequency=fs, ...
                       InvarianceScale=0.75, ...
                       QualityFactors=[4 1]);

Convert the audio signal to mono, and then call featureMatrix to return the scattering coefficients
for the scattering decomposition framework, sf.

dataMono = mean(data,2);
scatteringCoeffients = featureMatrix(sf,dataMono,Transform="log");

Average the scattering coefficients over the 10-second audio clip.

featureVector = mean(scatteringCoeffients,2);
disp("Number of wavelet features per 10-second clip = " + numel(featureVector));
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Number of wavelet features per 10-second clip = 286

The helper function HelperWaveletFeatureVector on page 13-0  performs the above steps. Use
a tall array with cellfun and HelperWaveletFeatureVector to parallelize the feature
extraction. Extract wavelet feature vectors for the train and test sets.

scatteringTrain = cellfun(@(x)HelperWaveletFeatureVector(x,sf),train_set_tall,UniformOutput=false);
xTrain = gather(scatteringTrain);
xTrain = cell2mat(xTrain')';

scatteringTest = cellfun(@(x)HelperWaveletFeatureVector(x,sf),test_set_tall,UniformOutput=false);
xTest = gather(scatteringTest);
xTest = cell2mat(xTest')';

Define and Train Ensemble Classifier

Use fitcensemble to create a trained classification ensemble model (ClassificationEnsemble).

subspaceDimension = min(150,size(xTrain,2) - 1);
numLearningCycles = 30;
classificationEnsemble = fitcensemble(xTrain,adsTrain.Labels, ...
    Method="Subspace", ...
    NumLearningCycles=numLearningCycles, ...
    Learners="discriminant", ...
    NPredToSample=subspaceDimension, ...
    ClassNames=removecats(unique(adsTrain.Labels)));

Evaluate Ensemble Classifier

For each 10-second audio clip, call predict to return the labels and the weights, then map it to the
corresponding predicted location. Call confusionchart (Deep Learning Toolbox) to visualize the
accuracy on the test set.

[waveletPredictedLabels,waveletResponses] = predict(classificationEnsemble,xTest);

figure(Units="normalized",Position=[0.2 0.2 0.5 0.5])
confusionchart(adsTest.Labels,waveletPredictedLabels, ...
    title=["Test Accuracy - Wavelet Scattering","Average Accuracy = " + mean(adsTest.Labels==waveletPredictedLabels)*100], ...
    ColumnSummary="column-normalized",RowSummary="row-normalized");
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fprintf('Average accuracy of classifier = %0.2f\n',mean(adsTest.Labels==waveletPredictedLabels)*100)

Average accuracy of classifier = 75.74

Apply Late Fusion

For each 10-second clip, calling predict on the wavelet classifier and the CNN returns a vector
indicating the relative confidence in their decision. Multiply the waveletResponses with the
cnnResponses to create a late fusion system.

fused = waveletResponses.*cnnResponses;
[~,classIdx] = max(fused,[],2);

predictedLabels = classes(classIdx);

Evaluate Late Fusion

Call confusionchart to visualize the fused classification accuracy.

figure(Units="normalized",Position=[0.2 0.2 0.5 0.5])
confusionchart(adsTest.Labels,predictedLabels, ...
    Title=["Test Accuracy - Fusion","Average Accuracy = " + mean(adsTest.Labels==predictedLabels)*100], ...
    ColumnSummary="column-normalized",RowSummary="row-normalized");
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Supporting Functions

HelperSegmentedMelSpectrograms

function X = HelperSegmentedMelSpectrograms(x,fs,varargin)
% Copyright 2019-2021 The MathWorks, Inc.
p = inputParser;
addParameter(p,WindowLength=1024);
addParameter(p,HopLength=512);
addParameter(p,NumBands=128);
addParameter(p,SegmentLength=1);
addParameter(p,SegmentOverlap=0);
addParameter(p,FFTLength=1024);
parse(p,varargin{:})
params = p.Results;

x = [sum(x,2),x(:,1)-x(:,2)];
x = x./max(max(x));

[xb_m,~] = buffer(x(:,1),round(params.SegmentLength*fs),round(params.SegmentOverlap*fs),"nodelay");
[xb_s,~] = buffer(x(:,2),round(params.SegmentLength*fs),round(params.SegmentOverlap*fs),"nodelay");
xb = zeros(size(xb_m,1),size(xb_m,2)+size(xb_s,2));
xb(:,1:2:end) = xb_m;
xb(:,2:2:end) = xb_s;

spec = melSpectrogram(xb,fs, ...
    Window=hamming(params.WindowLength,"periodic"), ...
    OverlapLength=params.WindowLength - params.HopLength, ...
    FFTLength=params.FFTLength, ...
    NumBands=params.NumBands, ...
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    FrequencyRange=[0,floor(fs/2)]);
spec = log10(spec+eps);

X = reshape(spec,size(spec,1),size(spec,2),size(x,2),[]);
end

HelperWaveletFeatureExtractor

function features = HelperWaveletFeatureVector(x,sf)
% Copyright 2019-2021 The MathWorks, Inc.
x = mean(x,2);
features = featureMatrix(sf,x,Transform="log");
features = mean(features,2);
end
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• “Fault Detection Using Wavelet Scattering and Recurrent Deep Networks” on page 13-216
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GPU Acceleration of Scalograms for Deep Learning
This example shows how you can accelerate scalogram computation using GPUs. The computed
scalograms are used as the input features to deep convolution neural networks (CNN) for ECG and
spoken digit classification.

Using a GPU requires Parallel Computing Toolbox™. To see which GPUs are supported, see “GPU
Support by Release” (Parallel Computing Toolbox). The audio section of this example requires Audio
Toolbox™ to use the audio datastore and transformed datastore.

Scalogram Computation Using GPU

The most efficient way to compute scalograms on the GPU is to use cwtfilterbank. The steps to
compute scalograms on the GPU are:

1 Construct cwtfilterbank with the desired property settings.
2 Move the signal to the GPU using gpuArray.
3 Use the filter bank WT method to compute the continuous wavelet transform (CWT).

The first time you use the WT method, cwtfilterbank caches the wavelet filters on the GPU. As a
result, substantial time savings in computation are realized when you obtain scalograms of multiple
signals using the same filter bank and same datatype. The following demonstrates the recommended
workflow. As an example, use a sample of guitar music containing 661,500 samples.

[y,fs] = audioread('guitartune.wav');
plot(y)
grid on
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Because most NVIDIA GPUs are significantly more efficient with single rather than double-precision
data, cast the signal to single precision.

y = single(y);

Construct the filter bank to match the signal length and the sampling frequency. For deep learning,
the sampling frequency is normally not necessary and therefore can be excluded.

fb = cwtfilterbank('SignalLength',length(y),'SamplingFrequency',fs);

Finally move the signal to the GPU using gpuArray and compute the CWT of the data. Plot the
resulting scalogram.

[cfs,f] = fb.wt(gpuArray(y));
t = 0:1/fs:(length(y)*1/fs)-1/fs;
imagesc(t,f,abs(cfs))
axis xy
ylabel('Hz')
xlabel('Seconds')

 GPU Acceleration of Scalograms for Deep Learning

13-119



Use gather to bring the CWT coefficients and any other outputs back to the CPU.

cfs = gather(cfs);
f = gather(f);

To demonstrate the efficiency gained in using the GPU, time the CWT computation on the GPU and
CPU for the same signal. The GPU compute times reported here are obtained using an NVIDIA Titan
V with a compute capability of 7.0.

ygpu = gpuArray(y);
fgpu = @()fb.wt(ygpu);
Tgpu = gputimeit(fgpu)

Tgpu = 0.2658

Repeat the same measurement on the CPU and examine the ratio of GPU to CPU time to see the
reduction in computation time.

fcpu = @()fb.wt(y);
Tcpu = timeit(fcpu)

Tcpu = 3.7088

Tcpu/Tgpu

ans = 13.9533
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Scalograms in Deep Learning

A common application of the CWT in deep learning is to use the scalogram of a signal as the input
"image" to a deep CNN. This necessarily mandates the computation of multiple scalograms, one for
each signal in the training, validation, and test sets. While GPUs are often used to speed up training
and inference in the deep network, it is also beneficial to use GPUs to accelerate any feature
extraction, or data preprocessing needed to make the deep network more robust.

To illustrate this, the following section applies wavelet scalograms to human electrocardiogram (ECG)
classification. Scalograms are used with the same data treated in “Classify Time Series Using Wavelet
Analysis and Deep Learning” on page 13-69. In that example, transfer learning with GoogLeNet and
SqueezeNet was used to classify ECG waveforms into one of three categories. The description of the
data and how to obtain it is repeated here for convenience.

ECG Data Description and Download

The ECG data is obtained from three groups of people: persons with cardiac arrhythmia (ARR),
persons with congestive heart failure (CHF), and persons with normal sinus rhythms (NSR). In total
there are 162 ECG recordings from three PhysioNet databases: MIT-BIH Arrhythmia Database [2][3],
MIT-BIH Normal Sinus Rhythm Database [3], and The BIDMC Congestive Heart Failure Database [1]
[3]. More specifically, 96 recordings from persons with arrhythmia, 30 recordings from persons with
congestive heart failure, and 36 recordings from persons with normal sinus rhythms. The goal is to
train a model to distinguish between ARR, CHF, and NSR.

You can obtain this data from the MathWorks GitHub repository. To download the data from the
website, click Code and select Download ZIP. Save the file physionet_ECG_data-main.zip in a
folder where you have write permission. The instructions for this example assume you have
downloaded the file to your temporary directory, tempdir, in MATLAB. Modify the subsequent
instructions for unzipping and loading the data if you choose to download the data in folder different
from tempdir.

After downloading the data from GitHub, unzip the file in your temporary directory.

unzip(fullfile(tempdir,'physionet_ECG_data-main.zip'),tempdir)

Unzipping creates the folder physionet-ECG_data-main in your temporary directory. This folder
contains the text file README.md and ECGData.zip. The ECGData.zip file contains

• ECGData.mat
• Modified_physionet_data.txt
• License.txt

ECGData.mat holds the data used in this example. The text file, Modified_physionet_data.txt,
is required by PhysioNet's copying policy and provides the source attributions for the data as well as
a description of the preprocessing steps applied to each ECG recording.

Unzip ECGData.zip in physionet-ECG_data-main. Load the data file into your MATLAB
workspace.

unzip(fullfile(tempdir,'physionet_ECG_data-main','ECGData.zip'),...
    fullfile(tempdir,'physionet_ECG_data-main'))
load(fullfile(tempdir,'physionet_ECG_data-main','ECGData.mat'))

ECGData is a structure array with two fields: Data and Labels. The Data field is a 162-by-65536
matrix where each row is an ECG recording sampled at 128 hertz. Labels is a 162-by-1 cell array of
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diagnostic labels, one for each row of Data. The three diagnostic categories are: 'ARR', 'CHF', and
'NSR'. Use the helper function, helperRandomSplit, to split the data into training and validation
sets with 80% of the data allocated for training and 20% for validation. Convert the ECG diagnostic
labels into categoricals.

[trainData, validationData, trainLabels, validationLabels] = helperRandomSplit(80,ECGData);
trainLabels = categorical(trainLabels);
validationLabels = categorical(validationLabels);

There are 130 records in the trainData set and 32 records in validationData. By design, the
training data contains 80.25% (130/162) of the data. Recall that the ARR class represents 59.26% of
the data (96/162), the CHF class represents 18.52% (30/162), and the NSR class represents 22.22%
(36/162). Examine the percentage of each class in the training and test sets. The percentages in each
are consistent with the overall class percentages in the data set.

Ctrain = countcats(trainLabels)./numel(trainLabels).*100

Ctrain = 3×1

   59.2308
   18.4615
   22.3077

Cvalid = countcats(validationLabels)./numel(validationLabels).*100

Cvalid = 3×1

   59.3750
   18.7500
   21.8750

Scalograms With Deep CNN — ECG Data

Scalogram Computation on the GPU

Compute the scalograms for both the training and validation sets. Set useGPU to true to use the
GPU and false to compute the scalograms on the CPU. To mitigate the effect of large input matrices
on the CNN and create more training and validation examples, helperECGScalograms splits each
ECG waveform into four nonoverlapping segments of 16384 samples each and computes scalograms
for all four segments. Replicate the labels to match the expanded dataset. In this case, obtain an
estimate of the expended computation time.

frameLength = 16384;
useGPU = true;
tic;
Xtrain = helperECGScalograms(trainData,frameLength,useGPU);

Computing scalograms...
Processed 50 files out of 130
Processed 100 files out of 130
...done

T = toc;
sprintf('Elapsed time is %1.2f seconds',T)

ans = 
'Elapsed time is 4.22 seconds'
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trainLabels = repelem(trainLabels,4);

With the Titan V GPU, 502 scalograms have been computed in approximately 4.2 seconds. Setting
useGPU to false and repeating the above computation demonstrates the speed up obtained by
using the GPU. In this case, using the CPU required 33.3 seconds to compute the scalograms. The
GPU computation was more than 7 times faster.

Repeat the same process for the validation data.

useGPU = true;
Xvalid = helperECGScalograms(validationData,frameLength,useGPU);

Computing scalograms...
...done

validationLabels = repelem(validationLabels,4);

Next set up a deep CNN to process both the training and validation sets. The simple network used
here is not optimized. This CNN is only used to illustrate the end-to-end workflow for cases where the
scalograms fit in memory.

sz = size(Xtrain);
specSize = sz(1:2);
imageSize = [specSize 1];
dropoutProb = 0.3;

layers = [
    imageInputLayer(imageSize)
    
    convolution2dLayer(3,12,'Padding','same')
    batchNormalizationLayer
    reluLayer
    
    maxPooling2dLayer(2,'Stride',2)
    
   
    convolution2dLayer(3,20,'Padding','same')
    batchNormalizationLayer
    reluLayer
    
    maxPooling2dLayer(2,'Stride',2)
    
   
    
    convolution2dLayer(3,32,'Padding','same')
    batchNormalizationLayer
    reluLayer
    dropoutLayer(dropoutProb)
    fullyConnectedLayer(3)
    softmaxLayer
    classificationLayer];

Use the following training options.

options = trainingOptions('sgdm',...
    'InitialLearnRate', 1e-4,...
    'LearnRateDropPeriod',18,...
    'MiniBatchSize', 20,...
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    'MaxEpochs',25,...
    'L2Regularization',1e-1,...
    'Plots', 'training-progress',...
    'Verbose',false,...
    'Shuffle','every-epoch',...
    'ExecutionEnvironment','auto',...
    'ValidationData',{Xvalid,validationLabels});

Train the network and measure the validation error.

trainNetwork(Xtrain,trainLabels,layers,options);

Even though the simple CNN used here is not optimized, the validation accuracy is consistently in the
high 80 to low 90 percent range. This is comparable to the validation accuracy achieved with the
more powerful and optimized SqueezeNet shown in “Classify Time Series Using Wavelet Analysis and
Deep Learning” on page 13-69 example. Further, this is a much more efficient use of the scalogram,
because in that example the scalograms had to be rescaled as RGB images compatible with
SqueezeNet, saved to disk in an appropriate image format, and then fed to the deep network using
imageDatastore.

Spoken Digit Recognition — GPU Computing using Transform Datastore

This section shows how to accelerate scalogram computation using GPU in a transformed datastore
workflow.

Data

Clone or download the Free Spoken Digit Dataset (FSDD), available at https://github.com/Jakobovski/
free-spoken-digit-dataset. FSDD is an open data set, which means that it can grow over time. This
example uses the version committed on 01/29/2019 which consists of 2000 recordings of the English
digits 0 through 9 obtained from four speakers. Two of the speakers in this version are native
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speakers of American English and two speakers are nonnative speakers of English with a Belgium
French and German accent. The data is sampled at 8000 Hz.

For other approaches to this dataset including wavelet scattering, see “Spoken Digit Recognition with
Wavelet Scattering and Deep Learning” on page 13-53.

Use audioDatastore to manage data access and ensure the random division of the recordings into
training and test sets. Set the location property to the location of the FSDD recordings folder on
your computer, for example:

pathToRecordingsFolder = '/home/user/free-spoken-digit-dataset/recordings';
location = pathToRecordingsFolder;

Point audioDatastore to that location.

ads = audioDatastore(location);

The helper function helpergenLabels creates a categorical array of labels from the FSDD files.
List the classes and the number of examples in each class.

ads.Labels = helpergenLabels(ads);
summary(ads.Labels)

     0      200 
     1      200 
     2      200 
     3      200 
     4      200 
     5      200 
     6      200 
     7      200 
     8      200 
     9      200 

Transformed Datastore

First split the FSDD into training and test sets. Allocate 80% of the data to the training set and retain
20% for the test set.

rng default;
ads = shuffle(ads);
[adsTrain,adsTest] = splitEachLabel(ads,0.8);
countEachLabel(adsTrain)

ans=10×2 table
    Label    Count
    _____    _____

      0       160 
      1       160 
      2       160 
      3       160 
      4       160 
      5       160 
      6       160 
      7       160 
      8       160 
      9       160 
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Next create the CWT filter bank and the transformed datastores for both the training and test data
using the helper function, helperDigitScalogram. The transformed datastore converts each
recording into a signal of length 8192, computes the scalogram on the GPU, and gathers the data
back onto the CPU.

reset(gpuDevice(1))
fb = cwtfilterbank('SignalLength',8192);
adsSCTrain = transform(adsTrain,@(audio,info)helperDigitScalogram(audio,info,fb),'IncludeInfo',true);
adsSCTest = transform(adsTest,@(audio,info)helperDigitScalogram(audio,info,fb),'IncludeInfo',true);

Deep CNN

Construct a deep CNN to train with the transformed datastore, adscTrain. As in the first example,
the network is not optimized. The point is to show the workflow using scalograms computed on the
GPU for out-of-memory data.

numClasses = 10;

dropoutProb = 0.2;
numF = 12;
layers = [
    imageInputLayer([101 8192 1])

    convolution2dLayer(5,numF,'Padding','same')
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(3,'Stride',2,'Padding','same')

    convolution2dLayer(3,2*numF,'Padding','same')
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(3,'Stride',2,'Padding','same')

    convolution2dLayer(3,4*numF,'Padding','same')
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(3,'Stride',2,'Padding','same')

    convolution2dLayer(3,4*numF,'Padding','same')
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,4*numF,'Padding','same')
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(2)

    dropoutLayer(dropoutProb)
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer('Classes',categories(ads.Labels));
   ]; 

Set the training options for the network.

13 Featured Examples — Machine Learning and Deep Learning

13-126



miniBatchSize = 25;
options = trainingOptions('adam', ...
    'InitialLearnRate',1e-4, ...
    'MaxEpochs',30, ...
    'MiniBatchSize',miniBatchSize, ...
    'Shuffle','every-epoch', ...
    'Plots', 'training-progress',...
    'Verbose',false,...
    'ExecutionEnvironment','gpu');

Train the network.

trainedNet = trainNetwork(adsSCTrain,layers,options);

In this instance, training was completed in 25 minutes and 10 seconds. If you comment out the call to
gpuArray in helperDigitScalogram and use the CPU to obtain the scalograms, training time
increases significantly. In this case, an increase from 25 minutes and 10 seconds to 45 minutes and
38 seconds was observed.

Use the trained network to predict the digit labels for the test set.

Ypredicted = classify(trainedNet,adsSCTest,'ExecutionEnvironment','CPU');
cnnAccuracy = sum(Ypredicted == adsTest.Labels)/numel(Ypredicted)*100

cnnAccuracy = 96.2500

The inference time using the GPU was approximately 22 seconds. Using the CPU, inference time
doubled to 45 seconds.

The performance of trained network on the test data is close to 96%. This is comparable to the
performance in “Spoken Digit Recognition with Wavelet Scattering and Deep Learning” on page 13-
53.
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Summary

This example has showcased how to use the GPU to accelerate scalogram computation. The example
presented the optimal workflow for efficiently computing scalograms both for in-memory data and for
out-of-memory data read from disk using transformed datastores.
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function Labels = helpergenLabels(ads)
% This function is only for use in Wavelet Toolbox examples. It may be
% changed or removed in a future release.
tmp = cell(numel(ads.Files),1);
expression = "[0-9]+_";
for nf = 1:numel(ads.Files)
    idx = regexp(ads.Files{nf},expression);
    tmp{nf} = ads.Files{nf}(idx);
end
Labels = categorical(tmp);

end

function X = helperECGScalograms(data,window,useGPU)

disp("Computing scalograms...");
Nsig = size(data,1);
Nsamp = size(data,2);
Nsegment = Nsamp/window;

fb = cwtfilterbank('SignalLength',window,'Voices',10);
Ns = length(fb.Scales);
X = zeros([Ns,window,1,Nsig*Nsegment],'single');
start = 0;
if useGPU
    data = gpuArray(single(data'));
else
    data = single(data');
end
for ii = 1:Nsig
    ts = data(:,ii);
    ts = reshape(ts,window,Nsegment);
    ts = (ts-mean(ts))./max(abs(ts));
    
    for kk = 1:size(ts,2)
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        cfs = fb.wt(ts(:,kk));
        X(:,:,1,kk+start) = gather(abs(cfs));
        
    end
    start = start+Nsegment;
    
    if mod(ii,50) == 0
        disp("Processed " + ii + " files out of " + Nsig)
    end
    
end

disp("...done");
data = gather(data);

end

function [x,info] = helperReadSPData(x,info)
% This function is only for use Wavelet Toolbox examples. It may change or
% be removed in a future release.

N = numel(x);
if N > 8192
    x = x(1:8192);
elseif N < 8192
    pad = 8192-N;
    prepad = floor(pad/2);
    postpad = ceil(pad/2);
    x = [zeros(prepad,1) ; x ; zeros(postpad,1)];
end
x = x./max(abs(x));

end

function [dataout,info] = helperDigitScalogram(audioin,info,fb)
audioin = single(audioin);
audioin = gpuArray(audioin);
audioin = helperReadSPData(audioin);
cfs = gather(abs(fb.wt(audioin)));
audioin = gather(audioin);
dataout = {cfs,info.Label};
end

See Also
cwtfilterbank

Related Examples
• “Crack Identification from Accelerometer Data” on page 13-137
• “Wavelet Time Scattering with GPU Acceleration — Spoken Digit Recognition” on page 13-46
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Deploy Signal Classifier Using Wavelets and Deep Learning on
Raspberry Pi

This example shows the workflow to classify human electrocardiogram (ECG) signals using the
Continuous Wavelet Transform (CWT) and a deep convolutional neural network (CNN). This example
also provides information on how to generate and deploy the code and CNN for prediction on a
Raspberry Pi target (ARM®-based device).

SqueezeNet is a deep CNN originally designed to classify images in 1000 categories. In the example
“Classify Time Series Using Wavelet Analysis and Deep Learning” on page 13-69, SqueezeNet is
retrained to classify ECG waveforms based on their scalograms. A scalogram is a time-frequency
representation of the signal and is the absolute value of the CWT of the signal. We reuse the retrained
SqueezeNet in this example.

ECG Data Description

In this example, ECG data from PhysioNet is used. The ECG data is obtained from three groups of
people: persons with cardiac arrhythmia (ARR), persons with congestive heart failure (CHF), and
persons with normal sinus rhythms (NSR). The data set includes 96 recordings from persons with
ARR, 30 recordings from persons with CHF, and 36 recordings from persons with NSR. The 162 ECG
recordings are from three PhysioNet databases: MIT-BIH Arrhythmia Database [2][3], MIT-BIH
Normal Sinus Rhythm Database [3], and The BIDMC Congestive Heart Failure Database [1][3].
Shortened ECG data of the above references can be downloaded from the GitHub repository.

Prerequisites

• ARM processor that supports the NEON extension
• ARM Compute Library version 19.05 (on the target ARM hardware)
• Environment variables for the compilers and libraries
• MATLAB Support Package for Raspberry Pi Hardware
• MATLAB Coder Interface for Deep Learning Libraries support package

For supported versions of libraries and for information about setting up environment variables, see
“Prerequisites for Deep Learning with MATLAB Coder” (MATLAB Coder). This example is not
supported in MATLAB Online™.

Functionality of Generated Code

The core function in the generated executable, processECG, uses 65,536 samples of single-precision
ECG data as input. The function:

1 Takes the CWT of the ECG data.
2 Obtains scalogram from wavelet coefficients.
3 Converts the scalogram to an RGB image of dimension 227-by-227-by-3. This makes the image

compatible with the SqueezeNet network architecture.
4 Performs prediction to classify the image using SqueezeNet.

type processECG

function [YPred] = processECG(input)
% processECG function - converts 1D ECG to image and predicts the syndrome
% of heart disease
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%
% This function is only intended to support the example:
% Signal Classification Code Generation Using Wavelets and
% Deep Learning on Raspberry Pi. It may change or be removed in a
% future release.

% Copyright 2020 The MathWorks, Inc.

    % colourmap for image transformation
    persistent net jetdata;
    if(isempty(jetdata))
        jetdata = colourmap(128,class(input));
    end

    % Squeezenet trained network
    if(isempty(net))
        net = coder.loadDeepLearningNetwork('trainedNet.mat');
    end

    % Wavelet Transformation & Image conversion
    cfs = ecg_to_Image(input);
    image = ind2rgb(im2uint8(rescale(cfs)),single(jetdata));
    image = im2uint8(imresize(image,[227,227]));

    % figure
    if isempty(coder.target)        
        imshow(image);
    end

    % Prediction
    [YPred] = predict(net,image);

    %% ECG to image conversion
    function cfs = ecg_to_Image(input)

        %Wavelet Transformation
        persistent filterBank
        [~,siglen] = size(input);
        if isempty(filterBank)
            filterBank = cwtfilterbank('SignalLength',siglen,'VoicesPerOctave',6);
        end
        %CWT conversion
        cfs = abs(filterBank.wt(input));
    end

    %% Colourmap
    function J = colourmap(m,class)

        n = ceil(m/4);
        u = [(1:1:n)/n ones(1,n-1) (n:-1:1)/n]';
        g = ceil(n/2) - (mod(m,4)==1) + (1:length(u))';
        r = g + n;
        b = g - n;
        r1 = r(r<=128);
        g1 = g(g<=128);
        b1 = b(b >0);
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        J = zeros(m,3);
        J(r1,1) = u(1:length(r1));
        J(g1,2) = u(1:length(g1));
        J(b1,3) = u(end-length(b1)+1:end);
        feval = str2func(class);
        J = feval(J);
    end
end

Create Code Generation Configuration Object

Create a code generation configuration object for generation of an executable program. Specify
generation of C++ code.

cfg = coder.config('exe');
cfg.TargetLang = 'C++';

Set Up Configuration Object for Deep Learning Code Generation

Create a coder.ARMNEONConfig object. Specify the same version of the ARM Compute library as
the one on the Raspberry Pi. Specify the architecture of the Raspberry Pi.

dlcfg = coder.DeepLearningConfig('arm-compute');
dlcfg.ArmComputeVersion = '19.05';
dlcfg.ArmArchitecture = 'armv7';

Attach Deep Learning Configuration Object to Code Generation Configuration Object

Set the DeepLearningConfig property of the code generation configuration object to the deep
learning configuration object. Make the MATLAB Source Comments visible in the configuration object
at the time of code generation.

cfg.DeepLearningConfig = dlcfg;
cfg.MATLABSourceComments = 1;

Create a Connection to the Raspberry Pi

Use the MATLAB Support Package for Raspberry Pi Support Package function, raspi, to create a
connection to the Raspberry Pi. In the following code, replace:

• raspiname with the name or IP address of your Raspberry Pi
• username with your user name
• password with your password

r = raspi('raspiname','username','password');

Configure Code Generation Hardware Parameters for Raspberry Pi

Create a coder.Hardware object for Raspberry Pi and attach it to the code generation configuration
object.

hw = coder.hardware('Raspberry Pi');
cfg.Hardware = hw;

Specify the build folder on the Raspberry Pi.

buildDir = '~/remdirECG';
cfg.Hardware.BuildDir = buildDir;
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Provide C++ Main File for Code Execution

The C++ main file reads the input ECG data, calls the processECG function to perform
preprocessing and deep learning using CNN on the ECG data, and displays the classification
probability.

Specify the main file in the code generation configuration object. To learn more about generating and
customizing main_ecg_raspi.cpp, refer to “Generating Standalone C/C++ Executables from
MATLAB Code” (MATLAB Coder).

cfg.CustomSource = 'main_ecg_raspi.cpp';

Generate Source C++ Code Using codegen

Use the codegen function to generate the C++ code. When codegen is used with the MATLAB
Support Package for Raspberry Pi Hardware, the executable is built on the Raspberry Pi board.

Make sure to set the environment variables ARM_COMPUTELIB and LD_LIBRARY_PATH on the
Raspberry Pi. See “Prerequisites for Deep Learning with MATLAB Coder” (MATLAB Coder).

codegen -config cfg processECG -args {ones(1,65536,'single')} -d arm_compute

 Deploying code. This may take a few minutes. 

Fetch Generated Executable Directory

To test the generated code on the Raspberry Pi, copy the input ECG signal to the generated code
directory. You can find this directory manually or by using the
raspi.utils.getRemoteBuildDirectory API. This function lists the directories of the binary
files that are generated by using codegen.

applicationDirPaths = raspi.utils.getRemoteBuildDirectory('applicationName','processECG')

applicationDirPaths=1×4 cell array
    {1×1 struct}    {1×1 struct}    {1×1 struct}    {1×1 struct}

The complete path to the remote build directory is derived from the present working directory. If you
do not know which applicationDirPaths entry contains the generated code, use the helper
function helperFindTargetDir. Otherwise, specify the proper directory.

directoryUnknown = true;

if directoryUnknown
    targetDirPath = helperFindTargetDir(applicationDirPaths);
else   
    targetDirPath = applicationDirPaths{1}.directory;
end

Copy Input File to Raspberry Pi

The text file input_ecg_raspi.csv contains the ECG samples of a representative ARR signal. To
copy the file required to run the executable program, use putFile, which is available with the
MATLAB Support Package for Raspberry Pi Hardware.

r.putFile('input_ecg_raspi.csv', targetDirPath);

For a pictorial representation, the first 1000 samples can be plotted by using these steps.
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input = dlmread('input_ecg_raspi.csv');
plot(input(1:1000))
title('ARR Signal')

Run Executable on Raspberry Pi

Run the executable program on the Raspberry Pi from MATLAB and direct the output back to
MATLAB. The input file name is passed as the command line argument for the executable.

exeName = 'processECG.elf';           % executable name
fileName = 'input_ecg_raspi.csv';     % Input ECG file that is pushed to target
command = ['cd ' targetDirPath ';./' exeName ' ' fileName];
output = system(r,command)

output = 
    'Predicted Values on the Target Hardware
     ARR            CHF            NSR
     0.806078    0.193609    0.000313103
     '
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Supporting Functions

helperFindTargetDir

function targetDir = helperFindTargetDir(dirPaths)
%
% This function is only intended to support wavelet deep learning examples.
% It may change or be removed in a future release.

% find pwd
p = pwd;
if ispc
    % replace blank spaces with underscores
    p = strrep(p,' ','_');
    
    % split path into component folders
    pSplit = regexp(p,filesep,'split');
    
    % Since Windows uses colons, remove any colons that occur
    for k=1:numel(pSplit)
        pSplit{k} = erase(pSplit{k},':');
    end
    
    % now build the path using Linux file separation
    pLinux = '';
    for k=1:numel(pSplit)-1
        pLinux = [pLinux,pSplit{k},'/'];
    end
    pLinux = [pLinux,pSplit{end}];
else
    pLinux = p;
end

targetDir = '';
for k=1:numel(dirPaths)
    d = strfind(dirPaths{k}.directory,pLinux);
    if ~isempty(d)
        targetDir = dirPaths{k}.directory;
        break
    end
end

if numel(targetDir) == 0
    disp('Target directory not found.');
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end
end

See Also
cwtfilterbank

Related Examples
• “Deploy Signal Classifier on NVIDIA Jetson Using Wavelet Analysis and Deep Learning” on page

13-155
• “Modulation Classification Using Wavelet Analysis on NVIDIA Jetson” on page 13-178
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Crack Identification from Accelerometer Data
This example shows how to use wavelet and deep learning techniques to detect transverse pavement
cracks and localize their position. The example demonstrates the use of wavelet scattering sequences
as inputs to a gated recurrent unit (GRU) and 1-D convolutional network to classify time series based
on the presence or absence of a crack. The data are vertical acceleration measurements obtained
from a sensor mounted on the suspension knuckle of the front passenger seat wheel. Early
identification of developing transverse cracks is important for pavement performance evaluation and
maintenance. Reliable automatic detection methods enable more frequent and extensive monitoring.

Please read the Data - Description and Required Attributions on page 13-0  before running this
example. All data import and preprocessing is described in the Data — Import on page 13-0  and
the Data — Preprocessing on page 13-0  sections. If you want to skip the training-test set creation,
preprocessing, feature extraction, and model training, you can go directly to the Classification and
Analysis on page 13-0  section. There you can load the preprocessed test data as well as the
extracted features and trained models.

Data — Description and Required Attributions

The data used in this example was retrieved from the Mendeley Data open data repository [2 on page
13-0 ]. The data is distributed under a Creative Commons (CC) BY 4.0 license. Download the data
and models used in this example in your temporary directory specified by MATLAB® tempdir
command. If you choose to download the data in a folder different from tempdir, change the
directory name in the subsequent instructions. Unzip the data into a folder specified as
TransverseCrackData.

dataURL = 'https://ssd.mathworks.com/supportfiles/wavelet/crackDetection/transverse_crack.zip';
saveFolder = fullfile(tempdir,'TransverseCrackData'); 
zipFile = fullfile(tempdir,'transverse_crack.zip');
websave(zipFile,dataURL);
unzip(zipFile,saveFolder)

After you unzip the data, the TransverseCrackData folder contains a subfolder called
transverse_crack_latest. All subsequent commands must be run in this folder, or you can place
this folder on the matlabpath.

The text file, vehiclevibrationdata.rights, included in the zip file contains the text of the CC BY 4.0
license. The data has been repackaged from the original Excel format into MAT-files.

Data acquisition is described in detail in [1 on page 13-0 ]. Twelve four meter long sections of
asphalt containing a centrally-located transverse crack and twelve equal-length uncracked sections
were used. The data is obtained from three separate roads. The transverse cracks ranged in width
from 2-13 mm with crack spacings from 7-35 mm. The sections were driven at three different speeds:
30 km/hr, 40 km/hr, and 50 km/hr. Vertical acceleration measurements from the front passenger
suspension knuckle are acquired at a sampling frequency of 1.28 kHz. The speeds of 30, 40, and 50
km/hr correspond to sensor measurements every 6.5 mm at 30 km/hr, 8.68 mm at 40 km/hr, and
10.85 mm at 50 km/hr. See [1 on page 13-0 ] for a detailed wavelet analysis of these data distinct
from the analyses in this example.

In keeping with the stipulations of the CC BY 4.0 license, we note that the speed information of the
original data is not retained in the data used in this example. The speed and road information are
retained in the road1.mat, road2.mat, and road3.mat data files included in the data folder for
completeness.
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Data — Download and Import

Load the accelerometer data and their corresponding labels. There are 327 accelerometer
recordings.

load(fullfile(saveFolder,"transverse_crack_latest","allroadData.mat"));
load(fullfile(saveFolder,"transverse_crack_latest","allroadLabel.mat"));

Data — Preprocessing

Obtain the length of all the time series. Display a bar graph of the number of time series per length.

tslen = cellfun(@length,allroadData);
uLen = unique(tslen);
Ng = histcounts(tslen);
Ng = Ng(Ng > 0);
bar(uLen,Ng,0.5)
grid on
AX = gca;
AX.YLim = [0 max(Ng)+15];
text(uLen(1),Ng(1)+10,num2str(Ng(1)))
text(uLen(2),Ng(2)+10,num2str(Ng(2)))
text(uLen(3),Ng(3)+10,num2str(Ng(3)))
xlabel('Length in Samples')
ylabel('Number of Series')
title('Time Series Length')
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There are three unique lengths in the dataset: 369, 461, and 615 samples. The vehicle is traveling at
three different speeds but the distance traversed and sample rate is constant resulting in different
data record lengths. Determine how many records are in the "Cracked" (CR) and "Uncracked" (UNCR)
classes.

countlabels(allroadLabel)

ans=2×3 table
    Label    Count    Percent
    _____    _____    _______

    CR        109     33.333 
    UNCR      218     66.667 

This dataset is significantly imbalanced. There are twice as many time series without a crack (UNCR)
as series containing a crack (CR). This means that a classifier which predicts "Uncracked" on each
record would achieve an accuracy of 67% without any learning.

The time series are also of different lengths. To use a convolution network, a common input shape is
needed. In recurrent networks it is possible to use unequal length time series as inputs, but all time
series in a mini-batch are padded or truncated based on the training options. This requires care in
creating mini-batches for both training and testing to ensure the proper distribution of padded
sequences. Further, it requires that you do not shuffle the data during training. With this small
dataset, shuffling the training data for each epoch is desirable. Accordingly, a common time series
length is used.

The most common length is 461 samples. Further, the crack, if present, is centrally located in the
recording. Accordingly, we can symmetrically extend the series with 369 samples to length 461 by
reflecting the initial and final 46 samples. In the recordings with 615 samples, remove the initial 77
and final 77 samples.

Training — Feature Extraction and Network Training

The following sections generate the training and test sets, create the wavelet scattering sequences,
and train both gated recurrent unit (GRU) and 1-D convolutional networks. First, extend or truncate
the time series in both sets to obtain a common length of 461 samples.

allroadData = equalLenTS(allroadData);
all(cellfun(@numel,allroadData)== 461)

ans = logical
   1

Now each time series in both the cracked and uncracked datasets has 461 samples. Split the data in a
training set consisting of 80% of the time series in each class and hold out the remaining 20% of each
class for testing. Verify that the unbalanced proportions are retained in each set.

splt8020 = splitlabels(allroadLabel,0.80);
countlabels(allroadLabel(splt8020{1}))

ans=2×3 table
    Label    Count    Percent
    _____    _____    _______

    CR         87     33.333 
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    UNCR      174     66.667 

countlabels(allroadLabel(splt8020{2}))

ans=2×3 table
    Label    Count    Percent
    _____    _____    _______

    CR        22      33.333 
    UNCR      44      66.667 

Create the training and test sets.

TrainData = allroadData(splt8020{1});
TrainLabels = allroadLabel(splt8020{1});
TestData = allroadData(splt8020{2});
TestLabels = allroadLabel(splt8020{2});

Shuffle the data and labels once before training.

idxS = randperm(length(TrainData));
TrainData = TrainData(idxS);
TrainLabels = TrainLabels(idxS);
idxS = randperm(length(TrainData));
TrainData = TrainData(idxS);
TrainLabels = TrainLabels(idxS);

Compute the scattering sequences for each of the training series. The scattering sequences are
stored in a cell array to be compatible with the GRU network. These sequences are subsequently
reshaped into a 4-D array input for use with a 1-D convolutional network.

XTrainSCAT = cell(size(TrainData));
for kk = 1:numel(TrainData)
    XTrainSCAT{kk} = helperscat(TrainData{kk});
end
npaths = cellfun(@(x)size(x,1),XTrainSCAT);
inputSize = npaths(1);

Training — GRU Network

Construct the GRU network layers. Use two GRU layers with 30 hidden units each as well as two
dropout layers. The input size is the number of scattering paths. To train this network on the raw time
series, change the inputSize to 1 and transpose each time series to a row vector (1-by-461). If you
wish to skip the network training, you may go directly to the Classification and Analysis on page 13-
0  section. There you can load the trained GRU network as well as the preprocessed training and
test sets.

numHiddenUnits1 = 30;
numHiddenUnits2 = 30;
numClasses = 2;

GRUlayers = [ ...
    sequenceInputLayer(inputSize,'Name','InputLayer',...
        'Normalization','zerocenter')
    gruLayer(numHiddenUnits1,'Name','GRU1','OutputMode','sequence')
    dropoutLayer(0.35,'Name','Dropout1')
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    gruLayer(numHiddenUnits2,'Name','GRU2','OutputMode','last')
    dropoutLayer(0.2,'Name','Dropout2')
    fullyConnectedLayer(numClasses,'Name','FullyConnected')
    softmaxLayer('Name','smax');
    classificationLayer('Name','ClassificationLayer')];

Train the GRU network. Use a mini-batch size of 15 with 150 epochs.

maxEpochs = 150;
miniBatchSize = 15;

options = trainingOptions('adam', ...
    'ExecutionEnvironment','gpu', ...
    'L2Regularization',1e-3,...
    'MaxEpochs',maxEpochs, ...
    'MiniBatchSize',miniBatchSize, ...
    'Shuffle','every-epoch',...
    'Verbose',0,...
    'Plots','none');
iterPerEpoch = floor(length(XTrainSCAT)/miniBatchSize);
[scatGRUnet,infoGRU] = trainNetwork(XTrainSCAT,TrainLabels,GRUlayers,options);

Plot the smoothed training accuracy and loss per iteration.

figure
subplot(2,1,1)
smoothedACC = filter(1/iterPerEpoch*ones(iterPerEpoch,1),1,...
    infoGRU.TrainingAccuracy);
smoothedLoss = filter(1/iterPerEpoch*ones(iterPerEpoch,1),1,...
    infoGRU.TrainingLoss);
plot(smoothedACC)
title(['Training Accuracy (Smoothed) '...
    num2str(iterPerEpoch) ' iterations per epoch'])
ylabel('Accuracy (%)')
ylim([0 100.1])
grid on
xlim([1 length(smoothedACC)])
subplot(2,1,2)
plot(smoothedLoss)
ylim([-0.01 1])
grid on
xlim([1 length(smoothedLoss)])
ylabel('Loss')
xlabel('Iteration')
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Obtain the wavelet scattering transforms of the held-out test data for classification.

XTestSCAT = cell(size(TestData));
for kk = 1:numel(TestData)
    XTestSCAT{kk} = helperscat(TestData{kk});
end

Training — 1-D Convolutional Network

Train a 1-D convolutional network with wavelet scattering sequences. The scattering sequences are
28-by-58, where 58 is the number of time steps and 28 is the number of scattering paths. To use this
in a 1-D convolutional network, transpose and reshape the scattering sequences to be 58-by-1-by-28-
by-Nsig, where Nsig is the number of training examples. If you wish to skip the network training, you
may go directly to the Classification and Analysis on page 13-0  section. There you can load the
trained convolutional network as well as the preprocessed training and test sets.

scatCONVTrain = zeros(58,1,28,length(XTrainSCAT),'single');
for kk = 1:length(XTrainSCAT)
    scatCONVTrain(:,:,:,kk) = reshape(XTrainSCAT{kk}',[58,1,28]);
end

Construct and train the 1-D convolutional network.

conv1dLayers = [
    imageInputLayer([58 1 28]);
    convolution2dLayer([3 1],64,'stride',1);
    batchNormalizationLayer;
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    reluLayer;
    maxPooling2dLayer([2 1]);
    convolution2dLayer([3 1],32);
    reluLayer;
    maxPooling2dLayer([2 1]);
    fullyConnectedLayer(500);
    fullyConnectedLayer(2);
    softmaxLayer;
    classificationLayer;
    ];

convoptions = trainingOptions('sgdm', ...
    'InitialLearnRate',0.01, ...
    'LearnRateSchedule','piecewise', ...
    'LearnRateDropFactor',0.5, ...
    'LearnRateDropPeriod',5, ...
    'Plots','none',...
    'MaxEpochs',50,...
    'Verbose',0,...
    'Plots','none',...
    'MiniBatchSize',15);
[scatCONV1Dnet,infoCONV] = ...
    trainNetwork(scatCONVTrain,TrainLabels,conv1dLayers,convoptions);

Plot the smoothed training accuracy and loss per iteration.

iterPerEpoch = floor(size(scatCONVTrain,4)/15);
figure
subplot(2,1,1)
smoothedACC = filter(1/iterPerEpoch*ones(iterPerEpoch,1),1,...
    infoCONV.TrainingAccuracy);
smoothedLoss = filter(1/iterPerEpoch*ones(iterPerEpoch,1),1,...
    infoCONV.TrainingLoss);
plot(smoothedACC)
title(['Training Accuracy (Smoothed) '...
    num2str(iterPerEpoch) ' iterations per epoch'])
ylabel('Accuracy (%)')
ylim([0 100.1])
grid on
xlim([1 length(smoothedACC)])
subplot(2,1,2)
plot(smoothedLoss)
ylim([-0.01 1])
grid on
xlim([1 length(smoothedLoss)])
ylabel('Loss')
xlabel('Iteration')

 Crack Identification from Accelerometer Data

13-143



Reshape the test set of scattering sequences to be compatible with the network for classification.

scatCONVTest = zeros(58,1,28,length(XTestSCAT));
for kk = 1:length(XTestSCAT)
    scatCONVTest(:,:,:,kk) = reshape(XTestSCAT{kk}',58,1,28);
end

Classification and Analysis

Load the trained gated recurrent unit (GRU) and 1-D convolutional networks along with the test data
and scattering sequences. All data, features, and networks were created in the Training — Feature
Extraction and Network Training on page 13-0  section.

load(fullfile(saveFolder,"transverse_crack_latest","TestData.mat"))
load(fullfile(saveFolder,"transverse_crack_latest","TestLabels.mat"))
load(fullfile(saveFolder,"transverse_crack_latest","XTestSCAT.mat"))
load(fullfile(saveFolder,"transverse_crack_latest","scatGRUnet"))
load(fullfile(saveFolder,"transverse_crack_latest","scatCONV1Dnet.mat"))
load(fullfile(saveFolder,"transverse_crack_latest","scatCONVTest.mat"))

If you additionally want the preprocessed data, labels, and wavelet scattering sequences for the
training data, you can load those with the following commands. These data and labels are not used in
the remainder of this example if you wish to skip the following load commands.

load(fullfile(saveFolder,"transverse_crack_latest","TrainData.mat"))
load(fullfile(saveFolder,"transverse_crack_latest","TrainLabels.mat"))
load(fullfile(saveFolder,"transverse_crack_latest","XTrainSCAT.mat"))
load(fullfile(saveFolder,"transverse_crack_latest","scatCONVTrain.mat"))
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Examine the number of time series per class in the test set. Note the test set is significantly
imbalanced as discussed in Data — Preprocessing on page 13-0  section.

countlabels(TestLabels)

ans=2×3 table
    Label    Count    Percent
    _____    _____    _______

    CR        22      33.333 
    UNCR      44      66.667 

XTestSCAT contains the wavelet scattering sequences computed for the raw time series in
TestData.

Show the GRU model performance on the test data not used in model training.

miniBatchSize = 15;
ypredSCAT = classify(scatGRUnet,XTestSCAT, ...
    'MiniBatchSize',miniBatchSize);
figure
confusionchart(TestLabels,ypredSCAT,'RowSummary','row-normalized',...
    'ColumnSummary','column-normalized');
title({'GRU network -- Wavelet Scattering Sequences'; ...
    'Confusion chart with precision and recall'});
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In spite of the large imbalance in the classes and the small dataset, the precision and recall values
indicate the network performs well on the test data. Specifically, the precision value for "Cracked"
data is near 98% and the recall is approximately 96%. These values are especially good given that a
full 67% of the records in the training set were "Uncracked". The network has not overlearned to
classify the time series as "Uncracked" in spite of the imbalance.

If you set the inputSize = 1 and transpose the time series in the training data, you can retrain the
GRU network on the raw time series data. This was done on the same data in the training set. You can
load that network and check the performance on the test set.

load(fullfile(saveFolder,"transverse_crack_latest","tsGRUnet.mat"));
rawTest = cellfun(@transpose,TestData,'UniformOutput',false);
miniBatchSize = 15;
YPredraw = classify(tsGRUnet,rawTest, ...
    'MiniBatchSize',miniBatchSize);
confusionchart(TestLabels,YPredraw,'RowSummary','row-normalized',...
    'ColumnSummary','column-normalized');
title({'GRU network -- Raw Time Series'; ...
    'Confusion chart with precision and recall'});

For this network, the performance is not good. Specifically, the recall for the "Cracked" data is poor.
The number of false negatives for the "Crack" data is quite large. This is exactly what you would
expect with an imbalanced dataset when the model has not learned well.

Test the 1-D convolutional network trained with the wavelet scattering sequences.
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miniBatchSize = 15;
YPredSCAT = classify(scatCONV1Dnet,scatCONVTest,...
    'MiniBatchSize',miniBatchSize);
figure
confusionchart(TestLabels,YPredSCAT,'RowSummary','row-normalized',...
    'ColumnSummary','column-normalized');
title({'1-D Convolutional Network-- Wavelet Scattering Sequences'; ...
    'Confusion chart with precision and recall'});

The performance of the convolutional network with scattering sequences is excellent and exceeds the
performance of the GRU network. Precision and recall on the minority class demonstrate robust
learning.

To train the 1-D convolutional network on the raw sequences set inputSize = [461 1 1] in the
imageInputLayer. You can load and test that network.

load(fullfile(saveFolder,"transverse_crack_latest","tsCONV1Dnet.mat"));
XTestData = cell2mat(TestData');
XTestData = reshape(XTestData,[461 1 1 66]);
miniBatchSize = 15;
YPredRAW = classify(tsCONV1Dnet,XTestData,...
    'MiniBatchSize',miniBatchSize);
confusionchart(TestLabels,YPredRAW,'RowSummary','row-normalized',...
    'ColumnSummary','column-normalized');
title({'1-D Convolutional Network-- Raw Sequences'; ...
    'Confusion chart with precision and recall'});
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The 1-D convolution network with the raw sequences performs better than the GRU network, but not
as well as the convolutional network trained with the wavelet scattering sequences. Further, the
reduction along the time dimension of the data with the scattering transform has resulted in a
network which is approximately 8.5 times smaller than the convolutional network trained on the raw
data.

Wavelet Inference and Analysis

This section demonstrates how to classify a single time series using wavelet analysis with a
pretrained model. The model used is the 1-D convolutional network trained on wavelet scattering
sequences. Load the trained network and some test data if you have not already loaded these in the
previous section.

load(fullfile(saveFolder,"transverse_crack_latest","scatCONV1Dnet.mat"));
load(fullfile(saveFolder,"transverse_crack_latest","TestData.mat"));

Construct the wavelet scattering network to transform the data. Select a time series from the test
data and classify the data. If the model classifies the time series as "Cracked", investigate the series
for the position of the crack in the waveform.

sf = waveletScattering('SignalLength',461,...
    'OversamplingFactor',1,'qualityfactors',[8 1],...
    'InvarianceScale',0.05,'Boundary','reflect','SamplingFrequency',1280);
idx = 1;
data = TestData{idx};
[smat,x] = featureVectors(data,sf);
PredictedClass = classify(scatCONV1Dnet,smat);
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if isequal(PredictedClass,'CR') 
    fprintf('Crack detected. Computing wavelet transform modulus maxima.\n')
    wtmm(data,'Scaling','local');
end

Crack detected. Computing wavelet transform modulus maxima.

The wavelet transform modulus maxima (WTMM) technique shows a maxima line converging to the
finest scale at sample 205. Maxima lines that converge to fine scales are a good estimate of where
singularities are in a time series. This makes sample 205 a good estimate of the location of the crack.

plot(x,data)
axis tight
hold on
plot([x(205) x(205)],[min(data) max(data)],'k')
grid on
title(['Crack located at ' num2str(x(205)) 'meters'])
xlabel('Distance (m)')
ylabel('Amplitude')
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You can increase your confidence in this location by using multiresolution analysis (MRA) techniques
and identifying changes in slope in long-scale wavelet MRA series. See “Practical Introduction to
Multiresolution Analysis” on page 11-2 for an introduction to MRA techniques. In [1 on page 13-0 ]
the difference in energy between "Cracked" and "Uncracked" series occurred in the low frequency
bands, specifically in the interval of [10,20] Hz. Accordingly, the following MRA is focused on signal
components in the frequency bands from [10,80] Hz. In these bands, identify linear changes in the
data. Plot the change points along with the MRA components.

[mra,chngpts] = helperMRA(data,x);
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The MRA-based changepoint analysis has helped to confirm the WTMM analysis in identifying the
region around 1.8 meters as the probable location of the crack.

Summary

This example showed how to use wavelet scattering sequences with both recurrent and convolutional
networks to classify time series. The example further demonstrated how wavelet techniques can help
to localize features on the same spatial (time) scale as the original data.
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function smat = helperscat(datain)
% This helper function is only in support of Wavelet Toolbox examples.
% It may change or be removed in a future release.
datain = single(datain);

sn = waveletScattering('SignalLength',length(datain),...
    'OversamplingFactor',1,'qualityfactors',[8 1],...
    'InvarianceScale',0.05,'Boundary','reflect','SamplingFrequency',1280);
smat = sn.featureMatrix(datain);

end

%-----------------------------------------------------------------------
function dataUL = equalLenTS(data)
% This function in only in support of Wavelet Toolbox examples.
% It may change or be removed in a future release.
N = length(data);
dataUL = cell(N,1);
for kk = 1:N
    L = length(data{kk});
    switch L
        case 461
            dataUL{kk} = data{kk};
        case 369
            Ndiff = 461-369;
            pad = Ndiff/2;
            dataUL{kk} = [flip(data{kk}(1:pad)); data{kk} ; ...
                flip(data{kk}(L-pad+1:L))];     
        otherwise
            Ndiff = L-461;
            zrs = Ndiff/2;
            dataUL{kk} = data{kk}(zrs:end-zrs-1);
    end
end       

end

%--------------------------------------------------------------------------
function [fmat,x] = featureVectors(data,sf)
% This function is only in support of Wavelet Toolbox examples.
% It may change or be removed in a future release.
data = single(data);
N = length(data);
dt = 1/1280;
if N < 461
    Ndiff = 461-N;
    pad = Ndiff/2;
    dataUL = [flip(data(1:pad)); data ; ...
                flip(data(N-pad+1:N))];   
     rate = 5e4/3600;
     dx = rate*dt;
     x = 0:dx:(N*dx)-dx;     
    
elseif N > 461
    Ndiff = N-461;
    zrs = Ndiff/2;
    dataUL = data(zrs:end-zrs-1);
    rate = 3e4/3600;
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    dx = rate*dt;
    x = 0:dx:(N*dx)-dx;
else
    dataUL = data;
    rate = 4e4/3600;
    dx = rate*dt;
    x = 0:dx:(N*dx)-dx;
end
fmat = sf.featureMatrix(dataUL);
fmat = reshape(fmat',[58 1 28]);
end

%------------------------------------------------------------------------------
function [mra,chngpts] = helperMRA(data,x)
% This function is only in support of Wavelet Toolbox examples.
% It may change or be removed in a future release.
mra = modwtmra(modwt(data,'sym3'),'sym3');
mraLev = mra(4:6,:);
Ns = size(mraLev,1);
thresh = [2, 4, 8];
chngpts = false(size(mraLev));
% Determine changepoints. We want different thresholds for different
% resolution levels.
for ii = 1:Ns
    chngpts(ii,:) = ischange(mraLev(ii,:),"linear",2,"Threshold",thresh(ii));
end

for kk = 1:Ns
    idx = double(chngpts(kk,:));
    idx(idx == 0) = NaN;    
    subplot(Ns,1,kk)
    plot(x,mraLev(kk,:))
    if kk == 1
        title('MRA Components')
    end
    yyaxis right
    hs = stem(x,idx);
    hs.ShowBaseLine = 'off';
    hs.Marker = '^';
    hs.MarkerFaceColor = [1 0 0];
end
grid on
axis tight
xlabel('Distance (m)')
end

See Also
waveletScattering

Related Examples
• “Air Compressor Fault Detection Using Wavelet Scattering” on page 13-208
• “Digit Classification with Wavelet Scattering” on page 13-94
• “Fault Detection Using Wavelet Scattering and Recurrent Deep Networks” on page 13-216
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More About
• “Wavelet Scattering” on page 9-2
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Deploy Signal Classifier on NVIDIA Jetson Using Wavelet
Analysis and Deep Learning

This example shows how to generate and deploy a CUDA® executable that classifies human
electrocardiogram (ECG) signals using features extracted by the continuous wavelet transform (CWT)
and a pretrained convolutional neural network (CNN).

SqueezeNet is a deep CNN originally designed to classify images in 1000 categories. We reuse the
network architecture of the CNN to classify ECG signals based on their scalograms. A scalogram is
the absolute value of the CWT of the signal. After training SqueezeNet to classify ECG signals, you
create a CUDA executable that generates a scalogram of an ECG signal and then uses the CNN to
classify the signal. The executable and CNN are both deployed to the NVIDIA hardware.

This example uses the same data as used in “Classify Time Series Using Wavelet Analysis and Deep
Learning” on page 13-69. In that example, transfer learning with GoogLeNet and SqueezeNet are
used to classify ECG waveforms into one of three categories. The description of the data and how to
obtain it are repeated here for convenience.

ECG Data Description and Download

The ECG data is obtained from three groups of people: persons with cardiac arrhythmia (ARR),
persons with congestive heart failure (CHF), and persons with normal sinus rhythms (NSR). In total
there are 162 ECG recordings from three PhysioNet databases: MIT-BIH Arrhythmia Database [2][3],
MIT-BIH Normal Sinus Rhythm Database [3], and The BIDMC Congestive Heart Failure Database [1]
[3]. More specifically, 96 recordings from persons with arrhythmia, 30 recordings from persons with
congestive heart failure, and 36 recordings from persons with normal sinus rhythms. The goal is to
train a model to distinguish between ARR, CHF, and NSR.

You can obtain this data from the MathWorks GitHub repository. To download the data from the
website, click Code and select Download ZIP. Save the file physionet_ECG_data-main.zip in a
folder where you have write permission. The instructions for this example assume you have
downloaded the file to your temporary directory, tempdir, in MATLAB. Modify the subsequent
instructions for unzipping and loading the data if you choose to download the data in a folder
different from tempdir.

After downloading the data from GitHub, unzip the file in your temporary directory.

unzip(fullfile(tempdir,'physionet_ECG_data-main.zip'),tempdir)

Unzipping creates the folder physionet-ECG_data-main in your temporary directory. This folder
contains the text file README.md and ECGData.zip. The ECGData.zip file contains:

• ECGData.mat
• Modified_physionet_data.txt
• License.txt

ECGData.mat holds the data used in this example. The text file Modified_physionet_data.txt is
required by PhysioNet's copying policy and provides the source attributions for the data as well as a
description of the preprocessing steps applied to each ECG recording.

Unzip ECGData.zip in physionet-ECG_data-main. Load the data file into your MATLAB
workspace.
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unzip(fullfile(tempdir,'physionet_ECG_data-main','ECGData.zip'),...
    fullfile(tempdir,'physionet_ECG_data-main'))
load(fullfile(tempdir,'physionet_ECG_data-main','ECGData.mat'))

ECGData is a structure array with two fields: Data and Labels. The Data field is a 162-by-65536
matrix where each row is an ECG recording sampled at 128 hertz. Labels is a 162-by-1 cell array of
diagnostic labels, one label for each row of Data. The three diagnostic categories are: 'ARR', 'CHF',
and 'NSR'.

Feature Extraction

After downloading the data, you must generate scalograms of the signals. The scalograms are the
"input" images to the CNN.

To store the scalograms of each category, first create an ECG data directory 'data' inside tempdir.
Then create three subdirectories in 'data' named after each ECG category. The helper function
helperCreateECGDirectories does this for you. helperCreateECGDirectories accepts
ECGData, the name of an ECG data directory, and the name of a parent directory as input arguments.
You can replace tempdir with another directory where you have write permission. You can find the
source code for this helper function in the Supporting Functions on page 13-0  section at the end of
this example.

parentDir = tempdir;
dataDir = 'data';
helperCreateECGDirectories(ECGData,parentDir,dataDir)

After making the folders, create scalograms of the ECG signals as RGB images and write them to the
appropriate subdirectory in dataDir. To create the scalograms, first precompute a CWT filter bank.
Precomputing the filter bank is the preferred method when obtaining the CWT of many signals using
the same parameters. The helper function helperCreateRGBfromTF does this. The source code for
this helper function is in the Supporting Functions on page 13-0  section at the end of this example.
To be compatible with the SqueezeNet architecture, each RGB image is an array of size 227-by-227-
by-3.

helperCreateRGBfromTF(ECGData,parentDir,dataDir)

Divide Data Set into Training and Validation Data

Load the scalogram images as an image datastore. The imageDatastore function automatically
labels the images based on folder names and stores the data as an ImageDatastore object. An
image datastore enables you to store large image data, including data that does not fit in memory,
and efficiently read batches of images when training a CNN.

allImages = imageDatastore(fullfile(tempdir,dataDir),...
    'IncludeSubfolders',true,...
    'LabelSource','foldernames');

Randomly divide the images into two groups, one for training and the other for validation. Use 80% of
the images for training and the remainder for validation. For purposes of reproducibility, we set the
random seed to the default value.

rng default
[imgsTrain,imgsValidation] = splitEachLabel(allImages,0.8,'randomized');
disp(['Number of training images: ',num2str(numel(imgsTrain.Files))]);

Number of training images: 130
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disp(['Number of validation images: ',num2str(numel(imgsValidation.Files))]);

Number of validation images: 32

SqueezeNet

SqueezeNet is a pretrained CNN that can classify images into 1000 categories. You need to retrain
SqueezeNet for our ECG classification problem. Prior to retraining, you modify several network
layers and set various training options. After retraining is complete, you save the CNN in a .mat file.
The CUDA executable will use the .mat file.

Specify an experiment trial index and a results directory. If necessary, create the directory.

trial = 1;
ResultDir = 'results';
if ~exist(ResultDir,'dir')
    mkdir(ResultDir)
end
MatFile = fullfile(ResultDir,sprintf('SqueezeNet_Trial%d.mat',trial));

Load SqeezeNet. Extract the layer graph and inspect the last five layers.

sqz = squeezenet;
lgraph = layerGraph(sqz);
lgraph.Layers(end-4:end)

ans = 
  5×1 Layer array with layers:

     1   'conv10'                            Convolution                  1000 1×1×512 convolutions with stride [1  1] and padding [0  0  0  0]
     2   'relu_conv10'                       ReLU                         ReLU
     3   'pool10'                            2-D Global Average Pooling   2-D global average pooling
     4   'prob'                              Softmax                      softmax
     5   'ClassificationLayer_predictions'   Classification Output        crossentropyex with 'tench' and 999 other classes

To retrain SqueezeNet to classify the three classes of ECG signals, replace the 'conv10' layer with a
new convolutional layer with the number of filters equal to the number of ECG classes. Replace the
classification layer with a new one without class labels.

numClasses = numel(categories(imgsTrain.Labels));
new_conv10_WeightLearnRateFactor = 1;
new_conv10_BiasLearnRateFactor = 1;
newConvLayer = convolution2dLayer(1,numClasses,...
        'Name','new_conv10',...
        'WeightLearnRateFactor',new_conv10_WeightLearnRateFactor,...
        'BiasLearnRateFactor',new_conv10_BiasLearnRateFactor);
lgraph = replaceLayer(lgraph,'conv10',newConvLayer);
newClassLayer = classificationLayer('Name','new_classoutput');
lgraph = replaceLayer(lgraph,'ClassificationLayer_predictions',newClassLayer);
lgraph.Layers(end-4:end)

ans = 
  5×1 Layer array with layers:

     1   'new_conv10'        Convolution                  3 1×1 convolutions with stride [1  1] and padding [0  0  0  0]
     2   'relu_conv10'       ReLU                         ReLU
     3   'pool10'            2-D Global Average Pooling   2-D global average pooling
     4   'prob'              Softmax                      softmax
     5   'new_classoutput'   Classification Output        crossentropyex
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Create a set of training options to use with SqueezeNet.

OptimSolver = 'sgdm';
MiniBatchSize = 15;
MaxEpochs = 20;
InitialLearnRate = 1e-4;
Momentum = 0.9;
ExecutionEnvironment = 'cpu';

options = trainingOptions(OptimSolver,...
    'MiniBatchSize',MiniBatchSize,...
    'MaxEpochs',MaxEpochs,...
    'InitialLearnRate',InitialLearnRate,...
    'ValidationData',imgsValidation,...
    'ValidationFrequency',10,...
    'ExecutionEnvironment',ExecutionEnvironment,...
    'Momentum',Momentum);

Save all the parameters in a structure. The trained network and structure will be later saved in
a .mat file.

TrialParameter.new_conv10_WeightLearnRateFactor = new_conv10_WeightLearnRateFactor;
TrialParameter.new_conv10_BiasLearnRateFactor = new_conv10_BiasLearnRateFactor;
TrialParameter.OptimSolver = OptimSolver;
TrialParameter.MiniBatchSize = MiniBatchSize;
TrialParameter.MaxEpochs = MaxEpochs;
TrialParameter.InitialLearnRate = InitialLearnRate;
TrialParameter.Momentum = Momentum;
TrialParameter.ExecutionEnvironment = ExecutionEnvironment;

Set the random seed to the default value and train the network. Save the trained network, trial
parameters, training run time, and image datastore containing the validation images. The training
process usually takes 1-5 minutes on a desktop CPU. If you want to use a trained CNN from a
previous trial, set trial to the index number of that trial and LoadModel to true.

LoadModel = false;
if ~LoadModel
    rng default
    tic;
    trainedModel = trainNetwork(imgsTrain,lgraph,options);
    trainingTime = toc;
    fprintf('Total training time: %.2e sec\n',trainingTime);
    save(MatFile,'TrialParameter','trainedModel','trainingTime','imgsValidation');
else
    disp('Load ML model from the file')
    load(MatFile,'trainedModel','imgsValidation');
end

Initializing input data normalization.
|======================================================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Validation  |  Mini-batch  |  Validation  |  Base Learning  |
|         |             |   (hh:mm:ss)   |   Accuracy   |   Accuracy   |     Loss     |     Loss     |      Rate       |
|======================================================================================================================|
|       1 |           1 |       00:00:03 |       26.67% |       25.00% |       4.1769 |       2.9883 |      1.0000e-04 |
|       2 |          10 |       00:00:18 |       73.33% |       59.38% |       0.9875 |       1.1554 |      1.0000e-04 |
|       3 |          20 |       00:00:35 |       60.00% |       56.25% |       0.9157 |       0.9178 |      1.0000e-04 |
|       4 |          30 |       00:00:52 |       86.67% |       68.75% |       0.6708 |       0.7883 |      1.0000e-04 |
|       5 |          40 |       00:01:10 |       66.67% |       68.75% |       0.9026 |       0.7482 |      1.0000e-04 |
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|       7 |          50 |       00:01:29 |       80.00% |       78.12% |       0.5429 |       0.6788 |      1.0000e-04 |
|       8 |          60 |       00:01:48 |      100.00% |       81.25% |       0.4165 |       0.6130 |      1.0000e-04 |
|       9 |          70 |       00:02:06 |       93.33% |       84.38% |       0.3590 |       0.5480 |      1.0000e-04 |
|      10 |          80 |       00:02:24 |       73.33% |       84.38% |       0.5113 |       0.4783 |      1.0000e-04 |
|      12 |          90 |       00:02:42 |       86.67% |       84.38% |       0.4211 |       0.4065 |      1.0000e-04 |
|      13 |         100 |       00:03:00 |       93.33% |       90.62% |       0.1935 |       0.3486 |      1.0000e-04 |
|      14 |         110 |       00:03:18 |      100.00% |       90.62% |       0.1488 |       0.3119 |      1.0000e-04 |
|      15 |         120 |       00:03:36 |      100.00% |       93.75% |       0.0788 |       0.2774 |      1.0000e-04 |
|      17 |         130 |       00:03:55 |       86.67% |       93.75% |       0.2489 |       0.2822 |      1.0000e-04 |
|      18 |         140 |       00:04:13 |      100.00% |       93.75% |       0.0393 |       0.2283 |      1.0000e-04 |
|      19 |         150 |       00:04:32 |      100.00% |       93.75% |       0.0522 |       0.2364 |      1.0000e-04 |
|      20 |         160 |       00:04:50 |      100.00% |       93.75% |       0.0227 |       0.2034 |      1.0000e-04 |
|======================================================================================================================|
Training finished: Max epochs completed.

Total training time: 3.03e+02 sec

Save only the trained network in a separate .mat file. This file will be used by the CUDA executable.

ModelFile = fullfile(ResultDir,sprintf('SqueezeNet_Trial%d.mat',trial));
OutMatFile = fullfile('ecg_model.mat');

data = load(ModelFile,'trainedModel');
net = data.trainedModel;
save(OutMatFile,'net');

Use the trained network to predict the classes for the validation set.

[YPred, probs] = classify(trainedModel,imgsValidation);
accuracy = mean(YPred==imgsValidation.Labels)

accuracy = 0.9375

Summarize the performance of the trained network on the validation set with a confusion chart.
Display the precision and recall for each class by using column and row summaries. Save the figure.
The table at the bottom of the confusion chart shows the precision values. The table to the right of
the confusion chart shows the recall values.

figure
confusionMat = confusionmat(imgsValidation.Labels,YPred);
confusionchart(imgsValidation.Labels,YPred, ...
    'Title',sprintf('Confusion Matrix on Validation (overall accuracy: %.4f)',accuracy),...
    'ColumnSummary','column-normalized','RowSummary','row-normalized');
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AccFigFile = fullfile(ResultDir,sprintf('SqueezeNet_ValidationAccuracy_Trial%d.fig',trial));
saveas(gcf,AccFigFile);

Display the size of the trained network.

info = whos('trainedModel');
ModelMemSize = info.bytes/1024;
fprintf('Trained network size: %g kB\n',ModelMemSize)

Trained network size: 2991.89 kB

Determine the average time it takes the network to classify an image.

NumTestForPredTime = 20;
TrialParameter.NumTestForPredTime = NumTestForPredTime;

fprintf('Test prediction time (number of tests: %d)... ',NumTestForPredTime)

Test prediction time (number of tests: 20)... 

imageSize = trainedModel.Layers(1).InputSize;
PredTime = zeros(NumTestForPredTime,1);
for i = 1:NumTestForPredTime
    x = randn(imageSize);
    tic;
    [YPred, probs] = classify(trainedModel,x,'ExecutionEnvironment',ExecutionEnvironment);
    PredTime(i) = toc;
end
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AvgPredTimePerImage = mean(PredTime);
fprintf('Average prediction time (execution environment: %s): %.2e sec \n',...
    ExecutionEnvironment,AvgPredTimePerImage);

Average prediction time (execution environment: cpu): 1.67e-01 sec 

Save the results.

if ~LoadModel
    save(MatFile,'accuracy','confusionMat','PredTime','ModelMemSize', ...
        'AvgPredTimePerImage','-append')
end

GPU Code Generation — Define Functions

The scalogram of a signal is the input "image" to a deep CNN. Create a function,
cwt_ecg_jetson_ex, that computes the scalogram of an input signal and returns an image at the
user-specified dimensions. The image uses the jet(128) colormap. The %#codegen directive in the
function indicates that the function is intended for code generation. When using the
coder.gpu.kernelfun pragma, code generation attempts to map the computations in the
cwt_ecg_jetson_ex function to the GPU.

type cwt_ecg_jetson_ex.m

function im = cwt_ecg_jetson_ex(TimeSeriesSignal, ImgSize) %#codegen
% This function is only intended to support wavelet deep learning examples.
% It may change or be removed in a future release.

coder.gpu.kernelfun();

%% Create Scalogram
cfs = cwt(TimeSeriesSignal, 'morse', 1, 'VoicesPerOctave', 12);
cfs = abs(cfs);

%% Image generation
cmapj128 = coder.load('cmapj128');
imx = ind2rgb_custom_ecg_jetson_ex(round(255*rescale(cfs))+1,cmapj128.cmapj128);

% resize to proper size and convert to uint8 data type
im = im2uint8(imresize(imx, ImgSize)); 

end

Create the entry-point function, model_predict_ecg.m, for code generation. The function takes an
ECG signal as input and calls the cwt_ecg_jetson_ex function to create an image of the scalogram.
The model_predict_ecg function uses the network contained in the ecg_model.mat file to classify
the ECG signal.

type model_predict_ecg.m

function PredClassProb = model_predict_ecg(TimeSeriesSignal) %#codegen
% This function is only intended to support wavelet deep learning examples.
% It may change or be removed in a future release.
    coder.gpu.kernelfun();
    
    % parameters
    ModFile = 'ecg_model.mat'; % file that saves neural network model
    ImgSize = [227 227]; % input image size for the ML model
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    % sanity check signal is a row vector of correct length
    assert(isequal(size(TimeSeriesSignal), [1 65536])) 
    %% cwt transformation for the signal
    im = cwt_ecg_jetson_ex(TimeSeriesSignal, ImgSize);
    
    %% model prediction
    persistent model;
    if isempty(model)
        model = coder.loadDeepLearningNetwork(ModFile, 'mynet');
    end

    PredClassProb = predict(model, im);
    
end

To generate a CUDA executable that can be deployed to an NVIDIA target, create a custom main file
(main_ecg_jetson_ex.cu) and a header file (main_ecg_jetson_ex.h). You can generate an
example main file and use that as a template to rewrite new main and header files. For more
information, see the GenerateExampleMain property of coder.CodeConfig (MATLAB Coder). The
main file calls the code generated for the MATLAB entry-point function. The main file first reads the
ECG signal from a text file, passes the data to the entry-point function, and writes the prediction
results to a text file (predClassProb.txt). To maximize computation efficiency on the GPU, the
executable processes single-precision data.

type main_ecg_jetson_ex.cu

//
// File: main_ecg_jetson_ex.cu
//
// This file is only intended to support wavelet deep learning examples.
// It may change or be removed in a future release.
        
//***********************************************************************
// Include Files
#include "rt_nonfinite.h"
#include "model_predict_ecg.h"
#include "main_ecg_jetson_ex.h"
#include "model_predict_ecg_terminate.h"
#include "model_predict_ecg_initialize.h"
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

// Function Definitions

/* Read data from a file*/
int readData_real32_T(const char * const file_in, real32_T data[65536])
{
  FILE* fp1 = fopen(file_in, "r");
  if (fp1 == 0)
  {
    printf("ERROR: Unable to read data from %s\n", file_in);
    exit(0);
  }
  for(int i=0; i<65536; i++)
  {
      fscanf(fp1, "%f", &data[i]);
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  }
  fclose(fp1);
  return 0;
}

/* Write data to a file*/
int writeData_real32_T(const char * const file_out, real32_T data[3])
{
  FILE* fp1 = fopen(file_out, "w");
  if (fp1 == 0) 
  {
    printf("ERROR: Unable to write data to %s\n", file_out);
    exit(0);
  }
  for(int i=0; i<3; i++)
  {
    fprintf(fp1, "%f\n", data[i]);
  }
  fclose(fp1);
  return 0;
}

// model predict function
static void main_model_predict_ecg(const char * const file_in, const char * const file_out)
{
  real32_T PredClassProb[3];
  //  real_T b[65536];
  real32_T b[65536];

  // readData_real_T(file_in, b);
  readData_real32_T(file_in, b);
       
  model_predict_ecg(b, PredClassProb);

  writeData_real32_T(file_out, PredClassProb);

}

// main function
int32_T main(int32_T argc, const char * const argv[])
{
  const char * const file_out = "predClassProb.txt";
  // Initialize the application.
  model_predict_ecg_initialize();
  
  // Run prediction function
  main_model_predict_ecg(argv[1], file_out); // argv[1] = file_in

  // Terminate the application.
  model_predict_ecg_terminate();
  return 0;
}

type main_ecg_jetson_ex.h

//
// File: main_ecg_jetson_ex.h
//
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// This file is only intended to support wavelet deep learning examples.
// It may change or be removed in a future release.

//
//***********************************************************************
#ifndef MAIN_H
#define MAIN_H

// Include Files
#include <stddef.h>
#include <stdlib.h>
#include "rtwtypes.h"
#include "model_predict_ecg_types.h"

// Function Declarations
extern int32_T main(int32_T argc, const char * const argv[]);

#endif

//
// File trailer for main_ecg_jetson_ex.h
//
// [EOF]
//

GPU Code Generation — Specify Target

To create an executable that can be deployed to the target device, set CodeGenMode equal to 1. If
you want to create an executable that runs locally and connects remotely to the target device, set
CodeGenMode equal to 2.

The main function reads data from the text file specified by signalFile and writes the classification
results to resultFile. Set ExampleIndex to choose a representative ECG signal. You will use this
signal to test the executable against the classify function. Jetson_BuildDir specifies the
directory for performing the remote build process on the target. If the specified build directory does
not exist on the target, then the software creates a directory with the given name.

CodeGenMode = ;
signalFile = 'signalData.txt';
resultFile = 'predClassProb.txt'; % consistent with "main_ecg_jetson_ex.cu"
Jetson_BuildDir = '~/projectECG';
ExampleIndex = 1; % 1,4: type ARR; 2,5: type CHF; 3,6: type NSR

Function_to_Gen = 'model_predict_ecg';
ModFile = 'ecg_model.mat'; % file that saves neural network model; consistent with "main_ecg_jetson_ex.cu"
ImgSize = [227 227]; % input image size for the ML model

switch ExampleIndex
    case 1 % ARR 7
        SampleSignalIdx = 7;
    case 2 % CHF 97
        SampleSignalIdx = 97;
    case 3 % NSR 132
        SampleSignalIdx = 132;
    case 4 % ARR 31
        SampleSignalIdx = 31;
    case 5 % CHF 101
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        SampleSignalIdx = 101;
    case 6 % NSR 131
        SampleSignalIdx = 131;
end
signal_data = single(ECGData.Data(SampleSignalIdx,:));
ECGtype = ECGData.Labels{SampleSignalIdx};

GPU Code Generation — Connect to Hardware

To communicate with the NVIDIA hardware, you create a live hardware connection object using the
jetson function. You must know the host name or IP address, user name, and password of the target
board to create a live hardware connection object.

Create a live hardware connection object for the Jetson hardware. In the following code, replace:

• NameOfJetsonDevice with the name or IP address of your Jetson device
• Username with your user name
• password with your password

During the creation of the object, the software performs hardware and software checks, IO server
installation, and gathers information on the peripherals connected to the target. This information is
displayed in the command window.

hwobj = jetson("NameOfJetsonDevice","Username","password");

Checking for CUDA availability on the Target...
Checking for 'nvcc' in the target system path...
Checking for cuDNN library availability on the Target...
Checking for TensorRT library availability on the Target...
Checking for prerequisite libraries is complete.
Gathering hardware details...
Checking for third-party library availability on the Target...
Gathering hardware details is complete.
 Board name              : NVIDIA Jetson Nano
 CUDA Version            : 10.0
 cuDNN Version           : 7.3
 TensorRT Version        : 5.0
 GStreamer Version       : 1.14.5
 V4L2 Version            : 1.14.2-1
 SDL Version             : 1.2
 OpenCV Version          : 3.3.1
 Available Webcams       :  
 Available GPUs          : NVIDIA Tegra X1
 Available Digital Pins  : 7  11  12  13  15  16  18  19  21  22  23  24  26  29  31  32  33  35  36  37  38  40

Use the coder.checkGpuInstall (GPU Coder) function and verify that the compilers and libraries
needed for running this example are set up correctly on the hardware.

envCfg = coder.gpuEnvConfig('jetson');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.HardwareObject = hwobj;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg)

ans = struct with fields:
                 gpu: 1
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                cuda: 1
               cudnn: 1
            tensorrt: 0
        basiccodegen: 0
       basiccodeexec: 0
         deepcodegen: 1
        deepcodeexec: 0
    tensorrtdatatype: 0
           profiling: 0

GPU Code Generation — Compile

Create a GPU code configuration object necessary for compilation. Use the coder.hardware
function to create a configuration object for the Jetson platform and assign it to the Hardware
property of the code configuration object cfg. Use 'NVIDIA Jetson' for the Jetson TX1 or TX2
boards. The custom main file is a wrapper that calls the entry-point function in the generated code.
The custom file is required for a deployed executable.

Use the coder.DeepLearningConfig (GPU Coder) function to create a CuDNN deep learning
configuration object and assign it to the DeepLearningConfig property of the GPU code
configuration object. The code generator takes advantage of NVIDIA® CUDA® deep neural network
library (cuDNN) for NVIDIA GPUs. cuDNN is a GPU-accelerated library of primitives for deep neural
networks.

if CodeGenMode == 1
    cfg = coder.gpuConfig('exe');
    cfg.Hardware = coder.hardware('NVIDIA Jetson');
    cfg.Hardware.BuildDir = Jetson_BuildDir;
    cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
    cfg.CustomSource = fullfile('main_ecg_jetson_ex.cu');
elseif CodeGenMode == 2
    cfg = coder.gpuConfig('lib');
    cfg.VerificationMode = 'PIL';
    cfg.Hardware = coder.hardware('NVIDIA Jetson');
    cfg.Hardware.BuildDir = Jetson_BuildDir;
    cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
end

To generate CUDA code, use the codegen function and pass the GPU code configuration along with
the size and type of the input for the model_predict_ecg entry-point function. After code
generation on the host is complete, the generated files are copied over and built on the target.

codegen('-config ',cfg,Function_to_Gen,'-args',{signal_data},'-report');

Code generation successful: View report

GPU Code Generation — Execute

If you compiled an executable to be deployed to the target, write the example ECG signal to a text
file. Use the putFile() function of the hardware object to place the text file on the target. The
workspaceDir property contains the path to the codegen folder on the target.

if CodeGenMode == 1
    fid = fopen(signalFile,'w');
    for i = 1:length(signal_data)
        fprintf(fid,'%f\n',signal_data(i));
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    end
    fclose(fid);
    hwobj.putFile(signalFile,hwobj.workspaceDir);
end

Run the executable.

When running the deployed executable, delete the previous result file if it exists. Use the
runApplication() function to launch the executable on the target hardware, and then the
getFile() function to retrieve the results. Because the results may not exist immediately after the
runApplication() function call returns, and to allow for communication delays, set a maximum
time for fetching the results to 90 seconds. Use the evalc function to suppress the command-line
output.

if CodeGenMode == 1 % run deployed executable
    maxFetchTime = 90;
    resultFile_hw = fullfile(hwobj.workspaceDir,resultFile);
    if ispc
        resultFile_hw = strrep(resultFile_hw,'\','/');
    end
    
    ta = tic;
    
    hwobj.deleteFile(resultFile_hw)
    evalc('hwobj.runApplication(Function_to_Gen,signalFile)');
    
    tf = tic;
    success = false;
    while toc(tf) < maxFetchTime
        try
            evalc('hwobj.getFile(resultFile_hw)');
            success = true;
        catch ME
        end
        if success
            break
        end
    end
    fprintf('Fetch time = %.3e sec\n',toc(tf));
    assert(success,'Unable to fetch the prediction')
    PredClassProb = readmatrix(resultFile);
    PredTime = toc(ta);
elseif CodeGenMode == 2 % run PIL executable
    ta = tic;
    eval(sprintf('PredClassProb = %s_pil(signal_data);',Function_to_Gen));
    PredTime = toc(ta);
    eval(sprintf('clear %s_pil;',Function_to_Gen)); % terminate PIL execution
end

Fetch time = 1.658e+01 sec

Use the classify function to predict the class labels for the example signal.

ModData = load(ModFile,'net');
im = cwt_ecg_jetson_ex(signal_data,ImgSize);
[ModPred, ModPredProb] = classify(ModData.net,im);
PredCat = categories(ModPred)';
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Compare the results.

PredTableJetson = array2table(PredClassProb(:)','VariableNames',matlab.lang.makeValidName(PredCat));
fprintf('tPred = %.3e sec\nExample ECG Type: %s\n',PredTime,ECGtype)

tPred = 2.044e+01 sec
Example ECG Type: ARR

disp(PredTableJetson)

      ARR        CHF         NSR   
    _______    ________    ________

    0.99858    0.001252    0.000166

PredTableMATLAB = array2table(ModPredProb(:)','VariableNames',matlab.lang.makeValidName(PredCat));
disp(PredTableMATLAB)

      ARR         CHF          NSR    
    _______    _________    __________

    0.99858    0.0012516    0.00016613

Close the hardware connection.

clear hwobj

Summary

This example shows how to create and deploy a CUDA executable that uses a CNN to classify ECG
signals. You also have the option to create an executable the runs locally and connects to the remote
target. A complete workflow is presented in this example. After the data is downloaded, the CWT is
used to extract features from the ECG signals. Then SqueezeNet is retrained to classify the signals
based on their scalograms. Two user-defined functions are created and compiled on the target
NVIDIA device. Results of the executable are compared with MATLAB.
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Supporting Functions

helperCreateECGDirectories

function helperCreateECGDirectories(ECGData,parentFolder,dataFolder)
% This function is only intended to support wavelet deep learning examples.
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% It may change or be removed in a future release.

rootFolder = parentFolder;
localFolder = dataFolder;
mkdir(fullfile(rootFolder,localFolder))

folderLabels = unique(ECGData.Labels);
for i = 1:numel(folderLabels)
    mkdir(fullfile(rootFolder,localFolder,char(folderLabels(i))));
end
end

helperPlotReps
function helperPlotReps(ECGData)
% This function is only intended to support wavelet deep learning examples.
% It may change or be removed in a future release.

folderLabels = unique(ECGData.Labels);

for k=1:3
    ecgType = folderLabels{k};
    ind = find(ismember(ECGData.Labels,ecgType));
    subplot(3,1,k)
    plot(ECGData.Data(ind(1),1:1000));
    grid on
    title(ecgType)
end
end

helperCreateRGBfromTF
function helperCreateRGBfromTF(ECGData,parentFolder, childFolder)
% This function is only intended to support wavelet deep learning examples.
% It may change or be removed in a future release.

imageRoot = fullfile(parentFolder,childFolder);

data = ECGData.Data;
labels = ECGData.Labels;

[~,signalLength] = size(data);

fb = cwtfilterbank('SignalLength',signalLength,'VoicesPerOctave',12);
r = size(data,1);

for ii = 1:r
    cfs = abs(fb.wt(data(ii,:)));
    im = ind2rgb(im2uint8(rescale(cfs)),jet(128));
    
    imgLoc = fullfile(imageRoot,char(labels(ii)));
    imFileName = strcat(char(labels(ii)),'_',num2str(ii),'.jpg');
    imwrite(imresize(im,[227 227]),fullfile(imgLoc,imFileName));
end
end

See Also
coder.DeepLearningConfig | cwtfilterbank | cwt
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Related Examples
• “Deploy Signal Classifier Using Wavelets and Deep Learning on Raspberry Pi” on page 13-130
• “Modulation Classification Using Wavelet Analysis on NVIDIA Jetson” on page 13-178
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Code Generation for a Deep Learning Simulink Model to
Classify ECG Signals

This example demonstrates how you can use powerful signal processing techniques and
Convolutional Neural Networks together to classify ECG signals. We will also showcase how CUDA®
code can be generated from the Simulink® model. This example uses the pretrained CNN network
from the Classify Time Series Using Wavelet Analysis and Deep Learning example of the Wavelet
Toolbox™ to classify ECG signals based on images from the CWT of the time series data. For
information on training, see “Classify Time Series Using Wavelet Analysis and Deep Learning” on
page 13-69.

For a video demonstration on how to perform software-in-the-loop (SIL), processor-in-the-loop (PIL)
simulation, and deploying this example to NVIDIA Jetson® board, see https://www.mathworks.com/
videos/deep-learning-in-simulink-for-nvidia-gpus-classification-of-ecg-signals-1621401016961.html.

This example illustrates the following concepts:

• Model the classification application in Simulink. Use MATLAB Function blocks to perform
preprocessing and wavelet transforms of the ECG data. Use the Image Classifier block from
the Deep Learning Toolbox™ for loading the pretrained network and performing the classification
of the ECG data.

• Configure the model for code generation.
• Generate a CUDA executable for the Simulink model.

Third-Party Prerequisites

• CUDA enabled NVIDIA GPU.
• NVIDIA CUDA toolkit and driver.
• NVIDIA cuDNN library.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” (GPU Coder) and “Setting Up the Prerequisite Products” (GPU Coder).

Verify GPU Environment

To verify that the compilers and libraries necessary for running this example are set up correctly, use
the coder.checkGpuInstall (GPU Coder) function.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

ECG Data Description

This example uses ECG data from PhysioNet database. It contains data from three groups of people:

1 Persons with cardiac arrhythmia (ARR)
2 Persons with congestive heart failure (CHF)
3 Persons with normal sinus rhythms (NSR)
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It includes 96 recordings from persons with ARR, 30 recordings from persons with CHF, and 36
recordings from persons with NSR. The ecg_signals MAT-file contains the test ECG data in time
series format. The image classifier in this example distinguishes between ARR, CHF, and NSR.

Algorithmic Workflow

The block diagram for the algorithmic workflow of the Simulink model is shown.

ECG Deep Learning Simulink Model

The Simulink model for classifying the ECG signals is shown. When the model runs, the Video
Viewer block displays the classified ECG signal.

open_system('ecg_dl_cwt');
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ECG Preprocessing Subsystem

The ECG Preprocessing subsystem contains a MATLAB Function block that performs CWT to
obtain scalogram of the ECG signal and then processes the scalogram to obtain an image and an
Image Classifier block that loads the pretrained network from trainedNet.mat and performs
prediction for image classification based on SqueezeNet deep learning CNN.

open_system('ecg_dl_cwt/ECG Preprocessing');

The ScalogramFromECG function block defines a function called ecg_to_scalogram that:

• Uses 65536 samples of double-precision ECG data as input.
• Create time frequency representation from the ECG data by applying Wavelet transform.
• Obtain scalogram from the wavelet coefficients.
• Convert the scalogram to image of size (227x227x3).

The function signature of ecg_to_scalogram is shown.

type ecg_to_scalogram

function ecg_image  = ecg_to_scalogram(ecg_signal)

% Copyright 2020 The MathWorks, Inc.

persistent jetdata;
if(isempty(jetdata))
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    jetdata = colourmap(128,'single');
end
% Obtain wavelet coefficients from ECG signal
cfs = cwt_ecg(ecg_signal);  
% Obtain scalogram from wavelet coefficients
image = ind2rgb(im2uint8(rescale(cfs)),jetdata);
ecg_image = im2uint8(imresize(image,[227,227]));

end

ECG Postprocessing

The ECG Postprocessing MATLAB function block defines the label_prob_image function that
finds the label for the scalogram image based on the highest score from the scores outputed by the
image classifier. It outputs the scalogram image with the label and confidence printed on it.

type label_prob_image

function final_image = label_prob_image(ecg_image, scores, labels)

% Copyright 2020-2021 The MathWorks, Inc.

scores = double(scores);
% Obtain maximum confidence 
[prob,index] = max(scores);
confidence = prob*100;
% Obtain label corresponding to maximum confidence
label = erase(char(labels(index)),'_label');
text = cell(2,1);
text{1} = ['Classification: ' label];
text{2} = ['Confidence: ' sprintf('%0.2f',confidence) '%'];
position = [135 20 0 0; 130 40 0 0];
final_image = insertObjectAnnotation(ecg_image,'rectangle',position,...
    text,'TextBoxOpacity',0.9,'FontSize',9);

end

Run the Simulation

Open Configuration Parameters dialog box.

In Simulation Target pane, select GPU acceleration. In the Deep Learning group, select the
target library as cuDNN.
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To verify the algorithm and display the labels and confidence score of the test ECG signal loaded in
the workspace, run the simulation.

set_param('ecg_dl_cwt', 'SimulationMode', 'Normal');
sim('ecg_dl_cwt');
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Generate and Build the Simulink Model

In Code Generation pane, select the Language as C++ and enable Generate GPU code.

Open Code Generation > GPU Code pane. In the subcategory Libraries, enable cuBLAS,
cuSOLVER and cuFFT.

Generate and build the Simulink model on the host GPU by using the slbuild command. The code
generator places the files in a build folder, a subfolder named ecg_dl_cwt_ert_rtw under your
current working folder.

status = evalc("slbuild('ecg_dl_cwt')");

Generated CUDA® Code

The subfolder named ecg_dl_cwt_ert_rtw contains the generated C++ codes corresponding to
the different blocks in the Simulink model and the specific operations being performed in those
blocks. For example, the file trainedNet0_ecg_dl_cwt0.h contains the C++ class which contains
certain attributes such as numLayers and member functions such as getBatchSize(), predict().
This class represents the pretrained SqueezeNet which has been loaded in the Simulink model.
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Cleanup

Close the Simulink model.

close_system('ecg_dl_cwt/ECG Preprocessing');
close_system('ecg_dl_cwt');

See Also
cwtfilterbank

Related Examples
• “Anomaly Detection Using Autoencoder and Wavelets” on page 13-224
• “Deploy Signal Classifier on NVIDIA Jetson Using Wavelet Analysis and Deep Learning” on page

13-155
• “Deploy Signal Classifier Using Wavelets and Deep Learning on Raspberry Pi” on page 13-130
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Modulation Classification Using Wavelet Analysis on NVIDIA
Jetson

This example shows how to generate and deploy a CUDA® executable that performs modulation
classification using features extracted by the continuous wavelet transform (CWT), and a pretrained
convolutional neural network (CNN).

Modulation classification is an important function for an intelligent receiver. Modulation classification
has numerous applications, such as cognitive radar and software-defined radio. Typically, to identify
these waveforms and classify them by modulation type it is necessary to define meaningful features
and input them into a classifier. While effective, this procedure can require extensive effort and
domain knowledge to yield an accurate classification. This example explores a framework to
automatically extract time-frequency features from signals and perform signal classification using a
deep learning network.

You use the CWT to create time-frequency representations of complex-valued signals. You do not need
to separate the signal into I and Q channels. You use the representations, called scalograms, and
leverage an existing CNN by retraining the network to classify the signals. This leveraging of existing
neural networks is called transfer learning.

In this example we adapt SqueezeNet, a CNN pretrained for image recognition, to classify the
modulation type of each frame based on the scalogram. We then create a CUDA executable that
generates a scalogram of an input signal. We deploy the executable and retrained CNN onto a target
device, making it possible to classify signals in real time.

By default, this example downloads training data and trained network in a single ZIP file
wavelet_modulation_classification.zip. The size of the ZIP file is approximately 1.2
gigabytes. You have the option of generating the training data and training the network. However,
both are time-consuming operations. Depending on your computer hardware, generating the training
data can take one hour or longer. Training the network can take 90 minutes or longer.

Modulation Types

Specify five digital and three analog modulation types:

• Binary phase shift keying (BPSK)
• 16-ary quadrature amplitude modulation (16-QAM)
• 4-ary pulse amplitude modulation (PAM4)
• Gaussian frequency shift keying (GFSK)
• Continuous phase frequency shift keying (CPFSK)
• Broadcast FM (B-FM)
• Double sideband amplitude modulation (DSB-AM)
• Single sideband amplitude modulation (SSB-AM)

modTypesList = ["BPSK", ...
  "16QAM", "PAM4", "GFSK", "CPFSK", ...
  "B-FM", "DSB-AM", "SSB-AM"];
modulationTypes = categorical(modTypesList);

Specify a parent directory parentDir and the name of a directory dataDir that will be inside
parentDir. You must have write permission to parentDir. The ZIP file is downloaded to
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parentDir. Because the example downloads data by default, dataDir must be
'wavelet_modulation_classification'. The directory dataDirectory will contain the
training data used in this example. ResultDir specifies the name of a directory that will contain the
trained network. ResultDir is in the same directory as this example, and will be created for you if
necessary.

parentDir = tempdir;
dataDir = 'wavelet_modulation_classification';
dataDirectory = fullfile(parentDir,dataDir);
ResultDir = 'trainedNetworks';

Specify the parameters of the training data. The training data consists of 5,000 frames for each
modulation type. Each frame is 1024 samples long and has a sample rate of 200 kHz. For digital
modulation types, eight samples represent a symbol. Assume a center frequency of 902 MHz and 100
MHz for the digital and analog modulation types, respectively.

numFramesPerModType = 5000;
frameLength = 1024;
fs = 200e3;

Download Data

Download and unzip the training data and trained network. The dataDirectory folder contains
folders named after each modulation type. The training data are in these folders. The trained
network, waveletModClassNet.mat, is in ResultDir.

If you do not want to download the data, set downloadData to false. The helper function
helperGenerateModWaveforms generates the frames and stores them in dataDirectory. For
purposes of reproducibility, set the random seed.

downloadData = ;
if downloadData
    dataURL = 'https://ssd.mathworks.com/supportfiles/wavelet/waveletModulation/wavelet_modulation_classification.zip';
    zipFile = fullfile(parentDir,'wavelet_modulation_classification.zip');
    tic
    websave(zipFile,dataURL);
    disp(['Download time: ',num2str(toc),' seconds'])
    tic
    unzip(zipFile,parentDir);
    disp(['Unzipping time: ',num2str(toc),' seconds'])
    trainedNetworkDir = fullfile(parentDir,dataDir,'results');
    status = copyfile(trainedNetworkDir,ResultDir);
else
    rng(1235)
    helperGenerateModWaveforms(dataDirectory,modulationTypes,numFramesPerModType,frameLength,fs);
end

Download time: 38.2209 seconds

Unzipping time: 7.9005 seconds

Another example, “Modulation Classification with Deep Learning” (Communications Toolbox),
performs modulation classification of several different modulation types using Communications
Toolbox™. The helper function helperGenerateModWaveforms generates and augments a subset of
the modulation types used in that example. See the example link for an in-depth description of the
workflow necessary for digital and analog modulation classification and the techniques used to create
these waveforms.
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Plot the amplitude of the real and imaginary parts of a representative of each modulation type. The
helper function helperModClassPlotTimeDomain2 does this.

helperModClassPlotTimeDomain2(dataDirectory,modulationTypes,fs)

Generate Scalograms

Create time-frequency representations of the waveforms. These representations are called
scalograms. A scalogram is the absolute value of the CWT coefficients of a signal. To create the
scalograms, precompute a CWT filter bank. Precomputing the CWT filter bank is the preferred
method when obtaining the CWT of many signals using the same parameters.

Before generating all the scalograms, plot the scalograms from a representative of each modulation
type. Create a CWT filter bank using cwtfilterbank for a signal with 1024 samples, and use the
filter bank to take the CWT of the signal. Because the signal is complex valued, the CWT is a 3-D
array. The first page is the CWT for the positive scales (analytic part or counterclockwise component),
and the second page is the CWT for the negative scales (anti-analytic part or clockwise component).
To generate the scalograms, take the absolute value of the concatenation of each page. The helper
function helperPlotScalogramsMod2 does this.

helperPlotScalogramsMod2(dataDirectory,modulationTypes,frameLength,fs)
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If you downloaded the training data and trained network, proceed to Divide into Training, Testing,
and Validation Data on page 13-0 . Otherwise, generate all the scalograms as RGB images and write
them to the appropriate subdirectory in dataDirectory. The helper function
helperGenerateCWTfiles2 does this. To be compatible with the SqueezeNet architecture, each
RGB image is an array of size 227-by-227-by-3.

if ~downloadData
    helperGenerateCWTfiles2(dataDirectory,modulationTypes,frameLength,fs)
end

Divide into Training, Testing, and Validation Data

Load the scalogram images as an image datastore. The imageDatastore function automatically
labels the images based on folder names and stores the data as an ImageDatastore object. An image
datastore enables you to store large image data, including data that does not fit in memory, and
efficiently read batches of images during training of a CNN.

folders = fullfile(dataDirectory,string(modulationTypes));
imds = imageDatastore(folders,...
    'FileExtensions','.jpg','LabelSource','foldernames');

Randomly divide the images into three groups, where 80% are used for training, 10% are used for
validation, and 10% are used for testing. We use training and validation frames during the network
training phase. For purposes of reproducibility, we set the random seed.

rng(1235)
[imdsTrain,imdsTest,imdsValidation] = splitEachLabel(imds,0.8,0.1);
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If necessary, create the directory that will contain the trained network. If you downloaded the data,
the directory specified by ResultDir already exists, and the file waveletModClassNet.mat in this
directory contains the trained network.

if ~exist(ResultDir,'dir')
    mkdir(ResultDir)
end
MatFile = fullfile(ResultDir,'waveletModClassNet.mat');

If you downloaded the ZIP file, load the trained network and then proceed to Evaluate Network on
page 13-0 . Otherwise, you must retrain SqueezeNet.

if downloadData
    disp('Load ML model from the file')
    load(MatFile,'trainedNet','imdsValidation')
end

Load ML model from the file

SqueezeNet

SqueezeNet is a pretrained CNN that can classify images into 1000 object categories. You must
retrain SqueezeNet to classify waveforms by their modulation type. Prior to retraining, you modify
several network layers and set various training options. After retraining is complete, you save the
CNN in a .mat file. The CUDA executable uses the .mat file.

Load SqueezeNet and extract the layer graph from the network. Inspect the last five layers of the
graph.

net = squeezenet;
lgraph = layerGraph(net);
lgraph.Layers(end-4:end)

ans = 
  5×1 Layer array with layers:

     1   'conv10'                            Convolution              1000 1×1×512 convolutions with stride [1  1] and padding [0  0  0  0]
     2   'relu_conv10'                       ReLU                     ReLU
     3   'pool10'                            Global Average Pooling   Global average pooling
     4   'prob'                              Softmax                  softmax
     5   'ClassificationLayer_predictions'   Classification Output    crossentropyex with 'tench' and 999 other classes

The last learnable layer in SqueezeNet is a 1-by-1 convolutional layer, 'conv10'. Replace the layer
with a new convolutional layer with the number of filters equal to the number of modulation types.

numClasses = numel(modulationTypes);
newLearnableLayer = convolution2dLayer(1,numClasses,'Name','new_conv10');
lgraph = replaceLayer(lgraph,lgraph.Layers(end-4).Name,newLearnableLayer);

Replace the classification layer with a new one without class labels. The output classes of the layer
are set automatically at training time. Display the last five layers to confirm the changes.

newClassLayer = classificationLayer('Name','new_classoutput');
lgraph = replaceLayer(lgraph,lgraph.Layers(end).Name,newClassLayer);
lgraph.Layers(end-4:end)

ans = 
  5×1 Layer array with layers:
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     1   'new_conv10'        Convolution              8 1×1 convolutions with stride [1  1] and padding [0  0  0  0]
     2   'relu_conv10'       ReLU                     ReLU
     3   'pool10'            Global Average Pooling   Global average pooling
     4   'prob'              Softmax                  softmax
     5   'new_classoutput'   Classification Output    crossentropyex

Train the CNN

Training a neural network is an iterative process that involves minimizing a loss function. Use the
trainingOptions (Deep Learning Toolbox) function to specify options for the training process that
ensures good network performance. Refer to the trainingOptions documentation for a description
of each option.

OptimSolver = 'adam';
MiniBatchSize = 50;
MaxEpochs = 20;
InitialLearnRate = 1e-4;
Shuffle = 'every-epoch';

options = trainingOptions(OptimSolver, ...
    'MiniBatchSize',MiniBatchSize, ...
    'MaxEpochs',MaxEpochs, ...
    'InitialLearnRate',InitialLearnRate, ...
    'Shuffle',Shuffle, ...
    'Verbose',false, ...
    'Plots','training-progress',...
    'ValidationData',imdsValidation);

Save all the parameters in a structure. The trained network and structure will be later saved in
a .mat file.

TrialParameter.OptimSolver = OptimSolver;
TrialParameter.MiniBatchSize = MiniBatchSize;
TrialParameter.MaxEpochs = MaxEpochs;
TrialParameter.InitialLearnRate = InitialLearnRate;

Set the random seed to the default value and use the trainNetwork (Deep Learning Toolbox)
function to train the CNN. Save the trained network, trial parameters, training run time, and image
datastore containing the validation images. Because of the dataset's large size, the process will take
many minutes. By default, training is done on a GPU if one is available. Using a GPU requires Parallel
Computing Toolbox™. To see which GPUs are supported, see “GPU Support by Release” (Parallel
Computing Toolbox). Otherwise, training is done on the CPU. The training accuracy plots in the figure
show the progress of the network's learning across all iterations.

if ~downloadData
    rng default
    tic;
    trainedNet = trainNetwork(imdsTrain,lgraph,options);
    trainingTime = toc;
    fprintf('Total training time: %.2e sec\n',trainingTime);
    save(MatFile,'TrialParameter','trainedNet','trainingTime','imdsValidation');
end

Evaluate Network

Load the .mat file that contains the trained network and the training parameters. Save only the
trained network in a separate .mat file. This file will be used by the CUDA executable.
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OutMatFile = 'mdwv_model.mat';
data = load(MatFile,'trainedNet');
trainedNet = data.trainedNet;
save(OutMatFile,'trainedNet');

Evaluate the trained network by obtaining the classification accuracy for the test frames.

[YPred,probs] = classify(trainedNet,imdsTest);
imdsTestLabels = imdsTest.Labels;
modAccuracy = sum(YPred==imdsTestLabels)/numel(imdsTestLabels)*100

modAccuracy = 96.2250

Summarize the performance of the trained network on the test frames with a confusion chart. Display
the precision and recall for each class by using column and row summaries. Save the figure. The
table at the bottom of the confusion chart shows the precision values. The table to the right of the
confusion chart shows the recall values.

figure('Units','normalized','Position',[0.2 0.2 0.5 0.5]);
ccDCNN = confusionchart(imdsTestLabels,YPred);
ccDCNN.Title = ['Test Accuracy: ',num2str(modAccuracy)];
ccDCNN.ColumnSummary = 'column-normalized';
ccDCNN.RowSummary = 'row-normalized';
AccFigFile = fullfile(ResultDir,'Network_ValidationAccuracy.fig');
saveas(gcf,AccFigFile);

Display the size of the trained network.
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info = whos('trainedNet');
ModelMemSize = info.bytes/1024;
fprintf('Trained network size: %g kB\n',ModelMemSize)

Trained network size: 2992.95 kB

Determine the average time it takes the network to classify an image.

NumTestForPredTime = 20;
TrialParameter.NumTestForPredTime = NumTestForPredTime;

fprintf('Test prediction time (number of tests: %d)... ',NumTestForPredTime)

Test prediction time (number of tests: 20)... 

imageSize = trainedNet.Layers(1).InputSize;
PredTime = zeros(NumTestForPredTime,1);
for i = 1:NumTestForPredTime
    x = randn(imageSize);
    tic;
    [YPred, probs] = classify(trainedNet,x);
    PredTime(i) = toc;
end
AvgPredTimePerImage = mean(PredTime);
fprintf('Average prediction time: %.2e sec \n',AvgPredTimePerImage);

Average prediction time: 8.41e-02 sec 

Save the results.

if ~downloadData
    save(MatFile,'modAccuracy','ccDCNN','PredTime','ModelMemSize', ...
        'AvgPredTimePerImage','-append')
end

GPU Code Generation — Define Functions

The scalogram of a signal is the input "image" to a deep CNN. Create a function, cwtModType, that
computes the scalogram of the complex-valued waveform and returns an image at the user-specified
dimensions. The image uses the jet(128) colormap. For purposes of code generation, treat the
input signal as a 1024-by-2 matrix, where the first column contains the real parts of the waveform
samples, and the second column contains the imaginary parts. The %#codegen directive in the
function indicates that the function is intended for code generation. When using the
coder.gpu.kernelfun pragma, code generation attempts to map the computations in the
cwtModType function to the GPU.

type cwtModType

function im = cwtModType(inputSig, imgSize)  %#codegen
% This function is only intended to support wavelet deep learning examples.
% It may change or be removed in a future release.
coder.gpu.kernel;

% Input is a 1024x2 matrix, convert it into complex form (a + 1*ib)
cinputSig = convertToComplex(inputSig);

% Wavelet time-frequency representations
[wt, ~, ~] = cwt(cinputSig, 'morse', 1, 'VoicesPerOctave', 48);
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% Generate Wavelet Time-Frequency Coefficients from Signal
cfs = abs([wt(:,:,1); wt(:,:,2)]); % Concatenate the clockwise and counterclockwise representation

% Image generation
im = generateImagefromCWTCoeff(cfs, imgSize);
end

Create the entry-point function, modelPredictModType, for code generation. The function takes
complex-valued signal, specified as a 1024-by-2 matrix, as input and calls the cwtModType function
to create an image of the scalogram. The modelPredictModType function uses the network
contained in the mdwv_model file to classify the waveform.

type modelPredictModType

function predClassProb = modelPredictModType(inputSig) %#codegen
% This function is only intended to support wavelet deep learning examples.
% It may change or be removed in a future release.
coder.gpu.kernelfun();
% input signal size is 1024-by-2

% parameters
ModelFile = 'mdwv_model.mat'; % file that saves the neural network model
imSize = [227 227]; % Size of the input image for the deep learning network

%Function to converts signal to wavelet time-frequency image
im = cwtModType(inputSig, imSize);

%Load the trained deep learning network
persistent model;
if isempty(model)
    model = coder.loadDeepLearningNetwork(ModelFile, 'mynet');
end

% Predict the Signal Modulation
predClassProb = model.predict(im);
end

To generate a CUDA executable that can be deployed to an NVIDIA target, create a custom main file
(main_mod_jetson.cu) and a header file (main_mod_jetson.h). You can generate an example
main file and use that as a template to rewrite new main and header files. For more information, see
the GenerateExampleMain property of coder.CodeConfig (MATLAB Coder). The main file calls
the code generated for the MATLAB entry-point function. The main file first reads the waveform
signal from a text file, passes the data to the entry-point function, and writes the prediction results to
a text file (predClassProb.txt). To maximize computation efficiency on the GPU, the executable
processes single-precision data.

If you want to view the contents of the main and header files, set viewFiles to true.

viewFiles = ;
if viewFiles
    type main_mod_jetson.cu
end
if viewFiles
    type main_mod_jetson.h
end
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GPU Code Generation — Connect to Hardware

To communicate with the NVIDIA hardware, you create a live hardware connection object using the
jetson function. You must know the host name or IP address, user name, and password of the target
board to create a live hardware connection object.

Create a live hardware connection object for the Jetson hardware. In the following code, replace:

• NameOfJetsonDevice with the name or IP address of your Jetson device
• Username with your user name
• password with your password

During the creation of the object, the software performs hardware and software checks, IO server
installation, and gathers information on the peripherals connected to the target. This information is
displayed in the command window.

hwobj = jetson("NameOfJetsonDevice","Username","password");

Checking for CUDA availability on the Target...
Checking for 'nvcc' in the target system path...
Checking for cuDNN library availability on the Target...
Checking for TensorRT library availability on the Target...
Checking for prerequisite libraries is complete.
Gathering hardware details...
Checking for third-party library availability on the Target...
Gathering hardware details is complete.
 Board name         : NVIDIA Jetson TX1, NVIDIA Jetson Nano
 CUDA Version       : 10.0
 cuDNN Version      : 7.3
 TensorRT Version   : 5.0
 GStreamer Version  : 1.14.5
 V4L2 Version       : 1.14.2-1
 SDL Version        : 1.2
 Available Webcams  :  
 Available GPUs     : NVIDIA Tegra X1

Use the coder.checkGpuInstall (GPU Coder) function and verify that the compilers and libraries
needed for running this example are set up correctly on the hardware.

envCfg = coder.gpuEnvConfig('jetson');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.HardwareObject = hwobj;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg)

ans = struct with fields:
                 gpu: 1
                cuda: 1
               cudnn: 1
            tensorrt: 0
        basiccodegen: 0
       basiccodeexec: 0
         deepcodegen: 1
        deepcodeexec: 0
    tensorrtdatatype: 0
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           profiling: 0

GPU Code Generation — Specify Target

To create an executable that can be deployed to the target device, set CodeGenMode equal to 1. If
you want to create an executable that runs locally and connects remotely to the target device, set
CodeGenMode equal to 2. Jetson_BuildDir specifies the directory for performing the remote build
process on the target. If the specified build directory does not exist on the target, then the software
creates a directory with the given name.

CodeGenMode = ;
Function_to_Gen = 'modelPredictModType';
ModFile = 'mdwv_model.mat'; % file that saves neural network model; consistent with "main_mod_jetson.cu"
ImgSize = [227 227]; % input image size for the ML model
Jetson_BuildDir = '~/projectMDWV';

Create a GPU code configuration object necessary for compilation. Use the coder.hardware
function to create a configuration object for the Jetson platform and assign it to the Hardware
property of the code configuration object cfg. Use 'NVIDIA Jetson' for the Jetson TX1 or TX2
boards. The custom main file is a wrapper that calls the entry-point function in the generated code.
The custom file is required for a deployed executable.

Use the coder.DeepLearningConfig (GPU Coder) function to create a CuDNN deep learning
configuration object and assign it to the DeepLearningConfig property of the GPU code
configuration object. The code generator takes advantage of NVIDIA® CUDA® deep neural network
library (cuDNN) for NVIDIA GPUs. cuDNN is a GPU-accelerated library of primitives for deep neural
networks.

if CodeGenMode == 1
    cfg = coder.gpuConfig('exe');
    cfg.Hardware = coder.hardware('NVIDIA Jetson');
    cfg.Hardware.BuildDir = Jetson_BuildDir;
    cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
    cfg.CustomSource = 'main_mod_jetson.cu';
elseif CodeGenMode == 2
    cfg = coder.gpuConfig('lib');
    cfg.VerificationMode = 'PIL';
    cfg.Hardware = coder.hardware('NVIDIA Jetson');
    cfg.Hardware.BuildDir = Jetson_BuildDir;
    cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
end

GPU Code Generation — Compile

To generate CUDA code, use the codegen function and pass the GPU code configuration along with
the size and type of the input for the modelPredictModType entry-point function. After code
generation on the host is complete, the generated files are copied over and built on the target.

codegen('-config ',cfg,Function_to_Gen,'-args',{single(ones(1024,2))},'-report');

Code generation successful: View report

GPU Code Generation — Choose Signal

The CUDA executable performs modulation classification by generating the scalogram of the
complex-valued waveform and applying the retrained CNN to the scalogram. Choose a waveform that
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was generated at the beginning of this example. From the 5,000 frames of each modulation type,
select one of the first 50 frames generated by setting waveNumber. Plot the real and imaginary parts
of the frame, and the scalogram generated from it. Use the helper function
helperPlotWaveFormAndScalogram. You can find the source code for this helper function in the
Supporting Functions on page 13-0  section at the end of this example.

waveForm = ;

waveNumber =  ;
signal_data = helperPlotWaveFormAndScalogram(dataDirectory,waveForm,waveNumber);

If you compiled an executable to be deployed to the target, write the signal you chose to the text file
signalFile. Use the putFile() function of the hardware object to place the text file on the target.
The workspaceDir property contains the path to the codegen folder on the target. The main
function in the executable reads data from the text file specified by signalFile and writes the
classification results to resultFile.

signalFile = 'signalData.txt';
resultFile = 'predClassProb.txt'; % consistent with "main_mod_jetson.cu"

if CodeGenMode == 1
    fid = fopen(signalFile,'w');
    for i = 1:length(signal_data)
        fprintf(fid,'%f\n',real(signal_data(i)));
    end
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    for i = 1:length(signal_data)
        fprintf(fid,'%f\n',imag(signal_data(i)));
    end
    fclose(fid);
    hwobj.putFile(signalFile,hwobj.workspaceDir);
end

GPU Code Generation — Execute

Run the executable.

When running the deployed executable, delete the previous result file if it exists. Use the
runApplication() function to launch the executable on the target hardware, and then the
getFile() function to retrieve the results. Because the results may not exist immediately after the
runApplication() function call returns, and to allow for communication delays, set a maximum
time for fetching the results to 90 seconds. Use the evalc function to suppress the command-line
output.

if CodeGenMode == 1 % run deployed executable
    maxFetchTime = 90;
    resultFile_hw = fullfile(hwobj.workspaceDir,resultFile);
    if ispc
        resultFile_hw = strrep(resultFile_hw,'\','/');
    end
    
    ta = tic;
    
    hwobj.deleteFile(resultFile_hw)
    evalc('hwobj.runApplication(Function_to_Gen,signalFile)');
    
    tf = tic;
    success = false;
    while toc(tf) < maxFetchTime
        try
            evalc('hwobj.getFile(resultFile_hw)');
            success = true;
        catch ME
        end
        if success
            break
        end
    end
    fprintf('Fetch time = %.3e sec\n',toc(tf));
    assert(success,'Unable to fetch the prediction')
    PredClassProb = readmatrix(resultFile);
    PredTime = toc(ta);
elseif CodeGenMode == 2 % run PIL executable
    sigData = [real(signal_data)';imag(signal_data)']';
    ta = tic;
    eval(sprintf('PredClassProb = %s_pil(single(sigData));',Function_to_Gen));
    PredTime = toc(ta);
    eval(sprintf('clear %s_pil;',Function_to_Gen)); % terminate PIL execution
end

Fetch time = 4.852e+00 sec
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GPU Code Generation — Display Result

The resultFile contains the classification results. For each possible modulation type, the network
assigned a probability that the signal was of that type. Display the chosen modulation type. Use the
helper function helperPredViz to display the classification results.

if CodeGenMode == 1
    helperPredViz                   % read fetched prediction results file
elseif CodeGenMode == 2
    helperPredVizPil(PredClassProb) % read workspace variable
end

fprintf('Expected Waveform: %s\n',waveForm);

Expected Waveform: B-FM

Summary

This example shows how to create and deploy a CUDA executable that uses a CNN to perform
modulation classification. You also have the option to create an executable the runs locally and
connects to the remote target. A complete workflow is presented in this example. After the data is
downloaded, the CWT is used to extract features from the waveforms. Then SqueezeNet is retrained
to classify the signals based on their scalograms. Two user-defined functions are created and
compiled on the target NVIDIA device. Results of the executable are compared with MATLAB.

Supporting Functions

helperPlotWaveFormAndScalogram
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function sig = helperPlotWaveFormAndScalogram(dataDirectory,wvType,wvNum)
% This function is only intended to support wavelet deep learning examples.
% It may change or be removed in a future release.

waveFileName = sprintf('frame%s%05d.mat',wvType,wvNum);
load(fullfile(dataDirectory,wvType,waveFileName),'frame');
sig = frame;

cfs = cwt(sig,'morse',1,'VoicesPerOctave',48);
cfs = abs([cfs(:,:,1);cfs(:,:,2)]);

subplot(211)
plot(real(frame))
hold on
plot(imag(frame))
hold off
axis tight
legend('Real','Imag')
str = sprintf('Waveform: %s / Frame: %d\n Signal',wvType,wvNum);
title(str)

subplot(212)
imagesc(cfs)
title('Time-Frequency Representation')
%set(gca,'xtick',[]);
set(gca,'ytick',[]);

end

helperPredVizPil

function helperPredVizPil(PredClassProb)
% This function is only intended to support wavelet deep learning examples.
% It may change or be removed in a future release.

classNames = {'16QAM';'B-FM';'BPSK';'CPFSK';'DSB-AM';'GFSK';'PAM4';'SSB-AM'};
figure
bar(PredClassProb)
set(gca, 'XTickLabel' , classNames)
xlabel('Class Labels')
ylabel('Probability')
title('Modulation Classification Output')
axis tight
grid on

end

See Also
cwtfilterbank

Related Examples
• “Deploy Signal Classifier on NVIDIA Jetson Using Wavelet Analysis and Deep Learning” on page

13-155
• “Deploy Signal Classifier Using Wavelets and Deep Learning on Raspberry Pi” on page 13-130
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• “CUDA Code from CWT” on page 8-11
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Parasite Classification Using Wavelet Scattering and Deep
Learning

This example shows how to classify parasitic infections in Giemsa stain images using wavelet image
scattering and deep learning. The dataset is challenging for deep networks because it contains only
48 images. The images are divided evenly into three categories of parasitic infections: babesiosis,
plasmodium-gametocyte, and trypanosomiasis.

Data

Obtain the data from the MATLAB® file exchange: Deploying Deep Neural Networks to Embedded
GPUs and unzip the file. The file is in the same folder as this example.

url = "https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/" + ...
    "5918495a-0009-419e-8e10-77b06e3fe553/844e43fa-7c50-4f88-a435-f0afe04fc3a3/" + ...
    "packages/zip";
websave("classifyBloodSmearImages.zip",url);
unzip('classifyBloodSmearImages.zip')

Create an ImageDatastore to manage the access of the Giemsa stain images. The images are in
RGB format with a common size of 300-by-300-by-3.

imagedir = fullfile('classifyBloodSmearImages','BloodSmearImages');
Imds = imageDatastore(imagedir,'IncludeSubFolders',true,'FileExtensions',...
    '.jpg','LabelSource','foldernames');
summary(Imds.Labels)

     babesiosis                 16 
     plasmodium-gametocyte      16 
     trypanosomiasis            16 

There are 16 images for each of the three parasite types. Split the data into training and hold-out test
sets, with 70 percent of the images in the training set and 30 percent in the test set. Set the random
number generator for reproducibility.

rng default
[trainImds,testImds] = splitEachLabel(Imds,0.7);

Verify that equal numbers of each parasite class are contained in both the training and test sets.

summary(trainImds.Labels)

     babesiosis                 11 
     plasmodium-gametocyte      11 
     trypanosomiasis            11 

% Perform the same for the test set.
summary(testImds.Labels)

     babesiosis                 5 
     plasmodium-gametocyte      5 
     trypanosomiasis            5 

Because this is a small dataset, the entire training and test sets fit in memory. Read all images for
both sets.

13 Featured Examples — Machine Learning and Deep Learning

13-194

https://www.mathworks.com/matlabcentral/fileexchange/66881-deploying-deep-neural-networks-to-embedded-gpus
https://www.mathworks.com/matlabcentral/fileexchange/66881-deploying-deep-neural-networks-to-embedded-gpus


trainImages = readall(trainImds);
testImages = readall(testImds);

Plot some sample images from the training data.

idx = randperm(33,6);
figure
for ii = 1:length(idx)
    im = trainImages{idx(ii)};
    subplot(3,2,ii)
    imshow(im,[])
    title(string(trainImds.Labels(idx(ii))));
end

Wavelet Scattering Network

In this example, you use a wavelet scattering transform as the feature extractor for the machine
learning approaches. The wavelet scattering transform helps to reduce the dimensionality of the data
and increase the interclass dissimilarity. Construct a two-layer image scattering network with a 40-
by-40 pixel invariance scale. Use two wavelets per octave in the first layer and one wavelet per octave
in the second layer. Use two rotations of the wavelets per layer.

sn = waveletScattering2('ImageSize',[300 300],'InvarianceScale',40,...
    'QualityFactors',[2 1],'NumRotations',[2 2]);
[~,npaths] = paths(sn);
sum(npaths)

ans = 27

 Parasite Classification Using Wavelet Scattering and Deep Learning

13-195



coefficientSize(sn)

ans = 1×2

    38    38

The specified wavelet scattering network has 27 paths. The image on each scattering path is reduced
to 38-by-38-by-3. Even without further averaging of the scattering coefficients, this is a reduction in
the size of each image's memory by more than a factor of 2. However, for classification we form a
feature vector that averages the scattering coefficients over the spatial and channel dimensions. This
results in feature vectors with only 27 elements, a real-valued scalar for each scattering path. This
represents a reduction in the number of elements by a factor of 10,000 for each image.

The following code computes the wavelet scattering feature vectors for both the training and test
sets. Concatenate the feature vectors so that you have N-by-27 matrices, where N is the number of
examples in the training or test set and each row is a wavelet scattering feature vector for an
example.

trainfeatures = cellfun(@(x)helperScatImages_mean(sn,x),trainImages,'Uni',0);
testfeatures = cellfun(@(x)helperScatImages_mean(sn,x),testImages,'Uni',0);
trainfeatures = cat(1,trainfeatures{:});
testfeatures = cat(1,testfeatures{:});

SVM Classification

Use an SVM classifier with the scattering features. Choose a cubic polynomial kernel. Use a one-vs-all
coding scheme.

template = templateSVM(...
    'KernelFunction', 'polynomial', ...
    'PolynomialOrder', 3, ...
    'KernelScale', 1, ...
    'BoxConstraint', 314, ...
    'Standardize', true);
classificationSVM = fitcecoc(trainfeatures,trainImds.Labels,...
    'Learners', template, 'Coding', 'onevsall');

Estimate the accuracy on the training set using cross-validation with 5 folds.

kfoldmodel = crossval(classificationSVM, 'KFold', 5);
loss = kfoldLoss(kfoldmodel)*100;
crossvalAccuracy = 100-loss

crossvalAccuracy = single
    81.8182

The cross-validation accuracy is approximately 80 percent. Now examine the accuracy on the held-
out test set and plot the confusion chart.

[predLabels,scores] = predict(classificationSVM,testfeatures);
testAccuracy = ...
    sum(categorical(predLabels)== testImds.Labels)/numel(testImds.Labels)*100

testAccuracy = 80

figure
cchart = confusionchart(testImds.Labels,predLabels);
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cchart.Title = ...
    {'Confusion Chart for Wavelet' ; 'Scattering Features using SVM'};
cchart.RowSummary = 'row-normalized';
cchart.ColumnSummary = 'column-normalized';

The overall test accuracy is 80 percent with the SVM model. The recall for each class is 80%. The
precision is also good for the plasmodium-gametocyte and trypanosomiasis parasites, but worse for
babesiosis. Examine the F1 scores for each class.

f1SVM = f1score(cchart.NormalizedValues);
disp(f1SVM)

                               F1   
                             _______

    babesiosis               0.72727
    plasmodium-gametocyte    0.88889
    trypanosomiasis              0.8

All F1 scores are between approximately 0.7 and 0.9.

PCA classifier with scattering features

Support vector machines are powerful techniques for features that are not linearly separable, but
they are designed for binary classification and may be suboptimal for multiclass problems. Here you
complement the SVM analysis by using a simple PCA (linear) classifier with the same wavelet
scattering features. The helperPCAModel function determines the numcomp eigenvectors
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corresponding to the largest eigenvalues of the covariance matrix of the wavelet scattering features
for each pathogen in the training set along with the class means.

helperPCAClassifier classifies each test sample. It does this by subtracting the model class
means from each wavelet scattering feature vector in the test dataset and projecting the centered
feature vectors onto the covariance-matrix eigenvectors for each class in the model.
helperPCAClassifier assigns each test example to the pathogen with the smallest error, or
residual. This is a principal components analysis (PCA) classifier.

Remove the 0-th order scattering features from each feature vector. Set the number of principal
components (eigenvectors) to 6.

numcomp = 6;
model = helperPCAModel(trainfeatures(:,2:end)',numcomp,trainImds.Labels);
PCALabels = helperPCAClassifier(testfeatures(:,2:end)',model);
testPCAacc = sum(PCALabels==testImds.Labels)/numel(testImds.Labels)*100

testPCAacc = 86.6667

The test accuracy is approximately 87% with the PCA classifier. Plot the confusion chart and calculate
the F1 scores for each class.

figure
cchart = confusionchart(testImds.Labels,PCALabels);
cchart.Title = {'Confusion Chart for Wavelet Scattering Features' ; ...
    'using PCA Classifier'};
cchart.RowSummary = 'row-normalized';
cchart.ColumnSummary = 'column-normalized';
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f1PCA = f1score(cchart.NormalizedValues);
disp(f1PCA)

                               F1   
                             _______

    babesiosis               0.90909
    plasmodium-gametocyte    0.88889
    trypanosomiasis              0.8

The F1 scores for the PCA classifier with wavelet scattering features are quite strong, with all scores
between 0.8 and 1.

Convolutional Deep Network

In this section, you attempt the same classification using deep convolutional networks. Deep
networks provide state-of-art results for classification problems with large datasets and are capable
of learning complicated nonlinear mappings, but their performance often suffers in small datasets. To
mitigate this problem, use an image augmenter. imageDataAugmenter perturbs the data in each
epoch, in effect creating new training examples.

augmenter = imageDataAugmenter('RandRotation',[0 180],'RandXTranslation', [-5 5], ...
    'RandYTranslation',[-5 5]);
augimds = augmentedImageDatastore([300 300 3],trainImds,'DataAugmentation',augmenter);

Define a small CNN consisting of two convolution layers followed by batch normalization layers and
RELU activations. Follow the final RELU activation with max pooling, fully connected, and softmax
layers.

layers = [
    imageInputLayer([300 300 3])
    convolution2dLayer(7,16)
    batchNormalizationLayer
    reluLayer    
    convolution2dLayer(3,20)
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(4)
    fullyConnectedLayer(3)
    softmaxLayer
    classificationLayer];

Use stochastic gradient descent with a minibatch size of 10. Shuffle the data each epoch. Run the
training for 100 epochs.

opts = trainingOptions('sgdm',...
    'InitialLearnRate',  0.0001, ...
    'MaxEpochs', 100, ...
    'MiniBatchSize',10,...
    'Shuffle','every-epoch',...
    'Plots', 'training-progress',...
    'Verbose',false,...
    'ExecutionEnvironment','cpu');

Train the network.

trainedNet = trainNetwork(augimds,layers,opts);
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Examine the performance of the network on the held-out test set.

ypred = trainedNet.classify(testImds);
cnnAccuracy = sum(ypred == testImds.Labels)/numel(testImds.Labels)*100

cnnAccuracy = 66.6667

figure
cchart = confusionchart(testImds.Labels,ypred);
cchart.Title = 'Confusion Chart for Deep CNN';
cchart.RowSummary = 'row-normalized';
cchart.ColumnSummary = 'column-normalized';
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f1CNN = f1score(cchart.NormalizedValues);
disp(f1CNN)

                               F1   
                             _______

    babesiosis                  0.75
    plasmodium-gametocyte    0.76923
    trypanosomiasis          0.44444

In spite of using an augmented dataset for training, the CNN has overfit the training set and the F1
scores are significantly worse than either the SVM or PCA model with the wavelet scattering
features.

Next, use transfer learning with SqueezeNet. Modify the final convolutional layer to accommodate
the fact that you have three classes of pathogens. SqueezeNet was constructed to recognize 1,000
classes.

net = squeezenet;
lgraphSQZ = layerGraph(net);
numClasses = numel(categories(trainImds.Labels));
oldFinalConv = lgraphSQZ.Layers(end-4);
newFinalConv = convolution2dLayer(1,numClasses, ...
        'Name','new_conv');
setLearnRateFactor(newFinalConv,'Weights',10);
setLearnRateFactor(newFinalConv,'Bias',10)
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ans = 
  Convolution2DLayer with properties:

              Name: 'new_conv'

   Hyperparameters
        FilterSize: [1 1]
       NumChannels: 'auto'
        NumFilters: 3
            Stride: [1 1]
    DilationFactor: [1 1]
       PaddingMode: 'manual'
       PaddingSize: [0 0 0 0]
      PaddingValue: 0

   Learnable Parameters
           Weights: []
              Bias: []

  Show all properties

lgraphSQZ = replaceLayer(lgraphSQZ,oldFinalConv.Name,newFinalConv);
oldClassLayer= lgraphSQZ.Layers(end);
newClassLayer = classificationLayer('Name','new_classoutput');
lgraphSQZ = replaceLayer(lgraphSQZ,oldClassLayer.Name,newClassLayer);

Reset the training and test datastores. Modify the datastore read function to resize images to be
compatible with SqueezeNet, which expects 227-by-227-by-3 images. Set up the image augmenter
and train the network.

reset(trainImds);
reset(testImds);
trainImds.ReadFcn = @(x)imresize(imread(x),'OutputSize',[227 227]);
testImds.ReadFcn = @(x)imresize(imread(x),'OutputSize',[227 227]);
augmenter = imageDataAugmenter('RandRotation',[0 180],'RandXTranslation', [-5 5], ...
    'RandYTranslation',[-5 5]);
augimds = augmentedImageDatastore([227 227 3],trainImds,...
    'DataAugmentation',augmenter);
trainedNet = trainNetwork(augimds,lgraphSQZ,opts);
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Obtain the SqueezeNet accuracy, plot the confusion chart, and compute the F1 scores.

ypred = trainedNet.classify(testImds);
sqznetAccuracy = sum(ypred == testImds.Labels)/numel(testImds.Labels)*100

sqznetAccuracy = 73.3333

figure
cchart = confusionchart(testImds.Labels,ypred);
cchart.Title = {'Confusion Chart for Transfer Learning' ; 'with SqueezeNet'};
cchart.RowSummary = 'row-normalized';
cchart.ColumnSummary = 'column-normalized';
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f1SqueezeNet = f1score(cchart.NormalizedValues);
disp(f1SqueezeNet)

                               F1   
                             _______

    babesiosis               0.72727
    plasmodium-gametocyte        0.8
    trypanosomiasis          0.66667

SqueezeNet performs better than the simpler CNN, particularly in terms of the F1 score for
trypanosomiasis, but the performance does not match the accuracy of the simpler PCA classifier with
the wavelet scattering features.

Summary

In this example, the wavelet scattering transform and deep learning frameworks were used to classify
pathogens in Giemsa stain images. The limited dataset size provides challenges for training a deep
learning classifier even when data augmentation is used. The example illustrated that the wavelet
scattering transform can provide a useful alternative to deep networks in such cases. In forming
feature vectors from the wavelet scattering transform, we reduced each transform output from a 27-
by-38-by-38-by-3 tensor to a 27-element vector. Accordingly, we have used a global pooling of the
scattering coefficients. It is possible to utilize other pooling schemes, which could yield better results.
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Appendix — Supporting Functions

function features = helperScatImages_mean(sn,x)
smat = featureMatrix(sn,x);
features = mean(smat,2:4);
features = features';
end
function F1scores = f1score(cchartVal)
N = sum(cchartVal,'all');
probT = sum(cchartVal)./N;
classProbEst = diag(cchartVal)./N;
Prec = classProbEst'./probT;
probC = [5/15 5/15 5/15];
Recall = classProbEst'./probC;
F1scores = harmmean([Prec ; Recall]);
F1scores = F1scores';
F1scores = table(F1scores,'VariableNames',{'F1'},...
    'RowNames', {'babesiosis','plasmodium-gametocyte', 'trypanosomiasis'});
end

function labels = helperPCAClassifier(features,model)
% This function is only to support wavelet image scattering examples in 
% Wavelet Toolbox. It may change or be removed in a future release.
% model is a structure array with fields, M, mu, v, and Labels
% features is the matrix of test data which is Ns-by-L, Ns is the number of
% scattering paths and L is the number of test examples. Each column of
% features is a test example.

% Copyright 2018-2021 MathWorks

labelIdx = determineClass(features,model); 
labels = model.Labels(labelIdx); 
% Returns as column vector to agree with imageDatastore Labels
labels = labels(:);

%--------------------------------------------------------------------------
function labelIdx = determineClass(features,model)
% Determine number of classes
Nclasses = numel(model.Labels);
% Initialize error matrix
errMatrix = Inf(Nclasses,size(features,2));
for nc = 1:Nclasses
    % class centroid
    mu = model.mu{nc};
    u = model.U{nc};
    % 1-by-L
    errMatrix(nc,:) = projectionError(features,mu,u);
end
% Determine minimum along class dimension
[~,labelIdx] = min(errMatrix,[],1);   

%--------------------------------------------------------------------------
function totalerr = projectionError(features,mu,u)
    %
    Npc = size(u,2);
    L = size(features,2);
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    % Subtract class mean: Ns-by-L minus Ns-by-1
    s = features-mu;
    % 1-by-L
    normSqX = sum(abs(s).^2,1)';
    err = Inf(Npc+1,L);
    err(1,:) = normSqX;
    err(2:end,:) = -abs(u'*s).^2;
    % 1-by-L
    totalerr = sqrt(sum(err,1));
end
end
end

function model = helperPCAModel(features,M,Labels)
% This function is only to support wavelet image scattering examples in
% Wavelet Toolbox. It may change or be removed in a future release.
% model = helperPCAModel(features,M,Labels)

% Copyright 2018-2021 MathWorks

% Initialize structure array to hold the affine model
model = struct('Dim',[],'mu',[],'U',[],'Labels',categorical([]),'S',[]);
model.Dim = M;
% Obtain the number of classes
LabelCategories = categories(Labels);
Nclasses = numel(categories(Labels));
for kk = 1:Nclasses
    Class = LabelCategories{kk};
    % Find indices corresponding to each class
    idxClass = Labels == Class;
    % Extract feature vectors for each class
    tmpFeatures = features(:,idxClass);
    % Determine the mean for each class
    model.mu{kk} = mean(tmpFeatures,2);
    [model.U{kk},model.S{kk}] = scatPCA(tmpFeatures);
    if size(model.U{kk},2) > M
        model.U{kk} = model.U{kk}(:,1:M);
        model.S{kk} = model.S{kk}(1:M);
        
    end
    model.Labels(kk) = Class;
end

    function [u,s,v] = scatPCA(x)
        % Calculate the principal components of x along the second dimension.
        [u,d] = eig(cov(x'));
        % Sort eigenvalues of covariance matrix in descending order
        [s,ind] = sort(diag(d),'descend');
        % sort eigenvector matrix accordingly
        u = u(:,ind);
    end
end

See Also
waveletScattering2

13 Featured Examples — Machine Learning and Deep Learning

13-206



Related Examples
• “Texture Classification with Wavelet Image Scattering” on page 13-86

More About
• “Wavelet Scattering” on page 9-2
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Air Compressor Fault Detection Using Wavelet Scattering
This example shows how to classify faults in acoustic recordings of air compressors using a wavelet
scattering network and a support vector machine (SVM). The example provides the opportunity to
use a GPU to accelerate the computation of the wavelet scattering transform. If you wish to utilize a
GPU, you must have Parallel Computing Toolbox™ and a supported GPU. See “GPU Support by
Release” (Parallel Computing Toolbox) for details.

Dataset

The dataset consists of acoustic recordings collected on a single-stage reciprocating-type air
compressor [1 on page 13-0 ]. The data are sampled at 16 kHz. Specifications of the air compressor
are as follows:

• Air Pressure Range: 0-500 lb/m2, 0-35 Kg/cm2
• Induction Motor: 5HP, 415V, 5Am, 50 Hz, 1440rpm
• Pressure Switch: Type PR-15, Range 100-213 PSI

Each recording represents one of 8 states which includes the healthy state and 7 faulty states. The 7
faulty states are:

1 Leakage inlet valve (LIV) fault
2 Leakage outlet valve (LOV) fault
3 Non-return valve (NRV) fault
4 Piston ring fault
5 Flywheel fault
6 Rider belt fault
7 Bearing fault

Download the dataset and unzip the data file in a folder where you have write permission. This
example assumes you are downloading the data in the temporary directory designated as tempdir in
MATLAB®. If you choose to use a different folder, substitute that folder for tempdir in the following.
The recordings are stored as .wav files in folders named for their respective state.

url = 'https://www.mathworks.com/supportfiles/audio/AirCompressorDataset/AirCompressorDataset.zip';
downloadFolder = fullfile(tempdir,'AirCompressorDataSet');
if ~exist(fullfile(tempdir,'AirCompressorDataSet'),'dir')
    loc = websave(downloadFolder,url);
    unzip(loc,fullfile(tempdir,'AirCompressorDataSet'))
end

Use an audioDatastore to manage data access. Each subfolder contains only recordings of the
designated class. Use the folder names as the class labels.

datasetLocation = fullfile(tempdir,'AirCompressorDataSet','AirCompressorDataset');
ads = audioDatastore(datasetLocation,'IncludeSubfolders',true,...
    'LabelSource','foldernames');

Examine the number of examples in each class. There are 225 recordings in each class for a total of
1800 recordings.

countcats(ads.Labels)
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ans = 8×1

   225
   225
   225
   225
   225
   225
   225
   225

Split the data into training and test sets. Use 80% of the data for training and hold out the remaining
20% for testing. Shuffle the data once before splitting.

rng default
ads = shuffle(ads);
[adsTrain,adsTest] = splitEachLabel(ads,0.8,0.2);

Verify that the number of examples in each class is the expected number.

uniqueLabels = unique(adsTrain.Labels);
tblTrain = countEachLabel(adsTrain);
tblTest = countEachLabel(adsTest);
H = bar(uniqueLabels,[tblTrain.Count, tblTest.Count],'stacked');
legend(H,["Training Set","Test Set"],'Location','NorthEastOutside')
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Select some random examples from the training set for plotting. Each record has 50,000 samples
sampled at 16 kHz.

idx = randperm(numel(adsTrain.Files),8);
Fs = 16e3;
for n = 1:numel(idx)
    x = audioread(adsTrain.Files{idx(n)});
    t = (0:size(x,1)-1)/Fs;
    subplot(4,2,n);
    plot(t,x);
    if n == 7 || n == 8
        xlabel('Seconds');
    end
    title(string(adsTrain.Labels(idx(n))));
end

Wavelet Scattering Network

Construct a wavelet scattering network based on the data characteristics. Set the invariance scale to
be 0.5 seconds.

N = 5e4;
Fs = 16e3;
IS = 0.5;
sn = waveletScattering('SignalLength',N,'SamplingFrequency',Fs,...
    'InvarianceScale',0.5);
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With these network settings, there are 330 scattering paths and 25 time windows per example. You
can see this with the following code.

[~,numpaths] = paths(sn);
Ncfs = numCoefficients(sn);
sum(numpaths)

ans = 330

Ncfs

Ncfs = 25

Note this already represents a 6-fold reduction in the size of the data for each record. We reduced the
data size from 50,000 samples to 8250. In this case, we obtain a further reduction by subsampling the
time windows by a factor of 6, reducing the size of each example by a factor of 25.

Obtain the wavelet scattering features for the training and test sets. If you have a suitable GPU and
Parallel Computing Toolbox, you can set useGPU to true to accelerate the scattering transform. The
function helperBatchScatFeatures obtains the scattering transform and subsamples the time
windows by a factor of 6.

batchsize = 64;
useGPU = false; 
scTrain = [];
while hasdata(adsTrain)
    sc = helperBatchScatFeatures(adsTrain,sn,N,batchsize,useGPU);
    scTrain = cat(3,scTrain,sc);
end

Repeat the process for the held out test set.

scTest = [];
while hasdata(adsTest)
   sc = helperBatchScatFeatures(adsTest,sn,N,batchsize,useGPU);
   scTest = cat(3,scTest,sc); 
end
scTest = gather(scTest);

Determine the number of scattering paths and the number of time windows. There are 330 scattering
paths and five time windows.

[Npaths,numTimeWindows,~] = size(scTrain);

Reshape the scattering transforms for the training and test sets so that each row is a time window
across all 330 scattering paths. Because there are five time windows in this subsampled wavelet
scattering transform, the size of TrainFeatures is 5*1440-by-330. Similarly, the size of
TestFeatures is 5*360-by-330.

TrainFeatures = permute(scTrain,[2 3 1]);
TrainFeatures = reshape(TrainFeatures,[],Npaths,1);
TestFeatures = permute(scTest,[2 3 1]);
TestFeatures = reshape(TestFeatures,[],Npaths,1);

In order to fit our SVM model, replicate the labels so that there is a label for each row of
TrainFeatures.

trainLabels = adsTrain.Labels;
numTrainSignals = numel(trainLabels);
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trainLabels = repmat(trainLabels,1,numTimeWindows);
trainLabels = reshape(trainLabels',numTrainSignals*numTimeWindows,1);

SVM Classification

Use a multi-class support vector machine (SVM) classifier with a cubic polynomial kernel. Fit the
SVM to the training data.

template = templateSVM(...
    'KernelFunction', 'polynomial', ...
    'PolynomialOrder', 3, ...
    'KernelScale', 'auto', ...
    'BoxConstraint', 1, ...
    'Standardize', true);

classificationSVM = fitcecoc(...
    TrainFeatures, ...
    trainLabels, ...
    'Learners', template, ...
    'Coding', 'onevsall','ClassNames',uniqueLabels);

Determine the cross-validation accuracy of the SVM model using 5-fold cross validation.

partitionedModel = crossval(classificationSVM, 'KFold', 5);
validationAccuracy = (1 - kfoldLoss(partitionedModel))*100

validationAccuracy = single
    99.5278

The cross-validation accuracy is over 99% when each time window is separately classified. This
performance is excellent, but the actual cross-validation accuracy is actually higher. Because there
are five windows per example, we should use all five time windows to assign the class label. There are
numerous ways to do this, but here we use a simple majority vote over the five windows. If there is no
majority, we assign the class "NoUniqueMode" and consider that a classification error.

Obtain the class predictions from the cross-validation model and examine the accuracy using a simple
majority vote.

validationPredictions = kfoldPredict(partitionedModel);
TrainVotes = helperMajorityVote(validationPredictions,adsTrain.Labels,uniqueLabels);
crossvalAccuracy = sum(TrainVotes == adsTrain.Labels)/numel(adsTrain.Labels)*100;
crossvalAccuracy

crossvalAccuracy = 100

The cross-validation accuracy is near 100%. Apply the model to the held-out test set. Use a simple
majority vote to assign the class label.

predLabels = predict(classificationSVM,TestFeatures);
[TestVotes,TestCounts] = helperMajorityVote(predLabels,adsTest.Labels,uniqueLabels);
testAccuracy = sum(TestVotes == adsTest.Labels)/numel(adsTest.Labels)*100;
testAccuracy

testAccuracy = 100

The accuracy on the held-out test set is near 100% indicating that our model generalizes well to
unseen data. Plot the confusion chart. Note that each test example produced a majority class (unique
mode).
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figure
confusionchart(adsTest.Labels,TestVotes)

Summary

In this example, we used the wavelet scattering transform with an SVM to classify faults in an air
compressor. The scattering transform provided a robust set of features by which the SVM was able to
achieve excellent cross-validation and test performance.
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helperBatchScatFeatures - This function returns the wavelet time scattering feature matrix for a
given input signal. The scattering features are subsampled by a factor of 6. If useGPU is set to true,
the scattering transform is computed on the GPU.

function sc = helperBatchScatFeatures(ds,sn,N,batchsize,useGPU)
% This function is only intended to support examples in the Wavelet
% Toolbox. It may be changed or removed in a future release.

% Read batch of data from audio datastore
batch = helperReadBatch(ds,N,batchsize);
if useGPU
    batch = gpuArray(batch);
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end

% Obtain scattering features
S = sn.featureMatrix(batch,'transform','log');
gather(batch);
S = gather(S);
    
% Subsample the features
sc = S(:,1:6:end,:);
end

helperReadBatch - This function reads batches of a specified size from a datastore and returns the
output in single precision. Each column of the output is a separate signal from the datastore. The
output may have fewer columns than the batchsize if the datastore does not have enough records.

function batchout = helperReadBatch(ds,N,batchsize)
% This function is only in support of Wavelet Toolbox examples. It may
% change or be removed in a future release.
%
% batchout = readReadBatch(ds,N,batchsize) where ds is the Datastore and
%   ds is the Datastore
%   batchsize is the batchsize

kk = 1;

while(hasdata(ds)) && kk <= batchsize
    tmpRead = read(ds);
    batchout(:,kk) = cast(tmpRead(1:N),'single'); %#ok<AGROW>
    kk = kk+1;
end

end

helperMajorityVote - This function obtains the majority vote for the class labels. If there is no
majority, "NoUniqueMode" is returned and treated as an error.

function [ClassVotes,ClassCounts] = helperMajorityVote(predLabels,origLabels,classes)
% This function is in support of wavelet scattering examples only. It may
% change or be removed in a future release.

% Make categorical arrays if the labels are not already categorical
predLabels = categorical(predLabels);
origLabels = categorical(origLabels);
% Expects both predLabels and origLabels to be categorical vectors
Npred = numel(predLabels);
Norig = numel(origLabels);
Nwin = Npred/Norig;
predLabels = reshape(predLabels,Nwin,Norig);
ClassCounts = countcats(predLabels);
[mxcount,idx] = max(ClassCounts);
ClassVotes = classes(idx);
tmpsum = sum(ClassCounts == mxcount);
ClassVotes(tmpsum > 1) = categorical({'NoUniqueMode'});
end

See Also
waveletScattering
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Related Examples
• “Fault Detection Using Wavelet Scattering and Recurrent Deep Networks” on page 13-216

More About
• “Wavelet Scattering” on page 9-2
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Fault Detection Using Wavelet Scattering and Recurrent Deep
Networks

This example shows how to classify faults in acoustic recordings of air compressors using a wavelet
scattering network paired with a recurrent neural network. The example provides the opportunity to
use a GPU to accelerate the computation of the wavelet scattering transform. If you wish to utilize a
GPU, you must have Parallel Computing Toolbox™ and a supported GPU. See “GPU Support by
Release” (Parallel Computing Toolbox) for details.

Dataset

The dataset consists of acoustic recordings collected on a single stage reciprocating type air
compressor [1 on page 13-0 ]. The data are sampled at 16 kHz. Specifications of the air compressor
are as follows:

• Air Pressure Range: 0-500 lb/m2, 0-35 Kg/cm2
• Induction Motor: 5HP, 415V, 5Am, 50 Hz, 1440rpm
• Pressure Switch: Type PR-15, Range 100-213 PSI

Each recording represents one of 8 states which includes the healthy state and 7 faulty states. The 7
faulty states are:

1 Leakage inlet valve (LIV) fault
2 Leakage outlet valve (LOV) fault
3 Non-return valve (NRV) fault
4 Piston ring fault
5 Flywheel fault
6 Rider belt fault
7 Bearing fault

Download the dataset and unzip the data file in a folder where you have write permission. This
example assumes you are downloading the data in the temporary directory designated as tempdir in
MATLAB®. If you chose to use a different folder, substitute that folder for tempdir in the following.
The recordings are stored as .wav files in folders named for their respective state.

url = 'https://www.mathworks.com/supportfiles/audio/AirCompressorDataset/AirCompressorDataset.zip';
downloadFolder = fullfile(tempdir,'AirCompressorDataSet');
if ~exist(fullfile(tempdir,'AirCompressorDataSet'),'dir')
    loc = websave(downloadFolder,url);
    unzip(loc,fullfile(tempdir,'AirCompressorDataSet'))
end

Use an audioDatastore to manage data access. Each subfolder contains only recordings of the
designated class. Use the folder names as the class labels.

datasetLocation = fullfile(tempdir,'AirCompressorDataSet','AirCompressorDataset');
ads = audioDatastore(datasetLocation,'IncludeSubfolders',true,...
    'LabelSource','foldernames');

Examine the number of examples in each class. There are 225 recordings in each class.

countcats(ads.Labels)
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ans = 8×1

   225
   225
   225
   225
   225
   225
   225
   225

Split the data into training and test sets. Use 80% of the data for training and hold out the remaining
20% for testing. Shuffle the data once before splitting.

rng default
ads = shuffle(ads);
[adsTrain,adsTest] = splitEachLabel(ads,0.8,0.2);

Verify that the number of examples in each class is the expected number.

uniqueLabels = unique(adsTrain.Labels);
tblTrain = countEachLabel(adsTrain);
tblTest = countEachLabel(adsTest);
H = bar(uniqueLabels,[tblTrain.Count, tblTest.Count],'stacked');
legend(H,["Training Set","Test Set"],'Location','NorthEastOutside')

Select some random examples from the training set for plotting.
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idx = randperm(numel(adsTrain.Files),8);
Fs = 16e3;
for n = 1:numel(idx)
    x = audioread(adsTrain.Files{idx(n)});
    t = (0:size(x,1)-1)/Fs;
    subplot(4,2,n);
    plot(t,x);
    if n == 7 || n == 8
        xlabel('Seconds');
    end
    title(string(adsTrain.Labels(idx(n))));
end

Wavelet Scattering Network

Each record has 50,000 samples sampled at 16 kHz. Construct a wavelet scattering network based on
the data characteristics. Set the invariance scale to be 0.5 seconds.

N = 5e4;
Fs = 16e3;
IS = 0.5;
sn = waveletScattering('SignalLength',N,'SamplingFrequency',Fs,...
    'InvarianceScale',0.5);

With these network settings, there are 330 scattering paths and 25 time windows per example. You
can see this with the following code.
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[~,npaths] = paths(sn);
Ncfs = numCoefficients(sn);
sum(npaths)

ans = 330

Ncfs

Ncfs = 25

Note this already represents a 6-fold reduction in the size of the data for each record. We reduced the
data size from 50,000 samples to 8250 in total. Most importantly, we reduced the size of the data
along the time dimension from 50,000 to 25 samples. This is crucial for our use of a recurrent
network. Attempting to use a recurrent network on the original data with 50,000 samples would
immediately result in memory problems.

Obtain the wavelet scattering features for the training and test sets. If you have a suitable GPU and
Parallel Computing Toolbox, you can set useGPU to true to accelerate the scattering transform. The
function helperBatchScatFeatures obtains the scattering transform of each example.

batchsize = 64;
useGPU = false; 
scTrain = [];
while hasdata(adsTrain)
    sc = helperBatchScatFeatures(adsTrain,sn,N,batchsize,useGPU);
    scTrain = cat(3,scTrain,sc);
end

Repeat the process for the held out test set.

scTest = [];
while hasdata(adsTest)
   sc = helperBatchScatFeatures(adsTest,sn,N,batchsize,useGPU);
   scTest = cat(3,scTest,sc); 
end

Remove the 0-th order scattering coefficients. For both the training and test sets, put each 330-by-25
scattering transform into an element of a cell array for use in training and testing the recurrent
network.

TrainFeatures = scTrain(2:end,:,:);
TrainFeatures = squeeze(num2cell(TrainFeatures,[1 2]));
YTrain = adsTrain.Labels;
TestFeatures = scTest(2:end,:,:);
TestFeatures = squeeze(num2cell(TestFeatures,[1 2]));
YTest = adsTest.Labels;

Define Network

Recall there are 1440 training examples and 360 test set examples. Accordingly the TrainFeatures
and TestFeatures cell arrays have 1440 and 360 elements respectively.

Use the number of scattering paths as the number of features. Create a recurrent network with a
single LSTM layer having 512 hidden units. Follow the LSTM layer with a fully connected layer and
finally a softmax layer. Use 'zscore' normalization across all scattering paths at the input to the
network.

[inputSize, ~] = size(TrainFeatures{1});
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numHiddenUnits = 512;
numClasses = numel(unique(YTrain));

layers = [ ...
    sequenceInputLayer(inputSize,'Normalization','zscore')
    lstmLayer(numHiddenUnits,'OutputMode','last') 
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Train Network

Train the network for 50 epochs with a mini batch size of 128. Use an Adam optimizer with an initial
learn rate of 1e-4. Shuffle the data each epoch.

maxEpochs = 50;
miniBatchSize = 128;

options = trainingOptions('adam', ...
    'InitialLearnRate',1e-4,...
    'MaxEpochs',maxEpochs, ...
    'MiniBatchSize',miniBatchSize, ...
    'SequenceLength','shortest', ...
    'Shuffle','every-epoch',...
    'Plots','training-progress',...
    'Verbose',true);

net = trainNetwork(TrainFeatures,YTrain,layers,options);

Training on single CPU.
Initializing input data normalization.
|========================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Mini-batch  |  Base Learning  |
|         |             |   (hh:mm:ss)   |   Accuracy   |     Loss     |      Rate       |
|========================================================================================|
|       1 |           1 |       00:00:08 |       16.41% |       2.1281 |      1.0000e-04 |
|       5 |          50 |       00:00:59 |      100.00% |       0.0536 |      1.0000e-04 |
|      10 |         100 |       00:01:51 |      100.00% |       0.0072 |      1.0000e-04 |
|      14 |         150 |       00:02:40 |      100.00% |       0.0064 |      1.0000e-04 |
|      19 |         200 |       00:03:27 |      100.00% |       0.0025 |      1.0000e-04 |
|      23 |         250 |       00:04:14 |      100.00% |       0.0015 |      1.0000e-04 |
|      28 |         300 |       00:05:00 |      100.00% |       0.0012 |      1.0000e-04 |
|      32 |         350 |       00:05:45 |      100.00% |       0.0007 |      1.0000e-04 |
|      37 |         400 |       00:06:29 |      100.00% |       0.0006 |      1.0000e-04 |
|      41 |         450 |       00:07:12 |      100.00% |       0.0005 |      1.0000e-04 |
|      46 |         500 |       00:07:55 |      100.00% |       0.0005 |      1.0000e-04 |
|      50 |         550 |       00:08:41 |      100.00% |       0.0004 |      1.0000e-04 |
|========================================================================================|
Training finished: Reached final iteration.
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In training, the network has achieved near perfect performance. In order to ensure we have not
overfit to the training data, use the held-out test set to determine how well our network generalizes
to unseen data.

YPred = classify(net,TestFeatures);
accuracy = 100*sum(YPred == YTest) / numel(YTest)

accuracy = 100

In this case, we see that the performance on the held-out test set is also excellent.

figure 
confusionchart(YTest, YPred)
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Summary

In this example, the wavelet scattering transform was used with a simple recurrent network to
classify faults in an air compressor. The scattering transform allowed us to extract robust features for
our learning problem. Additionally, the data reduction achieved along the time dimension of the data
by the use of the wavelet scattering transform was critical in order to create a computationally
feasible problem for our recurrent network.

References
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Based Monitoring Using Acoustic Signals for Air Compressors.” IEEE Transactions on Reliability 65,
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helperbatchscatfeatures - This function returns the wavelet time scattering feature matrix for a
given input signal. If useGPU is set to true, the scattering transform is computed on the GPU.

function sc = helperBatchScatFeatures(ds,sn,N,batchsize,useGPU)
% This function is only intended to support examples in the Wavelet
% Toolbox. It may be changed or removed in a future release.

% Read batch of data from audio datastore
batch = helperReadBatch(ds,N,batchsize);
if useGPU
    batch = gpuArray(batch);
end
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% Obtain scattering features
S = sn.featureMatrix(batch,'transform','log');
gather(batch);
S = gather(S);
    
% Subsample the features
%sc = S(:,1:6:end,:);
sc = S;
end

helperReadBatch - This function reads batches of a specified size from a datastore and returns the
output in single precision. Each column of the output is a separate signal from the datastore. The
output may have fewer columns than the batch size if the datastore does not have enough records.

function batchout = helperReadBatch(ds,N,batchsize)
% This function is only in support of Wavelet Toolbox examples. It may
% change or be removed in a future release.
%
% batchout = readReadBatch(ds,N,batchsize) where ds is the Datastore and
%   ds is the Datastore
%   batchsize is the batchsize

kk = 1;

while(hasdata(ds)) && kk <= batchsize
    tmpRead = read(ds);
    batchout(:,kk) = cast(tmpRead(1:N),'single'); %#ok<AGROW>
    kk = kk+1;
end

end

Copyright 2021, The MathWorks, Inc.

See Also
waveletScattering

Related Examples
• “Air Compressor Fault Detection Using Wavelet Scattering” on page 13-208

More About
• “Wavelet Scattering” on page 9-2
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Anomaly Detection Using Autoencoder and Wavelets
This example shows how wavelet features can be used to detect arc faults in a DC system. For the
safe operation of DC distribution systems, it is important to identify arc faults and prefault signals
that can be caused by deterioration of wire insulation due to aging, abrasion, or rodent bites. These
arc faults can result in shock, fires, and system failures in the microgrid. Unlike the fault signals in
AC distribution systems, these prefault arc flash signals are difficult to identify as they do not
generate significant power to trigger the circuit breakers. As a result, these signals can exist in the
system for hours without being detected.

Arc fault detection using the wavelet transform was studied in [1] on page 13-0 . This example
follows the feature extraction procedure detailed in that work which consists of filtering the load
signals using the Daubechies db3 wavelet followed by normalization. Further, an autoencoder trained
with signal features under normal conditions is used to detect arc faults in load signals. The DC arc
model used to generate the fault signals and the pretrained network used to detect the arc faults are
provided in the example folder. As training the network for arc detection of larger signals can take
significantly long simulation time, in this example we only report the detection results.

Training and Testing Setup

The autoencoder is trained using the load signal generated by the Simulink® model DCNoArc under
normal conditions, i.e., without arc faults. The model DCNoArc was built using components from the
Simscape™ Electrical™ Specialized Power Systems library.

Figure 1: DCNoArc model for generating load signal under normal conditions.

The voltage sources are modeled using the following parameters:

• AC Harmonic Source 1: 10 V AC voltage and 120 Hz frequency
• AC Harmonic Source 2: 20 V AC voltage and 2000 Hz frequency
• DC voltage source: 1000 V
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In the model DCArcModelFinal we add arc fault generation in every load branch. The model uses
the Cassie arc model for synthetic arc fault generation. The arc model works like an ideal
conductance until the arc ignites at the contact separation time.

Figure 2: DCArcModelFinal model for generating load signal with arc fault.

The Cassie arc model is one of the most studied black box models for generating synthetic arcs. The
model is described by the following differential equation:

dg
dt = g

τ
u2

Uc
2 − 1

where

• g is the conductance of the arc in siemens
• τ is the arc time constant in seconds
• u is the voltage across the arc in volts
• Uc is the constant arc voltage in volts

The Cassie arc models were implemented in Simulink® using the following parameter values:

• Initial conductance g(0) is 1e4 siemens
• Constant arc voltage Uc = 100 V
• Arc time constant is 1.2e-6 seconds

The contact separation times for the arc models are chosen at random. All the parameters have been
loaded in the PreLoadFcn callbacks in the Model Properties of the Model Settings tab.

At the contact separation time, the voltage across the mathematical Cassie arc model drops by some
level and stays at that value during the remaining simulation period. However, in real power system
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branches the arc is sustained for a small time interval. To ensure that the voltage across the Cassie
arc model emulates the behavior of real life arc faults, we use a switch across each model to limit the
arc time. We use the DCArcModelFinalmodel to generate a faulty load signal to test the
autoencoder.

To detect arc faults in all the load branches simultaneously the sensing system measures the load
voltage at each branch. The sensing system combines the load voltages and sends the resulting signal
to the feature generation block. The generated features are then used to detect the arc faults in all
the branches using a deep network.

Anomaly Detection with Autoencoder

Autoencoders are used to detect anomalies in a signal. The autoencoder is trained on data without
anomalies. As a result, the learned network weights minimize the reconstruction error for load
signals without arc faults. The statistics of the reconstruction error for the training data can be used
to select the threshold in the anomaly detection block that determines the detection performance of
the autoencoder. The detection block declares the presence of an anomaly when it encounters a
reconstruction error above threshold. In this example, we used root-mean-square error (RMSE) as the
reconstruction error metric.

For this example, we trained two autoencoders using the load signal under normal conditions without
arc fault. One autoencoder was trained using the raw load signal as training data. This encoder uses
the raw faulty load signal to detect arc faults. The second autoencoder was trained using wavelet
features. Arc fault detection is subsequently done on wavelet features as opposed to the raw data. For
training and testing the network, we assume that the load consists of 10 parallel resistive branches
with randomly chosen resistance values. For arc fault signal generation, we add a Cassie arc model in
every load branch. The contact separation times of the models are such that they are triggered
randomly throughout the simulation period. Just like in a real-time DC system, the load signals from
both normal and faulty conditions have added white noise.

Feature Extraction

The wavelet-based autoencoder was trained and tested on signals filtered using the discrete wavelet
transform (DWT). Following [1] on page 13-0 , the Daubechies db3 wavelet was used.

The following figures show the wavelet-filtered load signals under normal and faulty conditions. The
wavelet-filtered faulty signal captures the variation due to arc faults. For training and testing
purposes, the wavelet-filtered signals are segmented into 100-sample frames.
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Figure 3: Raw load signal and wavelet-filtered signal under normal conditions.
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Figure 4: Raw load signal and wavelet-filtered signal under faulty conditions.

Model Training

The autoencoder is trained using wavelet-filtered features from the load signal under normal
conditions. For the training stage you have two options:

1 Train your own autoencoder and load the network into the prediction block of the
DCArcModelFinal model.

2 Use the DCArcModelFinal model that has been preloaded with the pretrained model available
in the netData.mat file in the example folder.

To train your own autoencoder you can use the following steps.

• First, generate the load signal under normal operating conditions using the DCNoArc model. Load,
open, and run the model using the following commands. Extract the load signal from the
simulation output.

load_system('DCNoArc.slx');
open_system('DCNoArc.slx');
out = sim('DCNoArc.slx');

% extract normal load signal from the simulation output
xn = out.xn; 

• Next, extract the wavelet-filtered features from the load signal. You use the features as the input
to the autoencoder.

% training data: load voltage under normal conditions 
featureDimension = 100;
xn = sigresize(xn,featureDimension);

% Obtain training features
trnd4 = getDet(xn);
trainData = getFeature(trnd4, featureDimension);

The pretrained autoencoder was trained using the following network layers and training options.

% Create network layers
layers = [ sequenceInputLayer(1, 'Name', 'in')
    bilstmLayer(32, 'Name', 'bilstm1')
    reluLayer('Name', 'relu1')
    bilstmLayer(16, 'Name', 'bilstm2')
    reluLayer('Name', 'relu2')
    bilstmLayer(32, 'Name', 'bilstm3')
    reluLayer('Name', 'relu3')
    fullyConnectedLayer(1, 'Name', 'fc')
    regressionLayer('Name', 'out') ];

% Set options
options = trainingOptions('adam', ...
    'MaxEpochs',20, ...
    'MiniBatchSize',16, ...
    'Plots','training-progress');
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The training steps takes several minutes. If you want to train the network, select trainingFlag =
“Train network”. Then, you can load the trained network into the Predict block from Deep Learning
Toolbox™ used in the DCArcModelFinal model.

trainingFlag = 

if trainingFlag == "Train network"
    % training network
    net = trainNetwork(trainData,trainData,layers,options);
    save('network.mat','net');
end

If you want to skip the training steps, you can run the DCArcModelFinal model loaded with the
pretrained network in netData.mat to detect arc faults in load signals.
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Figure 5: Training progress for the autoencoder.

The figure shows the histogram for the reconstruction error produced by the autoencoder when the
input is the training data. You can use the statistics for the reconstruction error to choose the
detection threshold. For instance, choose the detection threshold to be three times the standard
deviation of the reconstruction error.
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Figure 6: Histogram for the reconstruction error produced by the autoencoder when the input is the
training data.

Model for Anomaly Detection Using Autoencoder

The DCArcModelFinal model is used for real-time detection of the arc fault in a DC load signal.
Before running the model, you must specify the simulation stop time in seconds in the workspace
variable t.

Figure 7: DCArcModelFinal for arc fault detection.

The first block generates a noisy DC load signal with arc fault in continuous time. The load voltage is
then converted into a discrete-time signal sampled at 20 kHz by the Rate transition block in DSP
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System Toolbox™. The discrete time signal is then buffered to the LWTFeatureGen block that obtains
the desired level 4 detail projection after preprocessing. The detail projection is then segmented in
100 sample frames that are the test features for the Predict block. The Predict block has been
preloaded with the network pretrained using the load signal under normal conditions. The anomaly
detection block then calculates the root-mean-square error (RMSE) for each frame and declares the
presence of an arc fault if the error is above some predefined threshold. We can observe the
prediction from the block adding a scope to the model. The red line on the plot indicates where the
transition due to anomaly is detected. The autoencoder identified most of the arc faults.

Figure 8: Real-time arc fault detection as seen from scope.

This plot shows the regions predicted by the network when the wavelet-filtered features are used.
The autoencoder was able to detect all 10 arc fault regions correctly. In other words, we obtained a
100% probability of detection in this case.
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Figure 9: Detection performance for the autoencoder using wavelet-filtered features.

This plot shows the anomaly detection performance of the raw data trained autoencoder (pretrained
network included in netDataRaw.mat). When we used raw data for anomaly detection, the encoder
was able to identify seven out of 10 regions correctly.

Figure 10: Detection performance for the autoencoder using raw load signal.

Finally, we generated a 50 second long anomalous signal with 40 arc fault regions (this data is not
included with the example). When tested with the autoencoder trained with raw signals, the arc
regions were detected with a 57.85% probability of detection. In contrast, the autoencoder trained
with the wavelet-filtered signals was able to detect the arc fault regions with a 97.52% probability of
detection.
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Summary

In this example, we demonstrated how autoencoders can be used to identify arc faults in DC systems.
Both the raw and wavelet filtered load signals under normal conditions can be used as features to
train the autoencoders. These anomaly detection mechanisms can be used to detect arc faults in a
timely manner and thus protect a DC system from damages caused by the faults.

References
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Helper Functions

getDet - this function obtains the wavelet-filtered normal load signal and normalizes them.

function d4 = getDet(x)
% This function is only intended to support examples in the Wavelet
% Toolbox. It may be changed or removed in a future release.

LS = liftingScheme('Wavelet','db3');
[ca4,cd4]= lwt(x,'Level',4,"LiftingScheme",LS);
D4 = lwtcoef(ca4,cd4,"LiftingScheme",LS,"OutputType","projection",...
    "Type","detail");
d4 = normalize(D4);
end

getFeature - this function segments the wavelet-filtered into features of the size featureDimension.

function feature = getFeature(x, sz)
% This function is only intended to support examples in the Wavelet
% Toolbox. It may be changed or removed in a future release.

n = floor(length(x)/sz);
feature = cell(n,1);

for ii = 1:n
    c1 = 1+((ii-1)*sz);
    c2 = sz+((ii-1)*sz);
    ind = c1:c2;
    feature{ii} = transpose(x(ind,:));
end
end

sigresize - this function removes the transient part of the load signal.

function xn = sigresize(x,sz)
% This function is only intended to support examples in the Wavelet
% Toolbox. It may be changed or removed in a future release.

n = floor(length(x)/sz);
lf = n*sz;
xn = zeros(lf,1);
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xn(1:lf) = x(1:lf);
end

See Also
Functions
lwt | ilwt | lwtcoef

Objects
liftingScheme

Related Examples
• “Code Generation for a Deep Learning Simulink Model to Classify ECG Signals” on page 13-171
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Detect Anomalies Using Wavelet Scattering with Autoencoders
This example shows how to use the wavelet scattering transform with both LSTM and convolutional
autoencoders to develop an alert system for predictive maintenance. The example compares wavelet
scattering transform+autoencdoer and raw data+autoencoder approaches.

Data

The dataset is collected from a 2MW wind turbine high-speed shaft driven by a 20-tooth pinion gear
[1 on page 13-0 ]. A vibration signal of 6 seconds was acquired at a sample rate of 97,656 Hz each
day for 50 consecutive days from 2013-03-07 to 2013-04-25. There are two measurements on
2013-03-17, which are treated as two days in this example. Each timeseries consists of 585,936
samples. An inner race fault developed and caused the failure of the bearing across the 50-day
recording period.

Data Download

Obtain the data from https://github.com/mathworks/WindTurbineHighSpeedBearingPrognosis-Data.
You can download the entire repository as a zip file and save it in a folder where you have write
permission. The commands in this example assume that you have downloaded the data in the folder
MATLAB designates as tempdir. If you choose to use a different folder, change the value of
parentDir below. After downloading the zip file, unzip the data using this command.

parentDir = tempdir;
if exist(fullfile(parentDir,'WindTurbineHighSpeedBearingPrognosis-Data-main.zip'),'file')
    unzip(fullfile(parentDir,'WindTurbineHighSpeedBearingPrognosis-Data-main.zip'),parentDir)
else
    error('File not found. Please ensure the .zip file is in the folder.')
end

If you prefer to use Git commands to clone the repository, the folder does not include the "-main"
designation and the data is placed in a WindTurbineHighSpeedBearingPrognosis-Data folder.

Signal Datastore

Unzipping the WindTurbineHighSpeedBearingPrognosis-Data-main.zip file creates a folder
with 50 .mat files. Each .mat file contains two variables: tach and vibration. This example utilizes
only the vibration data. Accordingly, create a signal datastore to read only the vibration data from
the .mat files.

filepath = fullfile(parentDir,'WindTurbineHighSpeedBearingPrognosis-Data-main');
sds = signalDatastore(filepath,SignalVariableNames = "vibration");

Because there are only 50 records in this dataset, read all the data into memory at once.

allSignals = readall(sds);

The data records are relatively long at 585,936 samples. As a first attempt at data reduction, examine
the spectral characteristics of a random sample of 6 signals. Use the maximal overlap wavelet packet
transform with the default wavelet and level. This results in an orthogonal decomposition of the
signal's energy into passbands of width Fs/25 where Fs is the sample rate. Plot the relative energy of
each signal as a function of the passband. Print the percentage of signal energy below 1/4 of the
sampling frequency.

rng default
fs = 97656;

13 Featured Examples — Machine Learning and Deep Learning

13-236

https://github.com/mathworks/WindTurbineHighSpeedBearingPrognosis-Data


rdIdx = randperm(length(allSignals),6);
figure
tiledlayout(2,3)
for ii = 1:6
    nexttile
    [~,~,f,~,re] = modwpt(allSignals{ii});
    bar((f.*fs)/1e3,re.*100)
    sprintf('%2.2f',sum(re(f <= 1/4))*100)
    record = rdIdx(ii);
    title({'Passband Energy:' ; ['Record ' num2str(record)]}); 
    xlabel("kHz")
    ylabel("Percentage Energy")
end

ans = 
'96.73'

ans = 
'95.84'

ans = 
'96.00'

ans = 
'95.61'

ans = 
'95.77'

ans = 
'95.95'
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In these samples, approximately 96% of the signal energy is below the cutoff frequency of 24.414 kHz
required for downsampling the signal length by a factor of 2. Examination of all signals in the data set
reveals that all records have between 94.7 and 98.2 percent of their energy below 24.414 kHz.
Resample all signals at 1/2 the original sample rate and adjust the sample rate accordingly.

allSignals = cellfun(@(x)resample(x,1,2),allSignals,UniformOutput = false);
fs = fs/2;

The data in this example are unlabeled. To obtain an idea of how the data evolves over the 50-day
period, create a cumulative plot.

tstart = 0;
figure
for ii = 1:length(allSignals)
    t = (1:length(allSignals{ii}))./fs + tstart;    
    hold on
    plot(t,allSignals{ii})
    tstart = t(end);    
end
hold off
title("Cumulative Wind-Turbine Vibration Monitoring")
xlabel("Time (sec) -- 6 seconds per day for 50 days")
ylabel("Voltage")
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From the preceding plot, it is evident that the amount of vibration in the data appears to be gradually
increasing on average over time. This appears especially evident after 200 seconds of recording,
which corresponds to the period beyond 33 days. While this average trend is evident, note that for
individual recordings this is not always the case. Some recordings near the end of the 50-day period
exhibit behavior similar to recordings nearer the beginning.

Data Preparation and Feature Extraction

Split each 6 second recording into 11 separate recordings of 1 second each overlapped by 0.5
seconds. Cast the data to single precision.

frameSize =   1*fs;
frameRate = 0.5*fs;
nframe = (length(allSignals{1})-frameSize)/frameRate + 1;
nday = length(allSignals);

myXAll = zeros(frameSize,nframe*nday);
XAll = zeros(frameSize,nframe*nday);
colIdx = 1;
for ii = 1:length(allSignals)
    XAll(:,colIdx:colIdx+nframe-1) = buffer(allSignals{ii},frameSize,...
        frameRate,'nodelay');
    colIdx = colIdx+nframe;
end

XAll = single(XAll);
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The resulting XAll has 550 columns representing 11 recordings for each of the 50 days. Each column
of XAll has 48,828 samples.

Set up the wavelet scattering network. Set the invariance scale to 0.2 seconds and the number of
wavelet filters per octave to be 4 in the first layer and 1 in the second layer. Set the oversampling
factor to 1 and optimize the path, or channel computation of the network.

N = size(XAll,1);
sn = waveletScattering(SignalLength = N, SamplingFrequency = fs,...
    InvarianceScale = 0.2, QualityFactors = [4 1],...
    OptimizePath = true, OversamplingFactor = 1, Precision = 'single');

Display the number of scattering coefficients per path (channel) and the total number of channels.

[~,pathbyLev] = paths(sn);
Ncfs = numCoefficients(sn)

Ncfs = 48

sum(pathbyLev)

ans = 180

There are 180 channels in the output of the scattering transform. However, there are only 48 time
samples. This means the amount of data for each signal is reduced by nearly a factor of 6.

Obtain all the wavelet scattering features for the data. In this example, we omit the zero-th order
scattering coefficients. As a result, the number of channels reduces by 1 to 179. If you have a
supported GPU, you can accelerate the scattering transform by setting useGPU to true. Otherwise,
set useGPU = false.

useGPU = true;
if useGPU
    XAll = gpuArray(XAll);
end
SAll = sn.featureMatrix(XAll);
SAll = SAll(2:end,:,:);
npaths = size(SAll,1);
scatfeatures = squeeze(num2cell(SAll,[1,2]));

scatfeatures is a cell array with 550 elements. Each element contains the scattering transform of
a one-second recording. Because this data is unlabeled, we are uncertain which records are
indicative of normal operation and which records indicate the presence of the inner-race fault. All we
know from the data description is that an inner-race fault develops sometime over the 50-day period.

Accordingly, we construct our training and validation sets from the earliest recordings to maximize
the probability that these sets contain only recordings without the presence of the inner-race fault.
The first 66 records (6 days) are used to form the training set and the next 44 recordings (4 days) are
used to form the validation set. The remaining 440 recordings (40 days) are held out as the test set.

ntrain = 6;
trainscatFeatures = scatfeatures(1:ntrain*nframe);
validationscatFeatures = scatfeatures(ntrain*nframe+1:ntrain*nframe+4*nframe);
testscatFeatures = scatfeatures((ntrain*nframe+4*nframe+1):end);

In this example, we compare the scattering transform with networks fit to the absolute values of the
raw time series. The absolute values are used based on the observation that the amplitude of the
vibrations appears to increase on average over the 50-day period.
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rawfeatures = num2cell(XAll,1)';
rawfeatures = cellfun(@transpose,rawfeatures,UniformOutput = false);
rawABSfeatures = cellfun(@abs,rawfeatures,UniformOutput = false);
ntrain = 6;
trainrFeatures = rawABSfeatures(1:ntrain*nframe);
validationrFeatures = rawABSfeatures(ntrain*nframe+1:ntrain*nframe+4*nframe);
testrFeatures = rawABSfeatures((ntrain*nframe+4*nframe+1):end);

Deep Networks

In this example, two deep-learning autoencoders are used: an LSTM and a convolutional autoencoder.

The LSTM autoencoder uses Z-score normalization at the input followed by two LSTM layers at the
encoding stage consisting of 179 channels and floor(179/2) channels respectively. The final LSTM
layer in the encoder only outputs from the last timestep cell, OutputMode = "last". Subsequently,
a custom layer, repeatVectorLayer, is used to replicate this sample for the next LSTM layer.

Ntimesteps = Ncfs;
lstmAutoEncoder = [ sequenceInputLayer(npaths, Normalization = "zscore",...
                                       Name = "input", MinLength = Ntimesteps)
    lstmLayer(npaths, Name = "lstm1a")
    reluLayer(Name = "relu1")
    lstmLayer(floor(npaths/2), Name = "lstm2a", OutputMode = "last")
    dropoutLayer(0.2, Name = "drop1")
    reluLayer(Name = "relu2")
    repeatVectorLayer(Ntimesteps)
    lstmLayer(floor(npaths/2), Name = "lstm2b")
    dropoutLayer(0.2,Name = "drop2")
    reluLayer(Name = "relu3")
    lstmLayer(npaths, Name = "lstm1b")
    reluLayer(Name = "relu4")
    regressionLayer(Name = "regression") ];

Train the autoencoder for 200 epochs. Use a minibatch size of 16, shuffle the training data every
epoch. Output the network with the best validation loss.

options = trainingOptions('adam', ...
    'MaxEpochs',200, ...
    'MiniBatchSize',16, ...
    'Shuffle','every-epoch',...
    'ValidationData',{validationscatFeatures,validationscatFeatures},...
    'Plots','training-progress',...
    'Verbose', false,...
    'OutputNetwork','best-validation-loss');
scatLSTMAutoencoder = trainNetwork(trainscatFeatures,trainscatFeatures,...
    lstmAutoEncoder,options);
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Threshold determination

There is no definitive rule for determining the threshold to use in anomaly detection. In this example,
the mean-absolute error (MAE) is used due to the robust behavior of the L1 norm with respect to
outliers. First, compute the MAE errors for the training, validation, and test data.

ypredTrain = cellfun(@(x)predict(scatLSTMAutoencoder,x),trainscatFeatures,'UniformOutput',false);
maeTrain = cellfun(@(x,y)maeLoss(x,y),ypredTrain,trainscatFeatures);
ypredValidation = cellfun(@(x)predict(scatLSTMAutoencoder,x),validationscatFeatures,'UniformOutput',false);
maeValid = cellfun(@(x,y)maeLoss(x,y),ypredValidation,validationscatFeatures);
ypredTest = cellfun(@(x)predict(scatLSTMAutoencoder,x),testscatFeatures,'UniformOutput',false);
maeTest = cellfun(@(x,y)maeLoss(x,y),ypredTest,testscatFeatures);
if useGPU
    [maeTrain,maeValid,maeTest] = gather(maeTrain,maeValid,maeTest);
end

Use only the validation data to determine the threshold for anomaly detection. This example uses a
nonparametric method based on the upper quartile of the validation errors plus 1.5 times the
interquartile range. Note that based on the cost of false positives versus false negatives in your
application, you can choose a more or less conservative threshold. The upper quartile plus 1.5 times
the interquartile range is a fairly conservative estimate and will, in general, minimize false positives
at the risk of missing actual events.

thresh = quantile(maeValid,0.75)+1.5*iqr(maeValid);

Having determined the threshold, plot the training, validation, and test errors as a function of the
day. The black horizontal line marks the threshold for suspected anomalous behavior.

figure
plot(...
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    (1:length(maeTrain))/11,maeTrain,'b',...
    (length(maeTrain)+[1:length(maeValid)])/11,maeValid,'g',...
    (length(maeTrain)+length(maeValid)+[1:length(maeTest)])/11,maeTest,'r',...
    'linewidth',1.5)
hold on
plot((1:550)/11,thresh*ones(550,1),'k')
hold off
xlabel("Day")
ylabel("MAE")
xlim([1 50])
legend("Training","Validation","Test","Location","NorthWest")
title("LSTM Autoencoder with Wavelet Scattering Sequences")
grid on

There is an initial indication of anomalous behavior between day 11 and 12. Subsequently, the wind
turbine appears to display anomalous behavior almost continually after day 30. This is consistent with
the cumulative plot of the data.

One advantage of the LSTM autoencoder with wavelet scattering features is the significant data
reduction wavelet scattering provides in the time dimension, from 48,828 samples down to 48. This
enables us to train the autoencoder in less than 2 minutes using a GPU. Because training robust deep
learning models often involves tuning hyperparameters, having a model which trains quickly is a
significant advantage.

Conversely, training an autoencoder on the raw data required over 1.5 hours using a GPU.
Accordingly, the training of the autoencoder with raw data is not repeated in this example. Here only
the results are presented. The following LSTM autoencoder was trained on the raw data.
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Nt = length(rawfeatures{1}); 
lstmAutoEncoder = [ sequenceInputLayer(1, Normalization = "zscore", ...
Name = "input", MinLength = Nt) 
lstmLayer(32, Name = "lstm1a") reluLayer(Name = "relu1") 
lstmLayer(16, Name = "lstm2a", OutputMode = "last") 
dropoutLayer(0.2, Name = "drop1") 
reluLayer(Name = "relu2") 
repeatVectorLayer(Nt) 
lstmLayer(16, Name = "lstm2b") 
dropoutLayer(0.2,Name = "drop2") 
reluLayer(Name = "relu3") 
lstmLayer(32, Name = "lstm1b") 
reluLayer(Name = "relu4") 
fullyConnectedLayer(1) 
regressionLayer(Name = "regression") ]; 

Due to computational considerations, the number of hidden units in the LSTM layers was reduced
with the raw data. Otherwise, the networks used with raw data and with wavelet scattering
sequences were identical.

The threshold was determined in the exact same way as previously described. The following figure
shows the results.
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There are several similarities between the results obtained with the wavelet scattering sequences and
the raw data. Both show the data obtained between day 11 and 12 as an outlier. Both also indicate
anomalous behavior with increasing regularity after approximately day 30. However, the autoencoder
on the raw data appears to have underfit the training data and a few of the training records appear as
anomalous. This does not agree with our knowledge that the wind turbine was functioning normally
at the start of the recording period. There are also many more anomalies indicated by using the
autoencoder on the raw data. Given the false positives on the training data, there is cause to suspect
there are a number of false positives among these detections. Given that we have used a conservative
estimate, it is likely that other thresholding methods would yield even more detections.

Convolutional Autoencoder

While recurrent networks (RNNS) are powerful architectures for anomaly detection, RNNs are
computationally expensive when the time dimension of the data becomes large. To reiterate, the
LSTM autoencoder used above was computationally efficient because of the use of the wavelet
scattering transform which reduced the time dimension of the data from 48,828 samples to 48
samples. As a result, training the autoencoder required less than two minutes using a GPU. On the
other hand, training an LSTM on the raw data required more than 1.5 hours. The training
discrepancies between the two approaches can be lessened by using a convolutional network. The
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convolutional network mimics the LSTM autoencoder by using convolutional layers with
downsampling at the encoding stage followed by transposed convolutional layers with upsampling at
the decoding stage.

Create a convolutional network. Normalize the data at the input layer using Z-score normalization. To
downsample the input, specify repeating blocks of 1-D convolution, ReLU, and dropout layers. To
upsample the encoded input, include the same number of blocks of 1-D transposed convolution, ReLU,
and dropout layers.

For the convolution layers, specify decreasing numbers of filters with size 11. To ensure that the
outputs are downsampled evenly by a factor of 2, specify a stride of 2, and set the Padding option to
"same". For the transposed convolution layers, specify increasing numbers of filters with size 11. To
ensure that the outputs are upsampled evenly be a factor of 2, specify a stride of 2, and set the
Cropping option to "same".

For the dropout layers, specify a dropout probability of 0.2. To output sequences with the same
number of channels as the input, specify a 1-D transposed convolution layer with the number of filters
matching the number of channels of the input. To ensure output sequences are the same length as the
layer input, set the Cropping option to "same". * At the output use a regression layer.

numDownsamples = 2;
minLength = 48;
filterSize = 11;
numFilters = 16;
dropoutProb = 0.2;
numChannels = npaths;

convlayers = [
    sequenceInputLayer(numChannels,Normalization="zscore",...
    MinLength=minLength,Name = 'InputLayer')

    % Encoder stage
    convolution1dLayer(filterSize,2*numFilters,Padding="same",Stride=2)
    reluLayer
    dropoutLayer(dropoutProb,Name = "dropout1")

    convolution1dLayer(filterSize,numFilters,Padding="same",Stride=2)
    reluLayer
    dropoutLayer(dropoutProb,Name = "dropout2")

    % Decoder stage
    transposedConv1dLayer(filterSize,numFilters,Cropping="same",Stride=2)
    reluLayer
    dropoutLayer(dropoutProb,Name = "transpdropout1")

    transposedConv1dLayer(filterSize,2*numFilters,Cropping="same",Stride=2)
    reluLayer
    dropoutLayer(dropoutProb,Name = "transpdropout2")
    
    % Make channels agree for output
    transposedConv1dLayer(filterSize,numChannels,Cropping="same", ...
    Name = "FinalConvLayer")
    regressionLayer('Name','regression') ];

Train the convolutional network for 300 epochs. Shuffle the training data on each epoch. Output the
network with the best validation loss.
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options = trainingOptions("adam", ...
    MaxEpochs=300, ...
    Shuffle="every-epoch", ...
    ValidationData={validationscatFeatures,validationscatFeatures}, ...
    Verbose=0, ...
    OutputNetwork = 'best-validation-loss',...
    Plots="training-progress");
convNetSCAT = trainNetwork(trainscatFeatures,trainscatFeatures,convlayers,options);

Calculate the MAE losses as done with the LSTM autoencoder.

ypredCTrain = cellfun(@(x)predict(convNetSCAT,x),trainscatFeatures,'UniformOutput',false);
maeCTrain = cellfun(@(x,y)maeLoss(x,y),ypredCTrain,trainscatFeatures);
ypredCValidation = cellfun(@(x)predict(convNetSCAT,x),validationscatFeatures,'UniformOutput',false);
maeCValid = cellfun(@(x,y)maeLoss(x,y),ypredCValidation,validationscatFeatures);
ypredCTest = cellfun(@(x)predict(convNetSCAT,x),testscatFeatures,'UniformOutput',false);
maeCTest = cellfun(@(x,y)maeLoss(x,y),ypredCTest,testscatFeatures);
if useGPU
    [maeCTrain,maeCValid,maeCTest] = gather(maeCTrain,maeCValid,maeCTest);
end

Use only the validation data to determine the threshold for anomaly detection. Utilize the same
threshold determination method as used with the LSTM autoencoder.

threshCV = quantile(maeCValid,0.75)+1.5*iqr(maeCValid);

Plot the results.

figure
plot(...
    (1:length(maeCTrain))/11,maeCTrain,'b',...
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    (length(maeCTrain)+[1:length(maeCValid)])/11,maeValid,'g',...
    (length(maeCTrain)+length(maeCValid)+[1:length(maeCTest)])/11,maeTest,'r',...
    'linewidth',1.5)
hold on
plot((1:550)/11,thresh*ones(550,1),'k')
hold off
xlabel("Day")
ylabel("MAE")
xlim([1 50])
legend("Training","Validation","Test","Location","NorthWest");
title("Convolutional Network with Wavelet Scattering Sequences")
grid on

Use the same convolutional network to work on the raw data. Change the number of channels to 1 to
match the raw data dimensions. Training with a dropout probability of 0.2 resulted in an severe
underfitting of the training data. As a result, reduce the dropout probability to 0.1. Otherwise, the
networks used with the wavelet scattering sequences and the raw data are identical.

lgraph = layerGraph(convlayers);
inputlayer = sequenceInputLayer(1,Normalization="zscore",...
    MinLength=48,Name = 'InputLayerRaw');
doLayer = dropoutLayer(0.1);
tconvLayer = transposedConv1dLayer(filterSize,1,Cropping="same", ...
    Name = "FinalConvLayer");
rawConvLayers = replaceLayer(lgraph,"InputLayer",inputlayer);
rawConvLayers = replaceLayer(rawConvLayers,"dropout1",doLayer);
rawConvLayers = replaceLayer(rawConvLayers,"dropout2",doLayer);
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rawConvLayers = replaceLayer(rawConvLayers,"transpdropout1",doLayer);
rawConvLayers = replaceLayer(rawConvLayers,"transpdropout2",doLayer);
rawConvLayers = replaceLayer(rawConvLayers,"FinalConvLayer",tconvLayer);

Train the network on the raw data. Use the same options are used with the wavelet scattering
sequences.

options = trainingOptions("adam", ...
    MaxEpochs=300, ...
    Shuffle="every-epoch", ...
    ValidationData={validationrFeatures,validationrFeatures}, ...
    Verbose=0, ...
    OutputNetwork = "best-validation-loss",...
    Plots="training-progress");
convNetRAW = trainNetwork(trainrFeatures,trainrFeatures,rawConvLayers,options);

Calculate the MAE losses and determine the threshold.

ypredRTrain = cellfun(@(x)predict(convNetRAW,x),trainrFeatures,'UniformOutput',false);
maeRTrain = cellfun(@(x,y)maeLoss(x,y),ypredRTrain,trainrFeatures);
ypredRValidation = cellfun(@(x)predict(convNetRAW,x),validationrFeatures,'UniformOutput',false);
maeRValid = cellfun(@(x,y)maeLoss(x,y),ypredRValidation,validationrFeatures);
ypredRTest = cellfun(@(x)predict(convNetRAW,x),testrFeatures,'UniformOutput',false);
maeRTest = cellfun(@(x,y)maeLoss(x,y),ypredRTest,testrFeatures);
if useGPU
    [maeRTrain,maeRValid,maeRTest] = gather(maeRTrain,maeRValid,maeRTest);
end
threshCVraw = quantile(maeRValid,0.75)+1.5*iqr(maeRValid);

Plot the results.
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figure
plot(...
    (1:length(maeRTrain))/11,maeRTrain,'b',...
    (length(maeRTrain)+[1:length(maeRValid)])/11,maeRValid,'g',...
    (length(maeRTrain)+length(maeRValid)+[1:length(maeRTest)])/11,maeRTest,'r',...
    'linewidth',1.5)
hold on
plot((1:550)/11,threshCVraw*ones(550,1),'k')
hold off
xlabel("Day")
ylabel("MAE")
xlim([1 50])
legend("Training","Validation","Test","Location","NorthWest");
title("Convolutional Network with Raw Data")
grid on

Note that using the convolutional autoencoder has reduced the training time for the wavelet
scattering sequences from a little under one and a half minutes to approximately 45 seconds using a
GPU. The most significant training time input has occurred for the raw data, where training the LSTM
autoencoder required approximately 1.5 hours while the convolutional network completed the
training in approximately 3 minutes.

With respect to the results, those obtained with the convolutional network are similar to the LSTM
autoencoder for both the raw data and wavelet scattering sequences. In agreement with the LSTM
autoencoder results, the wavelet scattering based convolutional autoencoder exhibits anomalous
behavior between day 11 and 12. The wind turbine's behavior returns to the normal range again until
about day 30 when detections of anomalous behavior begin to occur with increasing frequency.
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The results for the raw data are also similar to those obtained with the LSTM autoencoder. There are
detections in the training data, which are likely indicative of false detections. This causes some
suspicion of the detections which occur for the raw data networks during the early portion of the
recording near day 15.

It is important to note that preliminary analysis of records indicated as anomalous by both methods
did not reveal any clear differences using conventional signal analysis techniques such as the short-
time Fourier transform or continuous wavelet transform.

Discussion

In this example, we used both wavelet scattering sequences and raw data with two types of deep
autoencoders to detect inner-race faults in a wind turbine. The use of the wavelet scattering
sequences in place of raw data offered some advantages. First, it greatly reduced the dimensionality
of the problem along the time dimension. This allows for more rapid prototyping of models including
optimization of hyperparameters. Because this is such a critical part of the successful application of
deep learning, it is hard to overstate this advantage with respect to LSTM autoencoders. Secondly,
the deep networks trained on wavelet scattering sequences seem to be more robust against false
detections.

The convolutional autoencoder provided a training-time advantage for both the wavelet scattering
sequences and the raw data, but the relative advantage was far more significant with the raw data.
Using the convolutional autoencoder with both sets of features provides ample opportunity for
optimization of hyperparameters in a reasonable amount of time.

Finally, the use of these different networks and different features are also potentially complementary.
Specifically, they offer the possibility to more closely investigate those records which all methods
designate as normal vs. anomalous with more detailed signal analysis techniques. In an unsupervised
learning problem, this allows us to increase our understanding of the data and develop even more
powerful models for machine monitoring.
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Supporting Functions

function mae = maeLoss(ypred,target)
mae = mean(abs(ypred-target),'all');
end

See Also
waveletScattering | signalDatastore

Related Examples
• “Air Compressor Fault Detection Using Wavelet Scattering” on page 13-208
• “Anomaly Detection Using Autoencoder and Wavelets” on page 13-224
• “Crack Identification from Accelerometer Data” on page 13-137
• “Fault Detection Using Wavelet Scattering and Recurrent Deep Networks” on page 13-216
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More About
• “Wavelet Scattering” on page 9-2

13 Featured Examples — Machine Learning and Deep Learning

13-252



Generating MATLAB Code from Wavelet
Toolbox Wavelet Analyzer App

You can denoise or compress a signal or image in the Wavelet Analyzer app and export the MATLAB
code to implement that operation at the command line. This approach allows you to set denoising
thresholds or compression ratios aided by visualization tools and save the commands to reproduce
those operations at the command line.

14



Generate MATLAB Code for 1-D Decimated Wavelet Denoising
and Compression

Note The Wavelet 1-D — Denoising tool is no longer recommended. Use Wavelet Signal
Denoiser instead.

Wavelet 1-D Denoising
You can generate MATLAB code to reproduce app-based 1-D wavelet denoising at the command line.
You must perform this operation in the Wavelet 1-D - - Denoising tool. You must first denoise your
signal before you can enable the File > Generate Matlab Code (Denoising Process) operation.

The generated MATLAB code does not include the calculation of the thresholds using thselect or
wbmpen.

Denoise Doppler Signal

1 Enter waveletAnalyzer at the MATLAB command prompt.
2 Select Wavelet 1-D in the Wavelet Analyzer.
3 Load the noisy Doppler example analysis. Select File > Example Analysis > Noisy Signals -

Constant Noise Variance > with sym4 at level 5 - - -> Noisy Doppler.

After selecting the analysis, the wavelet decomposition appears.
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4 Click Denoise.
5 The original details coefficients appear on the left side of the display. In order to time align

decomposition levels across all scales, wavelet coefficients are replicated at each scale to
account for the missing time points. Therefore, as the scale becomes coarser, the coefficients
assume a staircase-like appearance.

In the Select thresholding method drop-down menu, select the default Fixed form
threshold. Use the default soft option. Set the thresholds by level as follows:

• level 5 — 3.500
• level 4 — 3.720
• level 3 — 3.000
• level 2 — 2.000
• level 1 — 3.000
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Click Denoise.
6 Generate the MATLAB code by selecting File > Generate Matlab Code (Denoising Process).

The operation generates the following MATLAB code.

function sigDEN = func_denoise_dw1d(SIG)
% FUNC_DENOISE_DW1-D Saved Denoising Process.
%   SIG: vector of data
%   -------------------
%   sigDEN: vector of denoised data

% Analysis parameters.
%---------------------
wname = 'sym4';
level = 5;

% Denoising parameters.
%----------------------
% meth = 'sqtwolog';
% scal_or_alfa = one;
sorh = 's';    % Specified soft or hard thresholding
thrParams =  [...
    3.00000000 ; ...
    2.00000000 ; ...
    3.00000000 ; ...
    3.72000000 ; ...
    3.50000000   ...
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    ];

% Denoise using CMDDENOISE.
%--------------------------
sigDEN = cmddenoise(SIG,wname,level,sorh,NaN,thrParams);

7 Save func_denoise_dw1d.m in a folder on the MATLAB search path. Execute the following
code.

load noisdopp;
SIG = noisdopp;
% func_denoise_dw1d.m is generated code
sigDEN = func_denoise_dw1d(SIG);

8 Export the denoised signal from the app by selecting File > Save > Denoised Signal.

Save the denoised signal as denoiseddoppler.mat in a folder on the MATLAB search path.
Load denoiseddoppler.mat in the MATLAB workspace. Compare denoiseddoppler with
your command line result.

load denoiseddoppler;
plot(sigDEN,'k'); axis tight;
hold on;
plot(denoiseddoppler,'r');
legend('Command Line','GUI','Location','SouthEast');
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Interval Dependent 1-D Wavelet Denoising

1 Enter waveletAnalyzer at the MATLAB command prompt.
2 Select Wavelet 1-D.
3 At the MATLAB command prompt, type

load leleccum;

In the Wavelet 1-D tool, select File > Import from Workspace > Import Signal. When the
Import from Workspace dialog box appears, select the leleccum variable. Click OK to import
the data.

4 Select the sym4 wavelet, and set Level equal to 3. Click Analyze.

When you inspect the original signal and the finest-scale wavelet coefficients, you see that the noise
variance is not constant. In this situation, interval-dependent thresholding is useful. To implement
interval-dependent denoising:
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1 Click Denoise.
2 Under Select thresholding method, select Rigorous SURE.
3 Select Int. dependent threshold settings.
4 In the Interval Dependent Threshold Settings for Wavelet 1-D tool, choose Generate

Default Intervals. Three intervals are created. Click Propagate to propagate the intervals to all
levels.

5 Click Close, and answer Yes to Update Thresholds?.
6 Select Denoise.
7 Generate the MATLAB code by selecting File > Generate Matlab Code (Denoising Process).

The operation generates the following MATLAB code.
function sigDEN = func_denoise_dw1d(SIG)
% FUNC_DENOISE_DW1D Saved Denoising Process.
%   SIG: vector of data
%   -------------------
%   sigDEN: vector of denoised data

% Analysis parameters.
%---------------------
wname = 'sym4';
level = 3;

% Denoising parameters.
%----------------------
% meth = 'rigrsure';
% scal_or_alfa = one;
sorh = 's';    % Specified soft or hard thresholding
thrSettings =  {...
    [...
    1.000000000000000   2410.000000000000000      5.659608351110114; ...
    2410.000000000000000   3425.000000000000000   19.721391195242880; ...
    3425.000000000000000   4320.000000000000000    4.907947952868359; ...
    ]; ...
    [...
    1.000000000000000   2410.000000000000000      5.659608351110114; ...
    2410.000000000000000   3425.000000000000000   5.659608351110114; ...
    3425.000000000000000   4320.000000000000000   5.659608351110114; ...
    ]; ...
    [...
    1.000000000000000   2410.000000000000000      5.659608351110114; ...
    2410.000000000000000   3425.000000000000000   5.659608351110114; ...
    3425.000000000000000   4320.000000000000000   5.659608351110114; ...
    ]; ...
    };

% Denoise using CMDDENOISE.
%--------------------------
sigDEN = cmddenoise(SIG,wname,level,sorh,NaN,thrSettings);

8 To avoid confusion with the MATLAB code generated in “Denoise Doppler Signal” on page 14-2,
change the function definition line. Change the function definition to:

function sigDEN = func_IDdenoise_dw1d(SIG)

Save the MATLAB program as func_IDdenoise_dw1d.m in a folder on the MATLAB search
path.

9 Save the denoised signal as denoisedleleccum.mat with File > Save > Denoised Signal in a
folder on the MATLAB search path.

Execute the following code.
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load leleccum;
load denoisedleleccum;
sigDEN = func_IDdenoise_dw1d(leleccum);
plot(sigDEN,'k');
hold on;
plot(denoisedleleccum,'r');
legend('Command Line','GUI');
norm(sigDEN-denoisedleleccum,2)

See Also
Wavelet Signal Denoiser | wdenoise

More About
• “Denoise a Signal with the Wavelet Signal Denoiser” on page 6-25
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Generate MATLAB Code for 2-D Decimated Wavelet Denoising
and Compression

In this section...
“2-D Decimated Discrete Wavelet Transform Denoising” on page 14-9
“2-D Decimated Discrete Wavelet Transform Compression” on page 14-11

2-D Decimated Discrete Wavelet Transform Denoising
You can generate MATLAB code to reproduce app-based 2-D decimated wavelet denoising at the
command line. You must perform this operation in the Wavelet 2-D – – Denoising tool. You must
first denoise your image before you can enable the File > Generate Matlab Code (Denoising
Process) operation.

1 Enter waveletAnalyzer at the MATLAB command prompt.
2 Select Wavelet 2-D.
3 Load the Noisy SinSin example indexed image. Using the default biorthogonal wavelet and

level 3 decomposition, click Denoise.
4 In the Select thresholding method drop-down menu, select the default Fixed form

threshold and soft options. Use the default Unscaled white noise. Set the thresholds by
level for the horizontal, diagonal, and vertical coefficients as follows:

• Level 3 — 4
• Level 2 — 4
• Level 1 — 8

Enter these thresholds for the horizontal, diagonal, and vertical coefficients.
5 Select Denoise.
6 Generate the MATLAB code with File > Generate Matlab Code (Denoising Process).
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The operation generates the following MATLAB code.
function [XDEN,cfsDEN,dimCFS] = func_denoise_dw2d(X)
% FUNC_DENOISE_DW2-D Saved Denoising Process.
%   X: matrix of data
%   -----------------
%   XDEN: matrix of denoised data
%   cfsDEN: decomposition vector (see WAVEDEC2)
%   dimCFS: corresponding bookkeeping matrix

% Analysis parameters.
%---------------------
wname = 'bior6.8';
level = 3;

% Denoising parameters.
%-----------------------
% meth = 'sqtwolog';
% scal_OR_alfa = one;
sorh = 's';    % Specified soft or hard thresholding
thrParams =  [...
    8.00000000     4.00000000     4.00000000 ; ...
    8.00000000     4.00000000     4.00000000 ; ...
    8.00000000     4.00000000     4.00000000   ...
    ];
roundFLAG = true;

% Denoise using CMDDENOISE.
%--------------------------
[coefs,sizes] = wavedec2(X,level,wname);
[XDEN,cfsDEN,dimCFS] = wdencmp('lvd',coefs,sizes, ...
    wname,level,thrParams,sorh);

if roundFLAG , XDEN = round(XDEN); end
if isequal(class(X),'uint8') , XDEN = uint8(XDEN); end

7 Save func_denoise_dw2d.m in a folder on the MATLAB search path, and execute the following
code.

load noissi2d.mat;
noissi2d = X;
[XDEN,cfsDEN,dimCFS] = func_denoise_dw2d(noissi2d);

8 Save your denoised image in a folder on the MATLAB search path as denoisedsin.mat.
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Load the denoised image in the MATLAB workspace. Compare the result with your generated
code.

load denoisedsin.mat;
% denoised image loaded in variable X
subplot(121);
imagesc(X); title('Image denoised in the GUI');
subplot(122);
imagesc(XDEN); title('Image denoised with generated code');
% Norm of the difference is zero
norm(XDEN-X,2)

2-D Decimated Discrete Wavelet Transform Compression
You can generate MATLAB code to reproduce app-based 2-D decimated wavelet compression at the
command line. You must perform this operation in the Wavelet 2-D --Compression tool. You must
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first compress your image before you can enable the File > Generate Matlab Code (Compression
Process) operation.

1 Enter waveletAnalyzer at the MATLAB command prompt.
2 Select Wavelet 2-D.
3 At the MATLAB command prompt, type

load detfingr

In the Wavelet 2-D tool, select File > Import from Workspace > Load Image. When the
Import from Workspace dialog box appears, select the X variable. Click OK to import the data.

4 Select the bior3.5 wavelet, and set Level to 3.
5 Click Analyze, then click Compress.
6 Using the default Global thresholding, set Select thresholding method to

Bal.sparsity-norm (sqrt).
7 Click Compress.
8 File > Generate Code (Compression Process) generates the following code.

function [XCMP,cfsCMP,dimCFS] = func_compress_dw2d(X)
% FUNC_COMPRESS_DW2D Saved Compression Process.
%   X: matrix of data
%   -----------------
%   XCMP: matrix of compressed data
%   cfsCMP: decomposition vector (see WAVEDEC2)
%   dimCFS: corresponding bookkeeping matrix

% Analysis parameters.
%---------------------
wname = 'bior3.5';
level = 3;

% Compression parameters.
%------------------------
% meth = 'sqrtbal_sn';
sorh = 'h';    % Specified soft or hard thresholding
thrSettings = 10.064453124999996;
roundFLAG = true;

% Compression using WDENCMP.
%--------------------------
[coefs,sizes] = wavedec2(X,level,wname);
[XCMP,cfsCMP,dimCFS] = wdencmp('gbl',coefs,sizes, ...
    wname,level,thrSettings,sorh,1);
if roundFLAG , XCMP = round(XCMP); end
if isequal(class(X),'uint8') , XCMP = uint8(XCMP); end

9 Save the MATLAB program, func_compress_dw2d.m, in a folder on the MATLAB search path.
Execute the following code at the command line.

load detfingr.mat;
% Image data is in X
[XCMP,cfsCMP,dimCFS] = func_compress_dw2d(X);

10 Save the compressed image from the Wavelet 2-D - - Compression tool in a folder on the
MATLAB search path. Use File > Save > Compressed Image, and name the file
compressed_fingerprint.mat. Execute the following code.
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load compressed_fingerprint.mat;
% Image data is in X
norm(XCMP-X,2)
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Generate MATLAB Code for 1-D Stationary Wavelet Denoising
You can generate MATLAB code to reproduce app-based 1-D nondecimated (stationary) wavelet
denoising at the command line. You must perform this operation in the Stationary Wavelet
Transform Denoising 1-D tool. You must first denoise your signal before you can enable the File >
Generate Matlab Code (Denoising Process) operation.

1-D Stationary Wavelet Transform Denoising
1 Enter waveletAnalyzer at the MATLAB command prompt.
2 Select SWT Denoising 1-D.
3 Load the Noisy bumps example. Select File > Example Analysis > Noisy Signals > with

sym4 at level 5 - - -> Noisy bumps
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4 Set the thresholds as follows:

• Level 1 — 3.5
• Level 2 — 3.4
• Level 3 — 2.3
• Level 4 — 5.3
• Level 5 — 2.2

Click Denoise.

5 Generate the MATLAB code with File > Generate Matlab Code (Denoising Process).
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The operation generates the following MATLAB code.
function [sigDEN,wDEC] = func_denoise_sw1d(SIG)
% FUNC_DENOISE_SW1-D Saved Denoising Process.
%   SIG: vector of data
%   -------------------
%   sigDEN: vector of denoised data
%   wDEC: stationary wavelet decomposition

% Analysis parameters.
%---------------------
wname = 'sym4';
level = 5;

% Denoising parameters.
%----------------------
% meth = 'sqtwolog';
% scal_OR_alfa = one;
sorh = 's';    % Specified soft or hard thresholding
thrParams =  {...
    [...
    1.00000000  1024.00000000     3.50000000; ...
    ]; ...
    [...
    1.00000000  1024.00000000     3.40000000; ...
    ]; ...
    [...
    1.00000000  1024.00000000     2.30000000; ...
    ]; ...
    [...
    1.00000000  1024.00000000     5.29965570; ...
    ]; ...
    [...
    1.00000000  1024.00000000     2.20000000; ...
    ]; ...
    };

% Decompose using SWT.
%---------------------
wDEC = swt(SIG,level,wname);

% Denoise.
%---------
len = length(SIG);
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for k = 1:level
    thr_par = thrParams{k};
    if ~isempty(thr_par)
        NB_int = size(thr_par,1);
        x      = [thr_par(:,1) ; thr_par(NB_int,2)];
        x      = round(x);
        x(x<1) = 1;
        x(x>len) = len;
        thr = thr_par(:,3);
        for j = 1:NB_int
            if j==1 , d_beg = 0; else d_beg = 1; end
            j_beg = x(j)+d_beg;
            j_end = x(j+1);
            j_ind = (j_beg:j_end);
            wDEC(k,j_ind) = wthresh(wDEC(k,j_ind),sorh,thr(j));
        end
    end
end

% Reconstruct the denoise signal using ISWT.
%-------------------------------------------
sigDEN = iswt(wDEC,wname);

6 Save func_denoise_sw1d.m in a folder on the MATLAB search path. Execute the following
code.

load noisbump.mat;
[sigDEN,wDEC] = func_denoise_sw1d(noisbump);

7 Select File > Save Denoised Signal, and save the denoised signal as denoisedbumps.mat in a
folder on the MATLAB search path.

Execute the following code.

load denoisedbump.mat;
plot(sigDEN,'k'); axis tight;
hold on;
plot(denoisedbump,'r');
% norm of the difference
norm(sigDEN-denoisedbump,2)
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Note Thresholds are derived from a subset of the coefficients in the stationary wavelet
decomposition. For more information, see “Coefficient Selection”.
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Generate MATLAB Code for 2-D Stationary Wavelet Denoising
You can generate MATLAB code to reproduce app-based 2-D stationary wavelet denoising at the
command line. You can generate code to denoise both indexed and truecolor images. You must
perform this operation in the SWT Denoising 2-D tool. You must first denoise your image before you
can enable the File > Generate Matlab Code (Denoising Process) operation.

2-D Stationary Wavelet Transform Denoising
1 Enter waveletAnalyzer at the MATLAB command prompt.
2 Select SWT Denoising 2-D.
3 At the MATLAB command prompt, type

load noiswom;

In the SWT Denoising 2-D tool, select File > Import Image from Workspace. When the
Import from Workspace dialog box appears, select the X variable. Click OK to import the
image.

4 Select the db4 wavelet, and set the Level to 5.
5 Click Decompose Image.
6 Use the default soft thresholding method with Fixed form threshold and Unscaled

white noise for Select noise structure.
7 Set the following thresholds for the horizontal, diagonal, and vertical details. Ensure that you set

the thresholds for the three detail coefficient types.

• Level 1 — 5
• Level 2 — 4
• Level 3 — 3
• Level 4 — 2
• Level 5 — 1
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8 Click Denoise.
9 Select File > Generate Matlab Code (Denoising Process).

The operation generates the following MATLAB code.

function [XDEN,wDEC] = func_denoise_sw2d(X)
% FUNC_DENOISE_SW2D Saved Denoising Process.
%   X: matrix of data
%   -----------------
%   XDEN: matrix of denoised data
%   wDEC: stationary wavelet decomposition

% Analysis parameters.
%---------------------
wname = 'db4';
level = 5;

% Denoising parameters.
%-----------------------
% meth = 'sqtwolog';
% scal_OR_alfa = one;
sorh = 's';    % Specified soft or hard thresholding
% Order of thresholds down each column is H,D,V
% Order in SWT2 output is H,V,D where each coefficient
% matrix is repeated L times where L is the number of levels.
thrSettings =  [...
    5.0000      4.0000      3.0000      2.0000      1.0000 ; ...
    5.0000      4.0000      3.0000      2.0000      1.0000 ; ...
    5.0000      4.0000      3.0000      2.0000      1.0000   ...
    ];
roundFLAG = false;

% Decompose using SWT2.
%---------------------
wDEC = swt2(X,level,wname);

isRGB = ndims(wDEC) == 4 && size(wDEC,3) == 3;
% Denoise
permDir = [1 3 2];

for j = 1:level
    for kk=1:3
        ind = (permDir(kk)-1)*level+j;
        thr = thrSettings(kk,j);
        if isRGB
            wDEC(:,:,:,ind) = wthresh(wDEC(:,:,:,ind),sorh,thr);
        else
            wDEC(:,:,ind) = wthresh(wDEC(:,:,ind),sorh,thr);
        end
    end
end

% Reconstruct the denoise signal using ISWT2.
%-------------------------------------------
XDEN = iswt2(wDEC,wname);
if roundFLAG , XDEN = round(XDEN); end

10 Save this MATLAB program as func_denoise_sw2d.m in a folder on the MATLAB search path.
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Execute the following code.

load noiswom
[XDEN,wDEC] = func_denoise_sw2d(X);

11 Save the denoised image as denoisedwom.mat in a folder on the MATLAB search path.

12 Execute the following code.

load denoisedwom
% Compare the GUI and command line results
imagesc(X); title('GUI Operation'); colormap(gray);
figure;
imagesc(XDEN); title('Command Line Operation');
colormap(gray);
norm(XDEN-X,2)

Note Thresholds are derived from a subset of the coefficients in the stationary wavelet
decomposition. For more information, see “Coefficient Selection”.
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Generate MATLAB Code for 1-D Wavelet Packet Denoising and
Compression

1-D Wavelet Packet Denoising
You can generate MATLAB code to reproduce app–based 1-D wavelet packet denoising at the
command line. You must perform this operation in the Wavelet Packet 1-D - - Denoising tool. You
must first denoise your signal before you can enable the File > Generate Matlab Code (Denoising
Process) operation.

1 Enter waveletAnalyzer at the MATLAB command prompt.
2 Select Wavelet Packet 1-D.
3 At the MATLAB command prompt, type

load noisbump

In the *** tool, select File > Import from Workspace > Import Signal. When the Import
from Workspace dialog box appears, select the noisbump variable. Click OK to import the
data.

4 Select the db4 wavelet, and set the Level to 4. Accept the default value Shannon for Entropy.
5 Click Analyze.
6 Click Denoise.
7 Under Select thresholding method, accept the default Fixed form thr. (unscaled wn)

with the soft radio button enabled.

Set Select Global Threshold to 2.75.
8 Click Denoise.
9 Select File > Generate Matlab Code (Denoising Process)

The operation generates the following MATLAB code.
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function [sigDEN,wptDEN] = func_denoise_wp1d(SIG)
% FUNC_DENOISE_WP1D Saved Denoising Process.
%   SIG: vector of data
%   -------------------
%   sigDEN: vector of denoised data
%   wptDEN: wavelet packet decomposition (wptree object)

% Analysis parameters.
%---------------------
Wav_Nam = 'db4';
Lev_Anal = 4;
Ent_Nam = 'shannon';
Ent_Par = 0;

% Denoising parameters.
%----------------------
% meth = 'sqtwologuwn';
sorh = 's';    % Specified soft or hard thresholding
thrSettings = {sorh,'nobest',2.750000000000000,1};

% Decompose using WPDEC.
%----------------------
wpt = wpdec(SIG,Lev_Anal,Wav_Nam,Ent_Nam,Ent_Par);

% Nodes to merge.
%-----------------
n2m = [];
for j = 1:length(n2m)
    wpt = wpjoin(wpt,n2m(j));
end

% Denoise using WPDENCMP.
%------------------------
[sigDEN,wptDEN] = wpdencmp(wpt,thrSettings{:});

Save func_denoise_wp1d.m in a folder on the MATLAB search path.

Save the denoised signal from the Wavelet Packet 1-D - - Denoising tool as
wp_denoisedbump.mat in a folder on the MATLAB search path.

Execute the following code.
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load noisbump;
[sigDEN,wptDEN] = func_denoise_wp1d(noisbump);
load wp_denoisedbump;
plot(sigDEN); title('Denoised Signal');
axis([1 1024 min(sigDEN)-1 max(sigDEN+1)]);
norm(sigDEN-wp_denoisedbump,2)
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Generate MATLAB Code for 2-D Wavelet Packet Denoising and
Compression

2-D Wavelet Packet Compression
You can generate MATLAB code to reproduce app–based 2-D wavelet packet compression at the
command line. You must perform this operation in the Wavelet 2-D - - Compression tool. You must
first compress your image before you can enable the File > Generate Matlab Code (Compression
Process) operation.

1 Enter waveletAnalyzer at the MATLAB command prompt.
2 Select Wavelet Packet 2-D.
3 Select File > Load > Example Analysis > Indexed Images, and load the tire.

4 Using the default parameter settings, click Best Tree.
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5 Click Compress.
6 Set Select thresholding method to Bal.sparsity-norm (sqrt).
7 Click Compress.

8 File > Generate Code (Compression Process) generates the following code.
function [XCMP,wptCMP] = func_compress_wp2d(X)
% FUNC_COMPRESS_WP2D Saved Compression Process.
%   X: matrix of data
%   -----------------
%   XCMP: matrix of compressed data
%   wptCMP: wavelet packet decomposition (wptree object)

% Analysis parameters.
%---------------------
Wav_Nam = 'haar';
Lev_Anal = 2;
Ent_Nam = 'shannon';
Ent_Par = 0;

% Compression parameters.
%-----------------------
% meth = 'sqrtbal_sn';
sorh = 'h';    % Specified soft or hard thresholding
thrSettings = {sorh,'nobest',16.499999999999886,1};
roundFLAG = true;

% Decompose using WPDEC2.
%-----------------------
wpt = wpdec2(X,Lev_Anal,Wav_Nam,Ent_Nam,Ent_Par);

14 Generating MATLAB Code from Wavelet Toolbox Wavelet Analyzer App

14-26



% Nodes to merge.
%-----------------
n2m = [2  3];
for j = 1:length(n2m)
    wpt = wpjoin(wpt,n2m(j));
end

% Compression using WPDENCMP.
%----------------------------
[XCMP,wptCMP] = wpdencmp(wpt,thrSettings{:});
if roundFLAG , XCMP = round(XCMP); end
if isequal(class(X),'uint8') , XCMP = uint8(XCMP); end

9 Save the generated MATLAB code as func_compress_wp2d.m in a folder on the MATLAB
search path, and execute the following code.

load tire;
[XCMP,wptCMP] = func_compress_wp2d(X);

10 Save the compressed image from the Wavelet 2-D -- Compression tool as
compressed_tire.mat in a folder on the MATLAB search path. Use File > Save >
Compressed Image to save the compressed image.

11 Execute the following code to compare the command line and Wavelet Analyzer app result.

load compressed_tire.mat;
norm(XCMP-X,2)
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Wavelet Analyzer App Features
Summary

This appendix explains some of the features of the Wavelet Analyzer app.

A



General Features
Some features of the Wavelet Toolbox graphical user interface are

• Color coding
• Connectedness of plots
• Using the mouse
• Controlling the colormap
• Controlling the number of colors
• Controlling the coloration mode
• Customizing graphical objects
• Zooming in on plots
• Using menus
• Using View Axes button
• Using Interval Dependent Threshold Settings tool

Note In this appendix, axis (or axes) refers to the MATLAB graphic object.

Color Coding
In all the graphical tools, signals and analysis components are color coded as follows.

Signal Shown In
Original Red
Reconstructed or synthesized Yellow
Approximations Variegated shades of blue

(high level = darker)
Details Variegated shades of green

(high level = darker)

Connection of Plots
Plots containing related information and graphed on the same abscissa are connected in the sense
that manipulations performed on one plot affect all others in the same way. For images, the
connection holds in both abscissa and ordinate. You can manipulate all plots along an individual axis
(X or Y) or you can manipulate all plots along both axes at the same time (XY).

For example, the approximations and details shown in the separate mode view of a decomposition all
respond together when any of the plots is magnified or zoomed.

Click and drag your mouse over the region you want to zoom. Clicking XY+ results in the zoom being
applied to all the plots.
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• Zoom in on relevant detail.

One advantage of using the graphical interface tools is that you can zoom in easily on any part of
the signal and examine it in greater detail.

Drag a rubber band box (by holding down the left mouse button) over the portion of the signal you
want to magnify. Here, we've selected the noisy part of the original signal.

Click the X+ button (located at the bottom of the screen) to zoom horizontally.

The Wavelet 1-D tool zooms all the displayed signals.
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The other zoom controls do more or less what you'd expect them to. The X- button, for example,
zooms out horizontally. The history function keeps track of all your views of the signal. Return to a
previous zoom level by clicking the left arrow button.

• Zooming in on Detail

Drag a rubber band box (by holding down the left mouse button) over the portion of the image you
want to magnify.

Click the XY+ button (located at the bottom of the screen) to zoom horizontally and vertically.

• The History pane enables you to remember how you zoom the axes so that you can toggle back
and forth between views.

Using the Mouse
Wavelet Toolbox software uses three types of mouse control.

Left Mouse Button Middle Mouse Button Right Mouse Button
Make selections. Activate
controls.

Display cross-hairs to show
position-dependent information.

Translate plots up and down,
and left and right.
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Note The functionality of the middle mouse button and the right mouse button can be inverted
depending on the platform.

Making Selections and Activating Controls

Most of your work with Wavelet Toolbox graphical tools involves making selections and activating
controls. You do this using the left (or only) mouse button.

Translating Plots

By holding down the right mouse button (or its equivalent on a one- or two-button mouse), you can
move the mouse to draw a rectangle in either a horizontal or vertical orientation. Releasing the
middle mouse button then causes the plot to shift horizontally (or vertically) by an amount
proportional to the width (or height) of the rectangle.

Displaying Position-Dependent Information

When you hold down the middle mouse button (or its equivalent on a one- or two-button mouse), a
cross-hair cursor appears over the graph or plot. Position-dependent information also appears in the
Info box located at the bottom center of the tool. The type of information that appears depends on
what tool you are using and the plot in which your cursor is located..

Controlling the Colormap
The Colormap selection box, located at the lower right of the window, allows you to adjust the
colormap that is used to plot images or coefficients (wavelet or wavelet packet).

This is more than an aesthetic adjustment because you are likely to see different features depending
on your colormap selection.
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Controlling the Number of Colors

The Nb. Colors slider, located at the bottom right of the window, allows you to adjust how many
colors the tool uses to plot images or coefficients (wavelet or wavelet packet). You can also use the
edit control to adjust the number of colors. Adjusting the number of colors can highlight different
features of the plot.

Controlling the Coloration Mode

In the Wavelet 1-D tool, you access coefficients coloration with the More Display Options button,
and then select the desired Coloration Mode option.

The More Display Options button appears only when the Display mode is one of the following —
Show and Scroll, Show and Scroll (Stem Cfs), Superimposed, and Separate). In this case, scales are
replaced by levels in all options of the Coloration Mode menu.

Using Menus
General Menu Bar

At the top of most windows you find the same kind of structure. The menu bar of each figure in
Wavelet Toolbox software is very similar to the menu bar of the default MATLAB figures. You can use
many of the tools that are offered in the menus and associated toolbar of the standard MATLAB
figures.

One of the main differences is the View menu, which depends on the current tool used.

View Dynamical Visualization Tool Option

The View > Dynamical Visualization Tool option lets you enable or disable the Dynamical
Visualization Tool located at the bottom of each window.

Enabling the Dynamical Visualization Tool activates the zoom, center, history, and axes options at
the bottom of the interactive tool.

Before using Zoom In, Zoom Out, or Rotate 3D options (or the equivalent icons from the toolbar),
you must disable the Dynamical Visualization Tool to avoid possible conflicts.

Default Display Mode Option

The Default Display Mode option is specific to the Wavelet 1-D tool and lets you set a default
Display Mode for all the different analyses you perform inside the same tool.
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Using the View Axes Button
The Dynamical Visualization Tool is located at the bottom of most of the windows in the Wavelet
Toolbox software. In this tool, the View Axes toggle button lets you magnify the axis that you choose.

The toggle buttons in the View Axes figure are positioned so that you can understand which axis is
correlated with a button.

When you click the same toggle button again, you restore the original view.

Clicking the View Axes toggle button again closes the View Axes figure.

 General Features

A-7



Wavelet 2-D Tool Features
The Wavelet 2-D tool is described in “2-D Wavelet Analysis Using the Wavelet Analyzer App” on page
3-156. Here is an example of an option that allows you to view a selected part of the window at a full
window resolution.

In the Full Size menu on the right side of the interactive tool

choose the image you want to view as full size. Click your selection again to restore the original view.
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Wavelet Packet Tool Features (1-D and 2-D)

Coefficients Coloration
NAT or FRQ is for Natural or Frequency order.

By level or Global is for a coloration made level by level or taking all detail levels.

abs is used to take the absolute values of coefficients.

Node Action
When you select a node in the tree, the selected option is performed. A complete description of
options is provided in the following sections.

Node Label
The node labels can be changed using the pop-up menu. For example, the Type option labels the
nodes with (a) for approximation and (d) for detail.

Node Action Functionality
The available options in the Node Action menu are

• Visualize: When you select a node in the wavelet packet tree the corresponding signal appears.
• Split/Merge: If a terminal node is selected, it is split, growing the wavelet packet tree. Selecting

other nodes has the behavior of merging all the nodes below it in the wavelet packet tree.
• Recons.: When you select a node in the wavelet packet tree, the corresponding reconstructed

signal appears.
• Select On/Off: When On, you can select many nodes in the wavelet packet tree. Then you can

reconstruct a synthesized signal from the selected nodes using the Reconstruct button on the
main window. Use the Off selection to deselect all the previous selected nodes.

• Statistics: When you select a node in the wavelet packet tree, the Statistics tool appears using
the signal corresponding to the selected node.

• View Col. Cfs.: When active, this option removes all the colored coefficients displayed, and lets
you redraw only the corresponding coefficients by selecting a node in the wavelet packet tree.
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